JP2000237882A - Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body - Google Patents

Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body

Info

Publication number
JP2000237882A
JP2000237882A JP4163099A JP4163099A JP2000237882A JP 2000237882 A JP2000237882 A JP 2000237882A JP 4163099 A JP4163099 A JP 4163099A JP 4163099 A JP4163099 A JP 4163099A JP 2000237882 A JP2000237882 A JP 2000237882A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy
superplastic
welding
super plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4163099A
Other languages
Japanese (ja)
Inventor
Mamoru Matsuo
守 松尾
Tsutomu Tagata
勉 田形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP4163099A priority Critical patent/JP2000237882A/en
Publication of JP2000237882A publication Critical patent/JP2000237882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a wide width aluminum alloy plate for super plastic forming and to integrally form a large formed body by subjecting rolled plates of super plastic aluminum alloy each other to solid-state welding. SOLUTION: Solid-state welding is a joining method not remaining a solidified structure to a joining part. It is preferable for solid-state welding to use friction agitation welding, flash butt welding, DC butt welding, resistance welding. A super plastic aluminum alloy is either of Al-Mg alloy, Al-Zn-Mg alloy, Al-Zn-Mg- Cu alloy, Al-Cu alloy, Al-Li alloy, Al-Mg-Si alloy, Al-Si alloy, etc., a recrystallization grain is refined, a grain size is preferably <=30 μm. The material, refined by static recrytallization is subjected to a grain refining treatment to have a grain size of <=40 μm, or a cold rolling of a draft of >=40% or softening annealing to a degree not generating recrsytallization in a process to produce a rolled plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超塑性成形用アル
ミニウム合金、すなわち300〜560℃で成形加工を
行うアルミニウム合金の圧延板からなる広幅合金板ある
いは合金管ならびにその成形体に関するものであり、大
型一体成形品、建材等の装飾用途、自動車・橋梁等の構
造体、断面異形パイプ等に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for superplastic forming, that is, a wide alloy plate or an alloy pipe formed of a rolled aluminum alloy formed at 300 to 560 DEG C., and a molded product thereof. It is applied to decorative applications such as large integral molded products and building materials, structures such as automobiles and bridges, and pipes with irregular cross sections.

【0002】[0002]

【従来の技術】近年、アルミニウム合金において350
℃以上の高温で100%以上の伸びを示す超塑性材料に
関して種々の研究がなされており、Al−78%Zn、
Al−33%Cu、Al−6%Cu−0.4%Zr(S
UPURAL)、Al−Zn−Mg−Cu合金(747
5、7075)、5083などのAl−Mg合金等が超
塑性合金として知られている。これらの超塑性合金は数
100%にも及ぶ伸びが得られることから、複雑な成形
体やそれによる構造体が提案、実用化されている。また
超塑性成形の特徴は高温で成形することから低応力で変
形が可能であることであり、一般にはブロー成形により
成形される。そのため、金型はメス型のみで良い場合が
多く、また金型の材質的にも一般の冷間プレスのごとく
高強度超硬材質の必要が無く、金型費が安価であること
が大きな特徴の一つである。このような、超塑性成形
は、比較的製品数の少ない中〜少量品種でしかも金型費
のかさむ大型成形品、例えばレジャーボートの一体成形
などへ適用すると効果が大きいものである。
2. Description of the Related Art In recent years, 350% of aluminum alloys have been used.
Various studies have been made on superplastic materials exhibiting an elongation of 100% or more at a high temperature of 100 ° C. or more, and Al-78% Zn,
Al-33% Cu, Al-6% Cu-0.4% Zr (S
UPRAL), Al-Zn-Mg-Cu alloy (747
5, 7075) and 5083 are known as superplastic alloys. Since these superplastic alloys can achieve elongation of up to several 100%, complicated molded bodies and structures made of them are proposed and put to practical use. The feature of superplastic forming is that it can be deformed with low stress because it is formed at a high temperature, and is generally formed by blow molding. For this reason, it is often the case that only a female mold is required for the mold, and the material of the mold does not require a high-strength super hard material like a general cold press, and the mold cost is inexpensive. one of. Such superplastic forming has a great effect when applied to a large-sized molded product having a relatively small number of products of medium to small varieties and a high mold cost, such as integral molding of a leisure boat.

【0003】また、超塑性加工を管に適用して、複雑な
断面を有する管体もしくは構造体を成形することも要望
されており、この場合には押出しにより円もしくは角状
の管をあらかじめ製造し、この管の両端をシールしてブ
ロー成形などにより超塑性成形することが一般的に提案
されている。
[0003] It is also desired to apply superplastic processing to a pipe to form a pipe or a structure having a complicated cross section. In this case, a circular or square pipe is manufactured in advance by extrusion. It has been generally proposed to seal both ends of the tube and perform superplastic forming by blow molding or the like.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した超塑
性成形で大型の成形品を得るためには、素材として大型
の圧延板が必要であるが、実際には大型の圧延板、特に
広幅の圧延板には設備上の制約があり、広幅化には限界
があった。このための対策として、通常は板を溶接する
ことが考えられるが、溶接部は一旦溶解し凝固組織とな
るため、この部分の超塑性特性は完全に消失するという
問題がある。また超塑性成形は一般にブロー成形による
ため、溶接不良により一個所でも亀裂、破断が生じてい
るとエア漏れが発生して、成形が不可能となる。従っ
て、溶接による広幅化は不可能である。
However, in order to obtain a large molded product by the above-described superplastic forming, a large rolled plate is required as a raw material. However, in practice, a large rolled plate, particularly a wide rolled plate is required. Rolled sheets have limitations in equipment, and there is a limit to widening. As a countermeasure for this, it is usually conceivable to weld the plate, but there is a problem that the superplastic property of this portion is completely lost since the welded portion is once melted to form a solidified structure. In addition, since superplastic forming is generally performed by blow molding, if cracks or breaks occur even at one location due to poor welding, air leakage occurs and molding becomes impossible. Therefore, widening by welding is impossible.

【0005】また管を製造するにあたっても、超塑性を
発現する合金としては上述したような5083、747
5等があるが、これらは押出しが非常に困難な合金であ
る場合が多く、さらに押出材は冷間引抜することから加
工熱処理を施して結晶粒微細化することが行いにくく、
従って十分な超塑性特性を付与することが困難である。
[0005] In producing a tube, alloys that exhibit superplasticity include 5083 and 747 as described above.
5 and the like, but these are often very difficult to extrude alloys, and since the extruded material is cold drawn, it is difficult to perform working heat treatment to refine the crystal grains,
Therefore, it is difficult to provide sufficient superplastic properties.

【0006】しかしながら、超塑性成形体の大型化を進
めるためには、超塑性成形可能な材料の広幅、大型化が
必須であり、そのためには接合部の超塑性特性が低下し
ない接合方法の開発が必要である。また、管の超塑性成
形が可能となれば、図1に示すような自動車に用いる複
雑断面形状を有する異形パイプの作成が可能となり、ま
た超塑性成形は転写性に優れていることから複雑な表面
模様を有する建材用装飾柱等の用途も開ける。このため
にも、超塑性成形の可能なアルミニウム合金管の製造が
必要であり、それには超塑性特性の低下の無い接合法の
開発が必要である。
However, in order to increase the size of the superplastic molded body, it is necessary to increase the width and size of the material that can be superplastically formed. is necessary. Also, if superplastic forming of a pipe becomes possible, it becomes possible to produce a deformed pipe having a complicated cross-sectional shape used for an automobile as shown in FIG. 1, and since superplastic forming is excellent in transferability, it becomes complicated. Applications such as decorative pillars for building materials with surface patterns are also open. For this purpose, it is necessary to produce an aluminum alloy tube capable of superplastic forming, and it is necessary to develop a joining method without lowering the superplastic properties.

【0007】[0007]

【課題を解決するための手段】発明者は超塑性特性を阻
害しない接合法を鋭意研究検討の結果、接合部が溶解凝
固組織でなく固相接合であり、かつ接合部にできるだけ
多量の加工歪みを持たせることにより、超塑性成形時の
加熱で微細な結晶粒が得られ、もって、接合部の超塑性
特性が大幅に低下しない材料と、接合方法の組み合わせ
を検討し以下の発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on a joining method that does not impede the superplastic properties. As a result, the joining portion is not a solidified structure but a solid-phase joining, and the joining portion has as much processing strain as possible. By providing a fine crystal grain by heating at the time of superplastic forming, and by examining a combination of a material and a joining method that does not significantly reduce the superplastic property of the joint, the following invention was reached. .

【0008】すなわち本発明は、超塑性アルミニウム合
金圧延板同志が固相接合されていることを特徴とする超
塑性成形用広幅アルミニウム合金板であり、また超塑性
アルミニウム合金圧延板が固相接合されてなる超塑性成
形用アルミニウム合金管である。さらに固相接合とし
て、摩擦攪拌接合、フラッシュバット溶接、DCバット
溶接、電縫溶接を用いることを特徴とする請求項1およ
び請求項2記載の超塑性アルミニウム合金材であり、ま
た請求項1または2記載の接合体を超塑性成形してなる
超塑性成形体である。
That is, the present invention relates to a wide aluminum alloy sheet for superplastic forming, characterized in that superplastic aluminum alloy rolled sheets are solid-phase joined, and the superplastic aluminum alloy rolled sheet is solid-phase joined. This is an aluminum alloy tube for superplastic forming. The superplastic aluminum alloy material according to claim 1 or 2, wherein friction stir welding, flash butt welding, DC butt welding, or electric resistance welding is used as the solid phase welding. A superplastic formed body obtained by superplastic forming the joined body according to 2.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0010】まず、本発明における超塑性材料について
説明する。本発明に用いる材料は、基本的には超塑性特
性を示すアルミニウム合金であればすべて適用できる
が、一般的にはAl−Mg系、Al−Zn−Mg系、A
l−Zn−Mg−Cu系、Al−Cu系、Al−Li
系、Al−Mg−Si系、Al−Si系等であり、具体
的には5083、7475、2004等が好適である。
超塑性アルミニウム合金は一般的に再結晶粒を微細化す
ることにより超塑性特性を得ており、結晶粒サイズとし
ては30μm以下が好ましい。また、通常は超塑性変形
を行う前に結晶粒を微細化する静的再結晶タイプ(50
83、7475等)と、超塑性変形中に動的に再結晶さ
せる連続再結晶タイプの2種類が知られており、本発明
においては、これら静的再結晶タイプ、動的再結晶タイ
プのいずれも使用することができる。静的再結晶により
微細化するタイプの材料は前もって圧延板を製造する工
程で結晶粒微細化処理を施しても結晶粒径を40μm以
下にしておく。あるいは圧延率40%以上の冷間圧延加
工しH1n材とするかまたはそれを再結晶が生じない程
度に軟化焼鈍したH2nもしくはH3n状態として、超
塑性成形時の加熱で再結晶させるようにする。動的再結
晶するタイプでは冷間圧延率40%以上の冷間圧延板
(H1n)か、それを再結晶が生じない程度に軟化焼鈍
したH2nもしくはH3n状態とすることが必要であ
り、これにより超塑性変形時の動的歪みと温度の関係で
変形中に動的な再結晶が生じ微細化する。
First, the superplastic material of the present invention will be described. The material used in the present invention can be basically applied to any aluminum alloy exhibiting superplastic properties. In general, Al-Mg based, Al-Zn-Mg based, A
l-Zn-Mg-Cu, Al-Cu, Al-Li
System, Al-Mg-Si system, Al-Si system and the like, and specifically, 5083, 7475, 2004 and the like are preferable.
Superplastic aluminum alloys generally obtain superplastic properties by making recrystallized grains finer, and the grain size is preferably 30 μm or less. Further, usually, a static recrystallization type (50) for refining crystal grains before performing superplastic deformation.
83, 7475 etc.) and a continuous recrystallization type that dynamically recrystallizes during superplastic deformation. In the present invention, either of these static recrystallization type and dynamic recrystallization type are known. Can also be used. The material of the type that is refined by static recrystallization has a crystal grain size of 40 μm or less even if a crystal grain refinement process is performed in advance in the process of manufacturing a rolled plate. Alternatively, the H1n material is cold-rolled at a rolling ratio of 40% or more, or is made into an H2n or H3n state softened and annealed to such an extent that recrystallization does not occur, and recrystallized by heating during superplastic forming. In the dynamic recrystallization type, it is necessary to form a cold-rolled sheet (H1n) having a cold rolling reduction of 40% or more or a soft-annealed H2n or H3n state so that recrystallization does not occur. Due to the relationship between dynamic strain and temperature during superplastic deformation, dynamic recrystallization occurs during deformation and the size is reduced.

【0011】つぎに本発明における接合法について説明
する。本発明で用いる接合法は固相接合法であることが
必須である。ここで、固相接合法とは、接合部に凝固組
織が残らない接合法を意味し、フラッシュバット溶接法
のように一時的に接合界面に溶解が生じても接合過程で
溶融部が排出されて、その結果接合界面が固相接合とな
っているものであれば適用できる。ただし、スポット溶
接、プロジェクション溶接のような点溶接では、溶接点
同志の間は接合されていないために成形時にここからエ
ア漏れを起こすので好ましくない。より具体的には、固
相攪拌接合(FSW)、フラッシュバット接合、DCバ
ット接合、電縫溶接等が一般的であり、特に固相攪拌接
合(FSW)は接合部に高い歪みが導入され超塑性特性
が向上することから好適である。
Next, the joining method according to the present invention will be described. It is essential that the bonding method used in the present invention is a solid-phase bonding method. Here, the solid-phase joining method means a joining method in which a solidified structure does not remain in the joint, and even if melting occurs temporarily at the joining interface as in a flash butt welding method, a molten portion is discharged during the joining process. As a result, the present invention can be applied as long as the bonding interface is solid phase bonding. However, spot welding such as spot welding and projection welding is not preferable because air is leaked from the welding points during molding because they are not joined to each other. More specifically, solid phase stir welding (FSW), flash butt welding, DC butt welding, electric resistance welding, and the like are common. This is preferable because the plastic properties are improved.

【0012】本発明による作用は次の通りである。溶融
接合の場合は接合部は一旦溶融した凝固組織となるため
に結晶粒が粗大化し、超塑性特性はまったく失われる。
これに対して、固相接合の場合は溶融が起こらないか、
あるいは一旦溶融しても溶融金属が接合部から排出さ
れ、その結果接合部には粗大結晶粒は存在しない状態が
得られる。さらに、接合界面ならびにその近傍は高温の
状態で強い塑性加工を受けることから高い歪みが導入さ
れており、そのため接合部は微細再結晶しているか、ま
たは少なくとも超塑性成形時の加熱により微細に再結晶
する。すなわち接合部の超塑性特性は低下することなく
維持される、ないしは向上することになる。その結果、
本発明による接合体は超塑性加工により十分な成形を施
すことが可能となる。従って、狭幅の圧延板を複数枚接
合することにより充分な大きさ大型超塑性板を得ること
ができ、これを超塑性成形することによりレジャーボー
ト船体などの大型成形体を一体成形することが可能とな
る。あるいは圧延板を湾曲させ接合することにより50
83,7475のような押出・引抜きが困難な合金系で
も容易に管を作ることが可能である。しかも超塑性特性
が失われていないことから、この管を異形断面金型を用
いて超塑性成形により膨管することで、複雑な形状の管
状成形体を容易に製造することが可能となる。
The operation of the present invention is as follows. In the case of fusion joining, since the joining portion has a solidified structure once melted, the crystal grains are coarsened, and the superplasticity is completely lost.
On the other hand, in the case of solid-phase bonding,
Alternatively, once molten, the molten metal is discharged from the joint, and as a result, a state is obtained in which no large crystal grains exist in the joint. Furthermore, since the joint interface and its vicinity undergo strong plastic working at a high temperature, high strain is introduced, so that the joint part is finely recrystallized or at least finely recrystallized by heating during superplastic forming. Crystallize. That is, the superplastic property of the joint is maintained or improved without lowering. as a result,
The joined body according to the present invention can be sufficiently formed by superplastic working. Therefore, a large superplastic plate having a sufficient size can be obtained by joining a plurality of narrow rolled plates, and a large molded body such as a leisure boat hull can be integrally formed by superplastic forming. It becomes possible. Alternatively, by bending and joining a rolled plate,
Tubes can be easily made even with alloys such as 83, 7475, which are difficult to extrude and draw. In addition, since the superplastic property is not lost, by expanding the tube by superplastic forming using a mold having a modified cross section, it is possible to easily manufacture a tubular molded body having a complicated shape.

【0013】なお、溶融接合では接合部に溶接欠陥とし
て亀裂などが生じやすく、このような亀裂があると超塑
性成形時に気体が漏れて成形が困難となるが、固相接合
では高い圧力をかけて接合することから、気体が漏れる
隙間の発生が無く、このような成形時の問題は無い。
In the case of fusion joining, cracks and the like are apt to occur as welding defects in the joints. If such cracks are present, gas leaks during superplastic forming, making molding difficult. Therefore, there is no gap for gas leakage, and there is no such problem during molding.

【0014】また、管の製造においては接合後に冷間引
き抜きを行っても良い。ただし、再結晶板からなる管を
冷間引き抜きするとその部分が次の超塑性加工時の加熱
により粗大に再結晶するため、好ましくない。従って、
造管時の元板はH1nもしくは再結晶しない程度に焼鈍
するH2n、H3nの熱処理を施すことが望ましい。こ
の場合、接合部は高い加工歪みが導入されているため、
さらに冷間引き抜きを行ってもこの部分が超塑性時に結
晶粒の粗大化を引き起こすことはない。
In the manufacture of the tube, cold drawing may be performed after joining. However, it is not preferable to cold-draw a tube made of a recrystallized plate because the portion is coarsely recrystallized by heating during the next superplastic working. Therefore,
It is desirable that the original plate at the time of pipe making be subjected to a heat treatment of H1n or H2n or H3n which is annealed to the extent that recrystallization does not occur. In this case, the joint has high processing strain introduced,
Further, even when cold drawing is performed, this portion does not cause crystal grains to become coarse during superplasticity.

【0015】[0015]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0016】[実施例1]まず、大型成形品に適する圧
延板接合体の実施例について説明する。表1は実施例に
用いたアルミニウム合金の合金成分組成である。
[First Embodiment] First, an embodiment of a rolled plate joined body suitable for a large molded product will be described. Table 1 shows the alloy composition of the aluminum alloy used in the examples.

【0017】[0017]

【表1】 [Table 1]

【0018】表1の化学成分の合金を通常の製造方法に
より合金1は5083相当の合金で、これを板厚2.0
mmのH18材に作製した。また合金2は7475相当
の合金で、これを板厚2.0mmのW材に作製した。こ
れらの板から幅100mm、長さ100mmの素板を作
製し、圧延方向が長手方向となるように表2に示す各種
接合法で接合し、100mm×200mmの板を得た。
この接合板を、接合部のバリ・余盛りを除去して平坦に
した後、接合部が試験片長手方向の中央になるよう幅1
0mm、平行部長さ30mmの試験片を作製し、表に示
す温度、歪み速度で超塑性引張試験を行った。なお比較
のため接合していない元板についても同じ試験を行っ
た。その結果を表2に示す。
The alloys having the chemical components shown in Table 1 were prepared by a usual manufacturing method.
mm H18 material. Alloy 2 was an alloy equivalent to 7475, and was manufactured into a W material having a thickness of 2.0 mm. A base plate having a width of 100 mm and a length of 100 mm was prepared from these plates and joined by various joining methods shown in Table 2 so that the rolling direction was the longitudinal direction to obtain a 100 mm × 200 mm plate.
The joint plate was flattened by removing burrs and excess piles at the joint, and then the width 1 was set so that the joint was at the center in the longitudinal direction of the test piece.
A test piece having a length of 0 mm and a parallel portion length of 30 mm was prepared, and a superplastic tensile test was performed at the temperature and strain rate shown in the table. For comparison, the same test was performed on the unbonded base plate. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】表に示すようにTIG溶接した試験片は超
塑性伸びがほとんど消失しているのに対して、固相接合
したものでは結晶粒径も小さく、超塑性特性も接合して
いない元板と同等あるいは向上したレベルとなってい
る。従って、本発明によれば、広幅長大な超塑性成形用
アルミニウム合金板を得ることができ、大型成型品を超
塑性成形で作ることが可能となる。
As shown in the table, the TIG-welded test piece had almost no superplastic elongation, whereas the solid-phase-bonded test piece had a small crystal grain size and had no superplastic properties. It is the same or improved level. Therefore, according to the present invention, a wide and long aluminum alloy plate for superplastic forming can be obtained, and a large molded product can be produced by superplastic forming.

【0021】[実施例2]次に超塑性成形用管の実施例
について説明する。表3は実施例2に用いたアルミニウ
ム合金の合金成分組成である。
Embodiment 2 Next, an embodiment of a superplastic forming tube will be described. Table 3 shows the alloy composition of the aluminum alloy used in Example 2.

【0022】[0022]

【表3】 [Table 3]

【0023】表3の合金6(5083相当)を通常の製
法により板厚2.0mmのH24材とした。また合金7
(7475相当)を通常の製法により230℃5時間焼
鈍して過時効させた板厚2.00mmのW材とした。こ
れらの板材を直径30mm長さ300mmとなるように
曲げ、表4に示す接合法により接合して円形のパイプと
した。また合金8(6061相当)を用いて直径30m
mのT4材押出パイプを製造した。これらについて超塑
性温度に相当する500℃の空気炉に投入して15分保
持後の元板部と接合部の結晶粒を測定した。ついで、図
2に示す金型を用いて空気圧により60mmに膨管する
超塑性成形をして成形性を評価した。その結果を表4に
示す。
The alloy 6 in Table 3 (equivalent to 5083) was made into a H24 material having a thickness of 2.0 mm by a usual manufacturing method. Alloy 7
(Equivalent to 7475) was annealed at 230 ° C. for 5 hours by a normal manufacturing method to obtain an overaged W material having a plate thickness of 2.00 mm. These plate members were bent to have a diameter of 30 mm and a length of 300 mm, and were joined by joining methods shown in Table 4 to form circular pipes. 30m in diameter using alloy 8 (equivalent to 6061)
m T4 extruded pipes were produced. These were put into an air furnace at 500 ° C. corresponding to the superplastic temperature, and after holding for 15 minutes, the crystal grains of the base plate and the joint were measured. Then, using a mold shown in FIG. 2, superplastic forming was performed to expand the tube to 60 mm by air pressure, and the formability was evaluated. Table 4 shows the results.

【0024】[0024]

【表4】 [Table 4]

【0025】表に示すように本発明によるものでは直径
30mm→60mmの外径100%の増加が可能であっ
たのに対して、TIG溶接したものでは超塑性伸びがほ
とんど消失しているため接合部で破断してしまった。ま
た押出材では製管の際に冷間引抜きされており、このた
め結晶粒の微細化が不充分であり、その結果十分な膨管
が得られずに途中で破断してしまった。
As shown in the table, in the case of the present invention, it was possible to increase the outer diameter from 30 mm to 60 mm by 100%, whereas in the case of TIG welding, the superplastic elongation almost disappeared, so that joining was performed. Has broken at the part. In addition, the extruded material was cold drawn at the time of pipe making, and as a result, the crystal grains were insufficiently refined, and as a result, a sufficient expanded tube was not obtained and the tube was broken on the way.

【0026】[0026]

【発明の効果】以上詳述したように、本発明によれば、
元板の超塑性特性を失うことなく広幅長大な板を得るこ
とができ、従って大きな成形能を持つ超塑性成形により
レジャーボートの船体のような大型のものでも一体成形
することが可能となる。また本発明による管を用いれば
直径の大きく異なる管、あるいは複雑な断面を有する管
を製造することが可能となる。さらに超塑性成形の特徴
である板表面の転写性を生かして、複雑な表面模様の大
型建材パネルや装飾柱の製造も容易に行える。
As described in detail above, according to the present invention,
A wide and long plate can be obtained without losing the superplastic properties of the base plate. Therefore, it is possible to integrally form a large one such as a hull of a leisure boat by superplastic forming having a large forming ability. The use of the tube according to the invention also makes it possible to produce tubes with greatly different diameters or tubes with a complicated cross section. Furthermore, by utilizing the transferability of the plate surface, which is a feature of superplastic forming, it is possible to easily manufacture large building material panels and decorative columns having complicated surface patterns.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による複雑断面管の斜視図である。FIG. 1 is a perspective view of a complex cross-section tube according to the present invention.

【図2】本発明の実施例に用いた金型および超塑性成形
装置の断面図である。
FIG. 2 is a sectional view of a mold and a superplastic forming apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1‥‥‥超塑性成形用アルミニウム管 2‥‥‥接合部 3‥‥‥空洞 4‥‥‥シール 5‥‥‥成形用流体 6‥‥‥金型 7‥‥‥超塑性成形用管 1 Aluminum tube for superplastic forming 2 Joint 3 Hollow 4 Seal 5 Fluid for forming 6 Mold 7 Tube for superplastic forming

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B23K 103:10 Fターム(参考) 4E028 CA01 CA13 EA04 EA07 4E067 AA05 AB03 BG02 BM00 DC02 DC03 DC05 DC06 EA07 EA09 EB08 4F100 AB02 AB10A AB10B AB11 AB12 AB13 AB14 AB17 AB18 AB19 AB31A AB31B BA02 DA11 EC032 EC172 JK20A JK20B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) // B23K 103: 10 F-term (Reference) 4E028 CA01 CA13 EA04 EA07 4E067 AA05 AB03 BG02 BM00 DC02 DC03 DC05 DC06 EA07 EA09 EB08 4F100 AB02 AB10A AB10B AB11 AB12 AB13 AB14 AB17 AB18 AB19 AB31A AB31B BA02 DA11 EC032 EC172 JK20A JK20B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超塑性アルミニウム合金圧延板同志が固
相接合されていることを特徴とする超塑性成形用広幅ア
ルミニウム合金板。
1. A wide aluminum alloy sheet for superplastic forming, characterized in that superplastic aluminum alloy rolled sheets are solid-phase bonded.
【請求項2】 超塑性アルミニウム合金圧延板が固相接
合されてなる超塑性成形用アルミニウム合金管。
2. An aluminum alloy tube for superplastic forming in which a superplastic aluminum alloy rolled plate is solid-phase bonded.
【請求項3】 固相接合として、摩擦攪拌接合、フラッ
シュバット溶接、DCバット溶接、電縫溶接を用いるこ
とを特徴とする請求項1および請求項2記載の超塑性ア
ルミニウム合金材。
3. The superplastic aluminum alloy material according to claim 1, wherein solid phase welding is performed by friction stir welding, flash butt welding, DC butt welding, or electric resistance welding.
【請求項4】 請求項1または2記載の接合体を超塑性
成形してなる超塑性成形体。
4. A superplastic formed body obtained by superplastic forming the joined body according to claim 1.
JP4163099A 1999-02-19 1999-02-19 Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body Pending JP2000237882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4163099A JP2000237882A (en) 1999-02-19 1999-02-19 Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4163099A JP2000237882A (en) 1999-02-19 1999-02-19 Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body

Publications (1)

Publication Number Publication Date
JP2000237882A true JP2000237882A (en) 2000-09-05

Family

ID=12613660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4163099A Pending JP2000237882A (en) 1999-02-19 1999-02-19 Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body

Country Status (1)

Country Link
JP (1) JP2000237882A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234308A (en) * 2000-02-16 2001-08-31 Kawasaki Heavy Ind Ltd Metallic formed stock and its forming method
FR2855083A1 (en) * 2003-05-20 2004-11-26 Pechiney Rhenalu Fabrication of aluminum alloy components by friction stir welding followed by a heat treatment operation
WO2007080938A1 (en) * 2006-01-12 2007-07-19 Furukawa-Sky Aluminum Corp. Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
JP2007186747A (en) * 2006-01-12 2007-07-26 Furukawa Sky Kk Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy
US7523850B2 (en) 2003-04-07 2009-04-28 Luxfer Group Limited Method of forming and blank therefor
US8420226B2 (en) 2004-09-14 2013-04-16 Constellium France Welded structural member and method and use thereof
CN103753119A (en) * 2013-12-09 2014-04-30 北京航星机器制造有限公司 Lightweight wall panel superplastic forming production method
CN103769820A (en) * 2013-10-22 2014-05-07 北京航星机器制造有限公司 Global superplastic forming method of titanium alloy thin-wall deformed closed part
JP2017136631A (en) * 2016-02-05 2017-08-10 株式会社東芝 Friction stir welding method and joined body
CN110038920A (en) * 2019-05-24 2019-07-23 佛山市南海汇丰铜业制品有限公司 Realize copper pipe quantity-produced method and apparatus
CN111604645A (en) * 2020-05-23 2020-09-01 北京普惠三航科技有限公司 Forming method of air inlet pipe of aircraft engine
RU2739926C1 (en) * 2020-06-30 2020-12-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Ultra-fine aluminum alloys for high-strength articles made under superplasticity conditions, and a method of producing articles
CN112410691A (en) * 2020-11-10 2021-02-26 中国航发北京航空材料研究院 Annealing process of aluminum-lithium alloy material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234308A (en) * 2000-02-16 2001-08-31 Kawasaki Heavy Ind Ltd Metallic formed stock and its forming method
US7523850B2 (en) 2003-04-07 2009-04-28 Luxfer Group Limited Method of forming and blank therefor
FR2855083A1 (en) * 2003-05-20 2004-11-26 Pechiney Rhenalu Fabrication of aluminum alloy components by friction stir welding followed by a heat treatment operation
WO2004104258A1 (en) * 2003-05-20 2004-12-02 Pechiney Rhenalu Method for welding by means of friction - agitation of aluminium alloy parts with heat treatment prior to welding
US7490752B2 (en) 2003-05-20 2009-02-17 Alcan Rhenalu Manufacturing method for friction welded aluminum alloy parts
US8420226B2 (en) 2004-09-14 2013-04-16 Constellium France Welded structural member and method and use thereof
US8500926B2 (en) 2006-01-12 2013-08-06 Furukawa-Sky Aluminum Corp Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy
JP2007186747A (en) * 2006-01-12 2007-07-26 Furukawa Sky Kk Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy
WO2007080938A1 (en) * 2006-01-12 2007-07-19 Furukawa-Sky Aluminum Corp. Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
CN103769820A (en) * 2013-10-22 2014-05-07 北京航星机器制造有限公司 Global superplastic forming method of titanium alloy thin-wall deformed closed part
CN103753119A (en) * 2013-12-09 2014-04-30 北京航星机器制造有限公司 Lightweight wall panel superplastic forming production method
JP2017136631A (en) * 2016-02-05 2017-08-10 株式会社東芝 Friction stir welding method and joined body
US10549379B2 (en) 2016-02-05 2020-02-04 Kabushiki Kaisha Toshiba Friction stir welding method and joined body
CN110038920A (en) * 2019-05-24 2019-07-23 佛山市南海汇丰铜业制品有限公司 Realize copper pipe quantity-produced method and apparatus
CN111604645A (en) * 2020-05-23 2020-09-01 北京普惠三航科技有限公司 Forming method of air inlet pipe of aircraft engine
RU2739926C1 (en) * 2020-06-30 2020-12-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Ultra-fine aluminum alloys for high-strength articles made under superplasticity conditions, and a method of producing articles
CN112410691A (en) * 2020-11-10 2021-02-26 中国航发北京航空材料研究院 Annealing process of aluminum-lithium alloy material
CN112410691B (en) * 2020-11-10 2021-12-24 中国航发北京航空材料研究院 Annealing process of aluminum-lithium alloy material

Similar Documents

Publication Publication Date Title
JP2000237882A (en) Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body
JP2005256166A (en) Aluminum alloy extruded product for heat exchanger and method of manufacturing the same
EP2349602B1 (en) Method of forming aluminium heat exchangers header tanks
JP2010530498A (en) Tank manufacturing method
CN105033015A (en) Induction annealing as a method for expanded hydroformed tube formability
KR20160140572A (en) Aluminum clad material manufacturing method
JPH1144497A (en) Composite tube for refrigerant passage of aluminum alloy and its manufacture
JP2009045672A (en) Method of hydroforming hollow aluminum extruded material
US6103027A (en) Method of making seam free welded pipe
JP2002363677A (en) Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
JP3236480B2 (en) High strength aluminum alloy for easy porthole extrusion
JP2003154407A (en) Aluminum extruded material for hydroforming and method of manufacturing the same
JP5086025B2 (en) Method for producing porthole extruded material of aluminum or aluminum alloy
JP2004351514A (en) Combined sheets of plastic formable sheet and ultra-plastic formable sheet, combined tubes of tubular plastic formable sheet and ultra-plastic formable sheet, and formed body made of these combined sheet and combined tube
JP2022516365A (en) Devices and methods for thickening pipes at their edges
JP2006334658A (en) Aluminum alloy tailored blank for superplastic forming
JP2002173728A (en) Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
Pietras et al. FSW welding of aluminium casting alloys
JP2002088433A (en) Aluminum clad sheet material having projecting tube part and its production method
JPS6054804B2 (en) Manufacturing method of titanium alloy tube
JP2009285665A (en) Aluminum alloy seamless extruded tube excellent in high temperature tube expansion formability and its manufacturing method
JP2002155333A (en) Al-Mg-Si BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL HAVING EXCELLENT BULGING PROPERTY
WO2021191850A1 (en) An apparatus for thickening brim portions in an inner surface of a tube
JPH08243646A (en) Manufacture of square steel tube
JP2635769B2 (en) Manufacturing method of seamless aluminum clad tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040422

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921