JP2000235010A - Nuclear magnetic resonance device and liquid constituent inspection device using the device - Google Patents

Nuclear magnetic resonance device and liquid constituent inspection device using the device

Info

Publication number
JP2000235010A
JP2000235010A JP11038093A JP3809399A JP2000235010A JP 2000235010 A JP2000235010 A JP 2000235010A JP 11038093 A JP11038093 A JP 11038093A JP 3809399 A JP3809399 A JP 3809399A JP 2000235010 A JP2000235010 A JP 2000235010A
Authority
JP
Japan
Prior art keywords
liquid
temperature
constant temperature
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11038093A
Other languages
Japanese (ja)
Inventor
Noriaki Matsumura
憲明 松村
Hideki Suetake
秀樹 末武
Yasushi Ito
靖史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11038093A priority Critical patent/JP2000235010A/en
Publication of JP2000235010A publication Critical patent/JP2000235010A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an NMR device capable of limiting a temperature change in a constant- temperature chamber so that a change in a magnetic field can be kept at a minimum value of about 10-4% or less and provide a device for inspecting food with high accuracy and with high efficiency by automating the inspection of food using an NMR in a food inspecting system utilizing the NMR. SOLUTION: In this nuclear magnetic resonance device (NMR device), heat exchangers 59, 60, 61 are disposed close to permanent magnets 56 in a constant-temperature chamber in which the permanent magnets 56 and an electromagnetic coil 51 are disposed while a constant-temperature liquid producing device 62 is provided for producing a constant- temperature liquid controlled to a constant temperature, and the constant-temperature liquid producing device 62 is connected to the heat exchangers 59, 60, 61 by piping to circulate the constant-temperature liquid between the two, thereby keeping the interior of the constant- temperature chamber at a constant temperature. In a food inspecting device for measuring constituents of a sample liquid by the NMR device 100, a signal detected by magnetic resonance and sent from the NMR device 100 is converted into a frequency spectrum, a peak frequency thereof is detected, a current correcting value that makes the peak frequency equal to a reference frequency is found, and a correcting magnetic field is set up by the current correcting value for correcting the magnetic-field intensity of the magnets, thereby limiting a change in the magnetic-field intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核磁気共鳴現象を
発生させる核磁気共鳴装置及び該核磁気共鳴装置を利用
して液体の成分を測定する液体成分検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear magnetic resonance apparatus for generating a nuclear magnetic resonance phenomenon and a liquid component inspection apparatus for measuring a liquid component using the nuclear magnetic resonance apparatus.

【0002】[0002]

【従来の技術】核磁気共鳴装置(以下NMR装置とい
う)は、恒温槽内に設置された永久磁石による静磁場の
中に電磁波を電磁コイルによって印加して核磁気共鳴現
象を発生させるものである。
2. Description of the Related Art A nuclear magnetic resonance apparatus (hereinafter referred to as an NMR apparatus) generates a nuclear magnetic resonance phenomenon by applying an electromagnetic wave to a static magnetic field generated by a permanent magnet installed in a thermostat by an electromagnetic coil. .

【0003】図4は、かかるNMR装置の従来の1例を
示す構成図である。図4において、8は断熱壁7によっ
て外部と遮断された恒温室8aを有する恒温槽である。
1,1は、該恒温室8a内に対向して設置された永久磁
石で、該永久磁石1,1の間の中央部には磁気共鳴を発
生させて、この共鳴信号を受信する電磁コイル3及び被
測定物質である液体を入れるための検出管2が設置され
ている。
FIG. 4 is a configuration diagram showing one example of such a conventional NMR apparatus. In FIG. 4, reference numeral 8 denotes a constant temperature chamber having a constant temperature chamber 8a which is isolated from the outside by a heat insulating wall 7.
1, 1 are permanent magnets installed facing each other in the constant temperature chamber 8a. An electromagnetic coil 3 for generating magnetic resonance in a central portion between the permanent magnets 1, 1 and receiving the resonance signal. And a detection tube 2 for containing a liquid as a substance to be measured.

【0004】4は、前記永久磁石1,1とコイル3との
間に設置されて測定範囲内の磁気分布を均一にするシム
コイルである。5は前記コイル3に電磁波信号を発信す
る信号発生器、6は測定信号を処理する信号処理部であ
る。9は空調装置であり、前記恒温室8a内は、該空調
装置9によって所定の一定温度に保持されている。
A shim coil 4 is provided between the permanent magnets 1 and 1 and the coil 3 to make the magnetic distribution uniform within the measurement range. 5 is a signal generator for transmitting an electromagnetic wave signal to the coil 3, and 6 is a signal processing unit for processing a measurement signal. Reference numeral 9 denotes an air conditioner, and the inside of the constant temperature chamber 8a is maintained at a predetermined constant temperature by the air conditioner 9.

【0005】かかるNMR装置において、恒温室8a内
は空調装置9によって一定温度に保持され、この一定温
度の室内において永久磁石1,1によって静磁場が形成
されている。そして、該静磁場の中に設置した被測定物
質に、前記永久磁石1,1によって与えられる静磁場の
大きさB0 によって決まる振動数f0=δ(B0/2π)
(ここでδは磁気回転比)の電磁波を信号発生器5を介
して電磁コイル3によって印加し、核磁気共鳴現象(以
下NMRという)を発生させる。
In such an NMR apparatus, the inside of the constant temperature chamber 8a is maintained at a constant temperature by an air conditioner 9, and a static magnetic field is formed by the permanent magnets 1 and 1 in the room at the constant temperature. Then, the frequency f 0 = δ (B 0 / 2π) determined by the magnitude B 0 of the static magnetic field provided by the permanent magnets 1, 1 is applied to the substance to be measured placed in the static magnetic field.
An electromagnetic wave (where δ is the magnetic rotation ratio) is applied by the electromagnetic coil 3 via the signal generator 5 to generate a nuclear magnetic resonance phenomenon (hereinafter referred to as NMR).

【0006】ここで前記永久磁石1,1による静磁場
は、温度によって変化するので(1℃の温度変化によ
り、磁場は0.1〜0.01%変化する)、NMRによ
る測定中は空調装置9によって恒温室8a内を一定温度
に保持し、前記NMRによって得られる信号の安定性を
保持している。
Since the static magnetic field generated by the permanent magnets 1 and 1 changes with temperature (the magnetic field changes by 0.1 to 0.01% due to a temperature change of 1 ° C.), the air conditioner is used during the NMR measurement. 9, the inside of the constant temperature chamber 8a is maintained at a constant temperature, and the stability of the signal obtained by the NMR is maintained.

【0007】前記永久磁石が設置された恒温室8a内の
温度を一定温度に保持する技術として、実開平3−33
386号の考案が提供されている。これは、恒温槽を二
重の断熱壁で形成した二重壁構造に形成して、夫々個別
に温度制御された2つの室を形成し、内側の恒温室に永
久磁石等のNMR装置を設置することによって、恒温槽
の内部と外部とを完全に熱的に遮断している。
As a technique for maintaining the temperature in the constant temperature chamber 8a in which the permanent magnets are installed at a constant temperature, Japanese Utility Model Application Laid-Open Publication No.
No. 386 is provided. In this method, the thermostat is formed in a double-walled structure with double heat-insulating walls, and two chambers are individually controlled in temperature. An NMR device such as a permanent magnet is installed in the inner thermostat. By doing so, the inside and outside of the thermostat are completely thermally insulated.

【0008】一方、前記NMRを食品製造プラントにお
ける飲料成分の検査システムに適用する技術が近年提案
されている。かかるNMRによる食品検査システムにあ
っては、従来は、試料を検査装置の外部から注入して、
試料の成分を測定した後、該試料を装置外に流出させ、
次いで新たな試料を測定装置内に流入させるという手順
を作業者によって手動的に行なっている。
On the other hand, a technique for applying the NMR to a beverage component inspection system in a food production plant has recently been proposed. In such a food inspection system by NMR, conventionally, a sample is injected from outside the inspection device,
After measuring the components of the sample, the sample is allowed to flow out of the device,
Next, a procedure of causing a new sample to flow into the measuring device is manually performed by an operator.

【0009】[0009]

【発明が解決しようとする課題】前記のようにNMR装
置においては、永久磁石の磁場の変化を防止するため、
恒温槽の内部の温度変化を可能な限り小さくすることを
要する。前記のように、磁石の磁場は1℃の温度変化に
対して0.1〜0.01%変化するが、NMRによって
得られる信号に安定性を得るには、前記磁場の変化を1
-4%程度という極小値にまで向上させることを要す
る。
As described above, in the NMR apparatus, in order to prevent a change in the magnetic field of the permanent magnet,
It is necessary to make the temperature change inside the thermostat as small as possible. As described above, the magnetic field of the magnet changes by 0.1 to 0.01% with respect to a temperature change of 1 ° C.
It is necessary to improve to a minimum value of about 0-4 %.

【0010】しかしながら、図4に示されるような、空
調装置9によって恒温室8a内の温度を所定温度に保持
する装置では、前記のような極小な磁場変化に抑えるこ
とは不可能である。
[0010] However, in an apparatus such as that shown in Fig. 4 in which the temperature inside the constant temperature chamber 8a is maintained at a predetermined temperature by the air conditioner 9, it is impossible to suppress such a minimal change in the magnetic field.

【0011】また、前記の実開平3−33386号にて
提案されている技術では、図4に示す装置よりも温度変
化を小さくすることが可能ではあるが、二重の断熱壁に
囲まれた室内の温度をヒータによって制御しているのみ
であるため、かかる技術にあっても、温度変化を前記の
ような極小値に抑えることは不可能である。
In the technique proposed in Japanese Utility Model Application Laid-Open No. 3-33386, the temperature change can be made smaller than that of the apparatus shown in FIG. Since the temperature in the room is only controlled by the heater, it is impossible to suppress the temperature change to the minimum value as described above even with this technique.

【0012】一方、前記NMRを食品検査システムの液
体飲料の成分測定に適用する場合には、従来は、前記の
ように試料成分の測定、試料の注入、流出を作業者によ
って半手動的に行なっており、このため、検査精度が低
く、かつ作業能率も低い。
On the other hand, when the NMR is applied to the measurement of the components of a liquid beverage in a food inspection system, conventionally, the measurement of the sample components, the injection of the sample, and the outflow are semi-manually performed by an operator as described above. Therefore, inspection accuracy is low and work efficiency is low.

【0013】本発明はかかる従来技術の課題に鑑み、恒
温室内の温度変化を、磁場の変化が10-4%程度の極小
値以下に保持できるように抑え得るNMR装置を提供す
ることを第1の目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its first object to provide an NMR apparatus capable of suppressing a temperature change in a thermostatic chamber so that a change in a magnetic field can be maintained at a minimum value of about 10 −4 % or less. The purpose of.

【0014】また本発明の第2の目的は、NMRを利用
した食品検査システムにおいて、NMRによる食品検査
を高精度で自動的に行ない得るようにして、高精度でか
つ高能率で以て食品検査を行なう装置を提供することに
ある。
Further, a second object of the present invention is to provide a food inspection system utilizing NMR, which can automatically and automatically perform food inspection by NMR, thereby achieving high precision and high efficiency of food inspection. To provide an apparatus for performing the above.

【0015】[0015]

【課題を解決するための手段】本発明は、かかる課題を
解決するため、請求項1記載の発明として、恒温槽内に
形成された恒温室内に設置された永久磁石による静磁場
の中に電磁コイルによって電磁波を印加して核磁気共鳴
現象を発生させる核磁気共鳴装置であって、前記恒温室
内に、少なくとも前記永久磁石に接近又は接触させて熱
交換器を設置するとともに、一定温度に制御された恒温
液体を発生する恒温液体発生装置を設け、該恒温液体発
生装置と前記熱交換器とを配管で接続して両者の間に前
記恒温液体を循環させるようにしたことを特徴とする核
磁気共鳴装置を提案する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to an electro-optical device comprising: a magnetic field generated by a permanent magnet provided in a thermostatic chamber formed in a thermostat; A nuclear magnetic resonance apparatus that generates a nuclear magnetic resonance phenomenon by applying an electromagnetic wave by a coil, wherein a heat exchanger is installed in the constant temperature chamber by approaching or contacting at least the permanent magnet, and controlled at a constant temperature. A constant temperature liquid generator for generating a constant temperature liquid, wherein the constant temperature liquid generator and the heat exchanger are connected by piping so that the constant temperature liquid is circulated therebetween. A resonator is proposed.

【0016】また請求項2記載の発明は、請求項1に加
えて、前記恒温槽内を、外側、内側の二重の断熱壁によ
り、前記永久磁石、電磁コイル等の核磁気共鳴現象発生
部及び熱交換器が収容される恒温室と、該恒温室と前記
断熱壁を隔てて形成された外側恒温室とに区画し、該外
側恒温室に前記恒温液体発生装置に配管によって接続さ
れる熱交換器を設けてなる。
According to a second aspect of the present invention, in addition to the first aspect, the inside of the constant temperature bath is provided with a nuclear magnetic resonance phenomenon generating portion such as the permanent magnet and the electromagnetic coil by the double outer and inner heat insulating walls. And a thermostatic chamber in which a heat exchanger is accommodated, and an external thermostatic chamber formed by separating the thermostatic chamber and the heat insulating wall, and heat connected to the thermostatic liquid generating device by a pipe to the external thermostatic chamber. An exchange is provided.

【0017】そして好ましくは、請求項1記載の発明あ
るいは請求項2記載の発明に加えて前記恒温室内に窒素
ガスを封入する。
Preferably, nitrogen gas is sealed in the constant temperature chamber in addition to the invention described in claim 1 or 2.

【0018】かかる発明によれば、恒温液体発生装置に
て所定の温度に制御された液体は恒温室内の永久磁石に
接近又は接触させて設けられた熱交換器に送られ、永久
磁石に給熱し、あるいは永久磁石から奪熱する。これに
より永久磁石は前記液体温度と同一の所定温度に保持さ
れるとともに、恒温室内の温度も前記所定温度に保持さ
れる。
According to the invention, the liquid controlled to a predetermined temperature by the constant temperature liquid generator is sent to the heat exchanger provided near or in contact with the permanent magnet in the constant temperature chamber, and supplies heat to the permanent magnet. Or from a permanent magnet. Thereby, the permanent magnet is maintained at the same predetermined temperature as the liquid temperature, and the temperature in the constant temperature chamber is also maintained at the predetermined temperature.

【0019】また、請求項2記載の発明によれば、前記
恒温槽は恒温室の外側を更にもう一つの断熱壁で囲み、
二重の断熱壁で囲んで構成されているので、恒温槽の外
部の温度が変化しても恒温室内の永久磁石等は、かかる
温度変化の影響を殆ど受けることなく前記制御された温
度に保持される。
According to the second aspect of the present invention, the constant temperature chamber further surrounds the outside of the constant temperature chamber with another heat insulating wall,
Because it is configured to be surrounded by double heat insulating walls, even if the temperature outside the thermostatic chamber changes, the permanent magnets and the like in the thermostatic chamber are kept at the controlled temperature without being substantially affected by the temperature change. Is done.

【0020】さらに前記二重の断熱壁の間に形成される
外側恒温室にも前記恒温液体発生装置に接続される熱交
換器を設置したので、外側恒温室内も前記のように制御
された一定温度に保持される。以上により、かかる発明
によれば、核磁気共鳴信号が測定される恒温室内の温度
変化による磁場の変化を極小値に抑えることができ、安
定した磁気共鳴信号を得ることができる。
Further, since a heat exchanger connected to the constant temperature liquid generator is installed in the outside constant temperature chamber formed between the double heat insulating walls, the outside constant temperature chamber is controlled as described above. Kept at temperature. As described above, according to the invention, a change in the magnetic field due to a temperature change in the thermostatic chamber where the nuclear magnetic resonance signal is measured can be suppressed to a minimum value, and a stable magnetic resonance signal can be obtained.

【0021】請求項4記載の発明及び請求項5、請求項
6記載の発明は、前記核磁気共鳴装置を用いた液体飲料
の検査を行なう液体成分検査装置に係り、請求項4記載
の発明は、断熱槽で囲まれた対をなす磁石の間に形成さ
れる磁場に試料液を入れて核磁気共鳴現象を発生させる
核磁気共鳴発生装置(NMR装置)により前記試料液の
成分を検出するようにした液体成分検査装置であって、
前記NMR装置からの前記試料液の核磁気共鳴による検
出信号を周波数スペクトルに変換する変換手段と、該周
波数スペクトルのピーク周波数を検出し、該ピーク周波
数が予め設定された基準周波数と同一になるような電流
補正値を求める演算処理手段と、前記磁石に付設され、
該電流補正値により前記磁石の磁場強度を補正する補正
磁場を発生する補正コイルとを備えたことを特徴として
いる。
According to a fourth aspect of the present invention, there is provided a liquid component inspection apparatus for inspecting a liquid beverage using the nuclear magnetic resonance apparatus. The components of the sample solution are detected by a nuclear magnetic resonance generator (NMR device) that puts the sample solution into a magnetic field formed between a pair of magnets surrounded by an adiabatic tank and generates a nuclear magnetic resonance phenomenon. Liquid component testing device,
A conversion unit for converting a detection signal of the sample solution by nuclear magnetic resonance from the NMR apparatus into a frequency spectrum, and detecting a peak frequency of the frequency spectrum so that the peak frequency becomes the same as a preset reference frequency. Arithmetic processing means for obtaining a large current correction value; and
And a correction coil for generating a correction magnetic field for correcting the magnetic field strength of the magnet with the current correction value.

【0022】請求項5記載の発明は、請求項4記載の発
明に加えて、前記NMR装置への前記試料液の供給路に
該試料液の温度を所定温度に制御する試料液温調節装置
を設け、更に、前記NMR装置内の前記磁石と前記断熱
壁との間に該磁石に給熱し、あるいは、該磁石から奪熱
する循環液が通流する循環液管を設けるとともに、該循
環液管への循環液の温度を所定温度に制御する循環液温
調節装置を設けてなる。また請求項6記載の発明は、請
求項4若しくは請求項5記載の発明において、液体成分
が液体飲料製造装置内の飲料液体供給管内を流れる飲料
液体の成分であることを特徴とする。
According to a fifth aspect of the present invention, in addition to the fourth aspect of the present invention, a sample liquid temperature controller for controlling the temperature of the sample liquid to a predetermined temperature is provided in a supply path of the sample liquid to the NMR apparatus. And a circulating fluid pipe through which a circulating fluid for supplying heat to the magnet or removing heat from the magnet flows between the magnet and the heat insulating wall in the NMR apparatus. And a circulating fluid temperature controller for controlling the temperature of the circulating fluid to a predetermined temperature. According to a sixth aspect of the present invention, in the fourth or fifth aspect, the liquid component is a component of a beverage liquid flowing in a beverage liquid supply pipe in the liquid beverage manufacturing apparatus.

【0023】かかる発明によれば、被測定用の試料液は
試料液温調節装置にて所定の設定温度に調節されてNM
R装置に送られて、試料液の温度が異なることによるN
MR装置内の磁石温度変化を極小値に抑えることができ
る。また、磁石が収納されているNMR装置の内部は断
熱壁によって囲まれるとともに、循環液温調節装置にて
所定の一定温度に制御された循環液が磁石の周りを循環
することにより、外気温度変化による磁石温度への影響
を極小値に抑えることができる。
According to this invention, the sample liquid to be measured is adjusted to a predetermined set temperature by the sample liquid temperature controller and the NM
R is sent to the R
The magnet temperature change in the MR device can be suppressed to a minimum value. In addition, the inside of the NMR apparatus in which the magnet is housed is surrounded by a heat insulating wall, and the circulating fluid controlled to a predetermined constant temperature by the circulating fluid temperature controller circulates around the magnet, so that the outside air temperature changes. The effect on the magnet temperature due to is minimized.

【0024】そして、試料液の注入による磁石温度の変
化によって磁場強度の変化が引き起こされると、該磁場
強度の変化が盛り込まれた試料液成分の検出信号は周波
数への変換手段によって周波数スペクトルに変換され、
演算処理手段にて周波数スペクトルのピーク周波数が算
出され、さらに予め設定された基準周波数に前記ピーク
周波数を突き合わせて、ピーク周波数が基準周波数にな
るような電流補正値を求める。そして、この電流補正値
を補正コイルに与え、該補正コイルは該電流補正値に対
応する磁場を発生させて前記磁石の温度変化による磁場
強度変化を補正する。
When a change in the magnetic field intensity is caused by a change in the magnet temperature due to the injection of the sample solution, the detection signal of the sample solution component incorporating the change in the magnetic field intensity is converted into a frequency spectrum by frequency conversion means. And
The peak frequency of the frequency spectrum is calculated by the arithmetic processing means, and the peak frequency is matched with a preset reference frequency to obtain a current correction value such that the peak frequency becomes the reference frequency. The current correction value is applied to a correction coil, and the correction coil generates a magnetic field corresponding to the current correction value to correct a change in magnetic field intensity due to a temperature change of the magnet.

【0025】従ってかかる発明によれば、試料液温調節
装置によって試料液の温度を所定の設定温度に保持する
とともに、断熱壁及び循環水温調節装置によって磁石温
度を外気温度に影響されることなく、前記設定温度に保
持して試料液の温度変化及び外気温度の変化による磁場
強度の変化を極小値に抑えることができる。
Therefore, according to the invention, the temperature of the sample liquid is maintained at a predetermined set temperature by the sample liquid temperature control device, and the magnet temperature is not affected by the outside air temperature by the heat insulating wall and the circulating water temperature control device. By maintaining the set temperature, a change in the magnetic field strength due to a change in the temperature of the sample liquid and a change in the outside air temperature can be suppressed to a minimum value.

【0026】さらに、試料液の注入等による小さな温度
変化によって引き起こされる磁場強度の変化は、NMR
測定信号を周波数スペクトルに変換して求めたピーク周
波数を基準周波数に合わせるような電流補正値を求めて
補助コイルに与え、該補助コイルより発生する補正磁場
によって前記磁場強度の変化を抑制することができる。
これにより、液体試料の安定したNMR測定信号を連続
的に得ることが可能となる。
Further, a change in magnetic field strength caused by a small temperature change due to injection of a sample solution, etc.
Converting the measurement signal into a frequency spectrum, obtaining a current correction value such that the peak frequency obtained by the conversion is adjusted to the reference frequency, applying the current correction value to the auxiliary coil, and suppressing a change in the magnetic field intensity by a correction magnetic field generated from the auxiliary coil. it can.
This makes it possible to continuously obtain a stable NMR measurement signal of the liquid sample.

【0027】[0027]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

【0028】図1は本発明の第1実施形態に係る核磁気
共鳴装置100(以下NMR装置という)の構成図であ
る。図1において、70は恒温槽で、外側断熱壁57及
び内側断熱壁58の二重の断熱壁によって構成されてい
る。該外側断熱壁57の内面と、内側断熱壁58の外面
との間には外側恒温室65が、また内側断熱壁58の内
部には内側恒温室66が夫々形成されている。前記内側
恒温室66及び外側恒温室65には窒素(N2)ガスが
封入されている。
FIG. 1 is a configuration diagram of a nuclear magnetic resonance apparatus 100 (hereinafter referred to as an NMR apparatus) according to a first embodiment of the present invention. In FIG. 1, reference numeral 70 denotes a constant temperature bath, which is constituted by a double heat insulating wall of an outer heat insulating wall 57 and an inner heat insulating wall 58. An outer constant temperature chamber 65 is formed between the inner surface of the outer heat insulating wall 57 and the outer surface of the inner heat insulating wall 58, and an inner constant temperature chamber 66 is formed inside the inner heat insulating wall 58. The inner constant temperature chamber 66 and the outer constant temperature chamber 65 are filled with nitrogen (N 2 ) gas.

【0029】前記内側恒温室66には2つの永久磁石5
6,56が対向して設けられ、該永久磁石56,56の
間の中央部には被測定物質である液体を入れるための検
出管50及び該検出管50の周りに電磁コイル51が設
置されている。該電磁コイル51は核磁気共鳴現象(以
下NMRという)を起こすための電磁波を発生させ、共
鳴後の電磁波を受信するものである。
Two permanent magnets 5 are provided in the inner constant temperature chamber 66.
At the center between the permanent magnets 56, a detection tube 50 for containing a liquid to be measured and an electromagnetic coil 51 around the detection tube 50 are provided. ing. The electromagnetic coil 51 generates an electromagnetic wave for causing a nuclear magnetic resonance phenomenon (hereinafter referred to as NMR) and receives the electromagnetic wave after resonance.

【0030】55,55は、前記電磁コイル51及び検
出管50と対をなす前記永久磁石56,56との間に設
置されて測定範囲内の磁気分布を補正し、均一にするシ
ムコイルである。52は電磁波を発信して前記電磁コイ
ル51に伝送する発信器である。53は分配器、54は
信号処理部であり、前記コイル51で受信した核磁気共
鳴信号は前記分配器53を経て信号処理部54に送られ
るようになっている。
Numerals 55, 55 are shim coils provided between the electromagnetic coil 51 and the detection tube 50 and the pair of permanent magnets 56, 56 to correct and uniform the magnetic distribution within the measurement range. Reference numeral 52 denotes a transmitter for transmitting an electromagnetic wave and transmitting the electromagnetic wave to the electromagnetic coil 51. Reference numeral 53 denotes a distributor, and reference numeral 54 denotes a signal processor. Nuclear magnetic resonance signals received by the coil 51 are sent to the signal processor 54 via the distributor 53.

【0031】前記対をなす永久磁石56,56の背面に
は熱交換器59,60が密着して取付けられている。ま
た、前記内側、外側断熱壁58、57に囲まれた外側恒
温室65内にも熱交換器61が取付けられている。該熱
交換器59,60はその内部を後述する恒温水発生装置
62で発生した一定温度の液体が通流していて、該液体
により永久磁石56,56を一定温度に保持させるとと
もに、内側恒温室66内の温度も一定温度に保持させる
ものである。また前記熱交換器61は、前記液体によっ
て外側恒温室65内を一定温度に保持するものである。
Heat exchangers 59, 60 are attached to the back surfaces of the pair of permanent magnets 56, 56 in close contact with each other. Further, a heat exchanger 61 is also mounted in the outer constant temperature chamber 65 surrounded by the inner and outer heat insulating walls 58 and 57. In the heat exchangers 59 and 60, a liquid of a constant temperature generated by a constant temperature water generator 62 to be described later flows, and the heat exchangers 59 and 60 maintain the permanent magnets 56 and 56 at a constant temperature by the liquid. The temperature in 66 is also maintained at a constant temperature. Further, the heat exchanger 61 maintains the inside of the outer thermostat 65 at a constant temperature by the liquid.

【0032】62は恒温水発生装置で、一定温度に制御
された液体を発生するものであり、該恒温水発生装置6
2は液体配管63a及び63bにより前記3つの熱交換
器59,60,61に接続され、該恒温水発生装置62
で生成された恒温水が、前記液体配管63a及び63b
を介して、前記熱交換器59,60,61を循環するよ
うになっている。前記液体としては、水、エチレングリ
コール等が好適である。
A constant-temperature water generator 62 generates a liquid controlled at a constant temperature.
2 is connected to the three heat exchangers 59, 60 and 61 by liquid pipes 63a and 63b.
The constant-temperature water generated in the above is connected to the liquid pipes 63a and 63b.
Through the heat exchangers 59, 60, 61. As the liquid, water, ethylene glycol and the like are preferable.

【0033】かかる構成からなるNMR装置100にお
いて、前記恒温水発生装置62においては、所定の温度
に制御された液体を発生する。この液体は液体配管63
aを通り、熱交換器59及び60内に導かれ、該熱交換
器59及び60において永久磁石56,56を冷却ある
いは加熱して恒温水発生装置62において制御された所
定の温度に保持せしめるとともに、内側恒温室66内も
給熱あるいは奪熱することによって、上記所定温度に保
持せしめる。
In the NMR apparatus 100 having such a configuration, the constant temperature water generator 62 generates a liquid controlled to a predetermined temperature. This liquid is a liquid pipe 63
a through the heat exchangers 59 and 60, the permanent magnets 56, 56 are cooled or heated in the heat exchangers 59 and 60 so as to be maintained at a predetermined temperature controlled by the constant temperature water generator 62. The predetermined temperature is maintained by supplying or removing heat from inside the constant temperature chamber 66.

【0034】さらに、上記液体は熱交換器61に導かれ
て外側恒温室65内に給熱あるいは奪熱することによっ
て、該室内を上記所定の温度に保持せしめる。そして、
該熱交換器61を出た液体は液体配管63bを経て前記
恒温水発生装置62に戻されて、前記一定温度に調整さ
れ、再び前記熱交換器59,60,61に送られる。
Further, the liquid is guided to the heat exchanger 61 and supplies or removes heat to the outside constant temperature chamber 65, thereby keeping the inside of the chamber at the predetermined temperature. And
The liquid that has exited the heat exchanger 61 is returned to the constant temperature water generator 62 via a liquid pipe 63b, adjusted to the constant temperature, and sent to the heat exchangers 59, 60, 61 again.

【0035】上記のように、恒温水発生装置62によっ
て所定の一定温度に制御された液体を3つの熱交換器を
循環させるので、前記永久磁石56,56の温度及び他
のNMR装置が設置された内側恒温室66の温度を前記
制御された一定温度に保持できるとともに、外側恒温室
65の温度も上記一定温度に保持することができる。
As described above, since the liquid controlled at a predetermined constant temperature by the constant temperature water generator 62 is circulated through the three heat exchangers, the temperatures of the permanent magnets 56 and 56 and other NMR devices are installed. In addition, the temperature of the inner constant temperature chamber 66 can be maintained at the controlled constant temperature, and the temperature of the outer constant temperature chamber 65 can also be maintained at the constant temperature.

【0036】また、恒温槽70は、内、外二重の断熱壁
58、57にて構成されているので、該恒温槽70の周
囲の温度が変化しても永久磁石56,56、電磁コイル
51等が収容されている内側恒温室66内はかかる温度
変化の影響殆ど設けることなく、前記のようにして制御
された一定温度に保持される。
Further, since the thermostat 70 is constituted by double inner and outer heat insulating walls 58 and 57, even if the temperature around the thermostat 70 changes, the permanent magnets 56 and 56, the electromagnetic coil The inside of the constant temperature chamber 66 in which the chamber 51 and the like are housed is maintained at a constant temperature controlled as described above, with almost no influence of the temperature change.

【0037】以上のように、この実施形態によれば、N
MRが生起される恒温室66内の温度変化を、磁場の変
化が10-4%程度の極小値以下になるように保持するこ
とが可能となり、安定した核磁気共鳴信号を得ることが
できる。
As described above, according to this embodiment, N
The temperature change in the constant temperature chamber 66 where the MR is generated can be maintained so that the change in the magnetic field is not more than a minimum value of about 10 -4 %, and a stable nuclear magnetic resonance signal can be obtained.

【0038】図2〜図3は本発明の第2実施形態を示
し、図2は飲料液体の成分検査装置の構成図、図3はフ
ーリエ変換スペクトルを示す線図である。この実施形態
は、前記第1実施形態に示されるような核磁気共鳴装置
(NMR装置)100を食品製造プラント(飲料製造プ
ラント)における液体飲料検査装置に適用した飲料液体
の成分検査装置である。
FIGS. 2 and 3 show a second embodiment of the present invention. FIG. 2 is a configuration diagram of a beverage liquid component inspection device, and FIG. 3 is a diagram showing a Fourier transform spectrum. This embodiment is a beverage liquid component inspection apparatus in which the nuclear magnetic resonance apparatus (NMR apparatus) 100 as shown in the first embodiment is applied to a liquid beverage inspection apparatus in a food production plant (beverage production plant).

【0039】図2において、核磁気共鳴装置(NMR装
置)100を検出管50の軸線を含む断面で要部を示
す。1は飲料製造プラントの主配管で、検査対象である
飲料の製品液つまりNMR測定の試料液が連続的にある
いは随時流れている。2は該主配管1から分岐されたバ
イパス管、3は試料管で、前記主配管1内の試料液が分
流されている。9cは該バイパス管2の入口部を開閉す
る液バルブ、9bは該試料管3の出口部を開閉する液バ
ルブ、9aは試料管3の後述する試料液温度調節装置4
の後流部を開閉する液バルブである。4は、前記バイパ
ス管2と試料管3との接続部に設けられた試料液温調節
装置で、試料液の温度を所定の温度(Ts)に調節する
ものである。
FIG. 2 shows a main part of the nuclear magnetic resonance apparatus (NMR apparatus) 100 in a cross section including the axis of the detection tube 50. Reference numeral 1 denotes a main pipe of a beverage manufacturing plant, in which a product liquid of a beverage to be inspected, that is, a sample liquid for NMR measurement flows continuously or as needed. Reference numeral 2 denotes a bypass pipe branched from the main pipe 1, and reference numeral 3 denotes a sample pipe. The sample liquid in the main pipe 1 is divided. 9c is a liquid valve for opening and closing the inlet of the bypass tube 2, 9b is a liquid valve for opening and closing the outlet of the sample tube 3, and 9a is a sample liquid temperature controller 4 for the sample tube 3 which will be described later.
This is a liquid valve that opens and closes the downstream part. Reference numeral 4 denotes a sample liquid temperature control device provided at the connection between the bypass pipe 2 and the sample pipe 3 for controlling the temperature of the sample liquid to a predetermined temperature (Ts).

【0040】100は核磁気共鳴装置(NMR装置)で
あり、前記バイパス管2及び試料管3は前記主配管1か
ら分岐されて検査用の試料液を検出管50に供給した
後、前記主配管1に合流するようになっている。
Numeral 100 denotes a nuclear magnetic resonance apparatus (NMR apparatus). The bypass pipe 2 and the sample pipe 3 are branched from the main pipe 1 to supply a sample liquid for inspection to the detection pipe 50, and then to the main pipe 1. It merges into one.

【0041】12は前記信号検出部10に接続される増
幅器、13はフーリエ変換演算器、14は演算処理器、
15は直流電源ドライバ、16は直流電源であり、該直
流電源16の出力端が補正コイル8に接続されている。
12 is an amplifier connected to the signal detector 10, 13 is a Fourier transform calculator, 14 is an arithmetic processor,
Reference numeral 15 denotes a DC power supply driver, and 16 denotes a DC power supply. An output terminal of the DC power supply 16 is connected to the correction coil 8.

【0042】かかる構成からなる飲料成分検査装置にお
いて、あるタイミングで以て液バルブ9cを開き、主配
管1内を流れている製品液つまりNMR測定の試料液を
試料液温調節装置4に流入せしめた後、該液バルブ9c
を閉じる。そして、試料液温調節装置4によって流入し
た試料液の温度を所定の設定温度Tsに調節する。次い
で、液バルブ9a及び9bを開き、試料管3を通し、N
MR装置100内へ流入させて液バルブ9a,9bを閉
じる。
In the beverage component inspection apparatus having such a configuration, the liquid valve 9c is opened at a certain timing, and the product liquid flowing in the main pipe 1, that is, the sample liquid for NMR measurement is caused to flow into the sample liquid temperature controller 4. After that, the liquid valve 9c
Close. Then, the temperature of the sample liquid flowing in is adjusted by the sample liquid temperature controller 4 to a predetermined set temperature Ts. Next, the liquid valves 9a and 9b are opened, the sample tube 3 is passed through, and N
After flowing into the MR device 100, the liquid valves 9a and 9b are closed.

【0043】一方、前記NMR装置100の磁石56
は、周囲を循環水管6によって囲まれており、該循環水
管6には前記循環水温調節装置11によって、前記試料
液の設定温度Tsと同一温度に調節された循環水が流れ
ている。これによって、前記断熱壁58内に収納されて
いる該磁石56は外気温度の影響を受けることなく、前
記設定温度Tsに保持される。
On the other hand, the magnet 56 of the NMR apparatus 100
Is surrounded by a circulating water pipe 6 through which circulating water adjusted to the same temperature as the set temperature Ts of the sample liquid by the circulating water temperature controller 11 flows. Thus, the magnet 56 housed in the heat insulating wall 58 is maintained at the set temperature Ts without being affected by the outside air temperature.

【0044】しかしながら、前記試料液の注入により、
磁石56に多少の温度変化が生じ、これによって磁石5
6の磁場強度変化を引き起こすことが多々ある。然るに
本実施形態においては、次の手段によって、かかる磁場
温度変化によるNMR測定信号の変化を抑制し、安定し
たNMR測定信号を得ている。
However, by injecting the sample solution,
A slight temperature change occurs in the magnet 56, which causes
6 often cause a change in the magnetic field strength. However, in the present embodiment, a change in the NMR measurement signal due to the magnetic field temperature change is suppressed by the following means, and a stable NMR measurement signal is obtained.

【0045】即ち、NMR装置100内に導入された試
料液の成分をNMR現象によって信号検出部10にて検
出した検出信号は増幅器12にて増幅された後、フーリ
エ変換演算器13に入力される。該フーリエ変換演算器
13においては、前記試料液成分の検出信号を周波数ス
ペクトルに変換する。この周波数が、ケミカルシフト、
つまり試料液が前記磁石56によって受けた静磁場強度
に対応する。
That is, the detection signal obtained by detecting the components of the sample liquid introduced into the NMR apparatus 100 by the signal detecting section 10 by the NMR phenomenon is amplified by the amplifier 12 and then input to the Fourier transform calculator 13. . The Fourier transform calculator 13 converts the detection signal of the sample liquid component into a frequency spectrum. This frequency is the chemical shift,
That is, it corresponds to the static magnetic field strength received by the magnet 56 by the sample liquid.

【0046】図3は、前記フーリエ変換演算器13にて
フーリエ変換された磁場の強さと電圧との関係を示す周
波数スペクトルである。この周波数スペクトルは演算処
理器14に入力され、該演算処理器14においては、図
3に示す周波数スペクトルを処理して最大ピーク周波数
0nを、予め設定された周波数の基準値f00とを突き合
わせ、該最大ピーク周波数f0nが基準周波数f00になる
ような補正電圧値及び電流値を求め、これを直流電源ド
ライバ15に入力する。
FIG. 3 is a frequency spectrum showing the relationship between the strength and voltage of the magnetic field Fourier-transformed by the Fourier-transform calculator 13. This frequency spectrum is input to the arithmetic processing unit 14, in the calculation processor 14, the maximum peak frequency f 0n processes the frequency spectrum shown in FIG. 3, butt and a reference value f 00 of predetermined frequency Then, a correction voltage value and a current value are determined so that the maximum peak frequency f 0n becomes the reference frequency f 00 , and these are input to the DC power supply driver 15.

【0047】該直流電源ドライバ15は、前記電流補正
値に基づき、直流電源16を操作して補正コイル8に前
記電流補正量を与える。これにより、補正コイル8は前
記電流補正値に対応する磁場を発生させて、前記磁石5
6の温度変化による磁場強度変化を補正する。
The DC power supply driver 15 operates the DC power supply 16 based on the current correction value to provide the correction coil 8 with the current correction amount. Thereby, the correction coil 8 generates a magnetic field corresponding to the current correction value, and
The magnetic field intensity change due to the temperature change of 6 is corrected.

【0048】上記のようにして、試料液の注入に伴なう
磁石56の温度変化による磁石56の磁場強度変化に相
当する電流補正量を求め、補正コイル8によって補正磁
場を発生せしめることにより、前記試料液注入による磁
場強度変化を抑制して、安定したNMR測定信号を得る
ことができる。
As described above, the current correction amount corresponding to the change in the magnetic field strength of the magnet 56 due to the temperature change of the magnet 56 accompanying the injection of the sample solution is obtained, and the correction coil 8 generates the correction magnetic field. A stable NMR measurement signal can be obtained by suppressing a change in magnetic field intensity due to the sample liquid injection.

【0049】以上のように、かかる実施形態によれば、
NMR装置100の外壁を二重の断熱壁57,58に構
成し、磁石56の周囲に循環水温調節装置11によって
所定の設定温度Tsに調節された循環水を流すことによ
り、外気温度変化による磁石56の温度への影響を極小
化させる。
As described above, according to this embodiment,
The outer wall of the NMR apparatus 100 is constituted by double heat insulating walls 57 and 58, and circulating water adjusted to a predetermined set temperature Ts by the circulating water temperature controller 11 is caused to flow around the magnet 56 so that magnets due to a change in outside air temperature are generated. Minimize the effect of 56 on temperature.

【0050】一方、試料液はNMR装置100に流入前
に試料液温調節装置4により、前記磁石56の温度と同
一温度の前記設定温度Tsに調節して、試料液の温度変
化による磁石56の温度への影響を極小化させる。
On the other hand, before the sample solution flows into the NMR apparatus 100, the sample solution temperature controller 4 adjusts the temperature of the magnet 56 to the set temperature Ts, which is the same as the temperature of the magnet 56. Minimize the effect on temperature.

【0051】さらに、前記試料液の注入等による小さな
磁石温度の変化によって引き起こされる磁場強度の変化
については、信号検出部10からのNMR測定(検出)
信号を演算器13にてフーリエ変換して得られる周波数
スペクトル上で演算処理器14にて最大ピーク周波数f
0nと、予め設定されている基準周波数f00とを突き合わ
せて、前記f0nがf00になるような電流補正値を求め
る。そして、直流電源ドライバ15及び直流電源16を
介して、磁場の補正コイル8に該電流補正値を与えて、
前記磁場強度変化分に対応する磁場強度を補正すること
により、前記のような磁場強度の変化を抑制する。以上
により、安定したNMR測定信号を連続的に得ることが
可能となる。
Further, a change in magnetic field intensity caused by a small change in magnet temperature due to the injection of the sample solution or the like is measured by NMR measurement (detection) from the signal detection unit 10.
On a frequency spectrum obtained by Fourier transforming the signal in the arithmetic unit 13, the maximum peak frequency f is calculated in the arithmetic processing unit 14.
And 0n, against a reference frequency f 00 which is set in advance, the f 0n seeks current correction value such that f 00. Then, the current correction value is given to the magnetic field correction coil 8 via the DC power supply driver 15 and the DC power supply 16,
By correcting the magnetic field strength corresponding to the magnetic field strength change, the above-described change in the magnetic field strength is suppressed. As described above, a stable NMR measurement signal can be continuously obtained.

【0052】[0052]

【発明の効果】以上記載のごとく、請求項1乃至3記載
の発明によれば、恒温室内の永久磁石に接近して熱交換
器を設けるとともに、二重の断熱壁に囲まれた外側恒温
室に恒温液体発生装置にて所定の温度に制御された液体
を循環させるとともに、恒温槽を二重の断熱壁で囲んで
いるので、永久磁石を外部温度等の影響を受けること無
く、上記設定された一定温度に保持することができる。
これにより、温度変化による磁場の変化を極小値に抑
え、安定した磁気共鳴信号を得ることができる。
As described above, according to the first to third aspects of the present invention, a heat exchanger is provided near a permanent magnet in a constant temperature chamber, and an outer constant temperature chamber surrounded by a double heat insulating wall. The liquid controlled at a predetermined temperature is circulated in the constant-temperature liquid generator, and the constant-temperature bath is surrounded by double insulating walls. Can be maintained at a constant temperature.
As a result, a change in the magnetic field due to a temperature change can be suppressed to a minimum value, and a stable magnetic resonance signal can be obtained.

【0053】また、請求項4〜6記載の発明によれば、
試料液温調節装置によって試料液の温度を所定の設定温
度に保持するとともに、断熱壁及び循環水温調節装置に
よって磁石温度を外気温度に影響されることなく前記設
定温度に保持して、試料液の温度変化及び外気温度の変
化による磁場強度の変化を極小値に抑えることができ
る。
According to the invention of claims 4 to 6,
The temperature of the sample liquid is maintained at a predetermined set temperature by the sample liquid temperature control device, and the magnet temperature is maintained at the set temperature without being affected by the outside air temperature by the heat insulating wall and the circulating water temperature control device. A change in magnetic field strength due to a temperature change and a change in outside air temperature can be suppressed to a minimum value.

【0054】さらに、試料液の注入等による小さな温度
変化によって引き起こされる磁場強度の変化は、NMR
測定信号を周波数スペクトルに変換して求めたピーク周
波数を基準周波数に合わせるような電流補正値を求めて
補助コイルに与え、該補助コイルより発生する補正磁場
によって前記磁場強度の変化を抑制することができる。
これにより、液体飲料の安定した測定信号を自動的にか
つ連続的に得ることができ、高精度の測定を高い作業能
率で以て行なうことができる。
Further, the change in the magnetic field strength caused by a small temperature change due to injection of a sample solution or the like is determined by NMR.
Converting the measurement signal into a frequency spectrum, obtaining a current correction value such that the peak frequency obtained by the conversion is adjusted to the reference frequency, applying the current correction value to the auxiliary coil, and suppressing a change in the magnetic field intensity by a correction magnetic field generated from the auxiliary coil. it can.
Thereby, a stable measurement signal of the liquid beverage can be obtained automatically and continuously, and highly accurate measurement can be performed with high work efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る核磁気共鳴装置
の構成図である。
FIG. 1 is a configuration diagram of a nuclear magnetic resonance apparatus according to a first embodiment of the present invention.

【図2】 本発明の第2実施形態に係る核磁気共鳴装置
を備えた液体飲料成分検査装置の構成図である。
FIG. 2 is a configuration diagram of a liquid beverage component inspection apparatus including a nuclear magnetic resonance apparatus according to a second embodiment of the present invention.

【図3】 上記第2実施形態における周波数スペクトル
を示す線図である。
FIG. 3 is a diagram showing a frequency spectrum in the second embodiment.

【図4】 従来技術に係る核磁気共鳴装置の構成図であ
る。
FIG. 4 is a configuration diagram of a nuclear magnetic resonance apparatus according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 主配管 2 バイパス管 3 試料管 4 試料液温調節装置 6 循環水管 8 補正コイル 9a,9b,9c 液バルブ 10 信号検出部 11 循環水温調節装置 12 増幅器 13 フーリエ変換演算器 14 演算処理器 15 直流電源ドライバ 16 直流電源 50 検出管 51 電磁コイル 52 発信器 53 分配器 54 信号処理部 55 シムコイル 56 永久磁石 57 外側断熱壁 58 内側断熱壁 59,60,61 熱交換器 62 恒温水発生装置 63a,63b 液体配管 65 外側恒温室 66 内側恒温室 70 恒温槽 100 NMR装置 DESCRIPTION OF SYMBOLS 1 Main piping 2 Bypass pipe 3 Sample pipe 4 Sample liquid temperature controller 6 Circulating water pipe 8 Correction coil 9a, 9b, 9c Liquid valve 10 Signal detector 11 Circulating water temperature controller 12 Amplifier 13 Fourier transform arithmetic unit 14 Arithmetic processor 15 DC Power supply driver 16 DC power supply 50 Detection tube 51 Electromagnetic coil 52 Transmitter 53 Distributor 54 Signal processing unit 55 Shim coil 56 Permanent magnet 57 Outer heat insulating wall 58 Inner heat insulating wall 59, 60, 61 Heat exchanger 62 Constant temperature water generator 63a, 63b Liquid piping 65 Outer thermostat 66 Inner thermostat 70 Thermostat 100 NMR equipment

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 恒温槽内に形成された恒温室内に設置さ
れた永久磁石による静磁場の中に電磁コイルによって電
磁波を印加して核磁気共鳴現象を発生させる核磁気共鳴
装置において、 前記恒温室内に、少なくとも前記永久磁石に接近又は接
触させて熱交換器を設置するとともに、 一定温度に制御された恒温液体を発生する恒温液体発生
装置を設け、該恒温液体発生装置と前記熱交換器とを配
管で接続して両者の間に前記恒温液体を循環させるよう
にしたことを特徴とする核磁気共鳴装置。
1. A nuclear magnetic resonance apparatus which generates a nuclear magnetic resonance phenomenon by applying an electromagnetic wave by an electromagnetic coil to a static magnetic field by a permanent magnet installed in a constant temperature chamber formed in a constant temperature chamber, In addition, at least a heat exchanger is installed by approaching or contacting the permanent magnet, and a constant temperature liquid generator that generates a constant temperature liquid controlled at a constant temperature is provided, and the constant temperature liquid generator and the heat exchanger are provided. A nuclear magnetic resonance apparatus, wherein the apparatus is connected by a pipe so as to circulate the constant temperature liquid therebetween.
【請求項2】 前記恒温槽内を、外側、内側の二重の断
熱壁により、前記永久磁石、電磁コイル等の核磁気共鳴
現象発生部及び熱交換器が収容される恒温室と、該恒温
室と前記断熱壁を隔てて形成された外側恒温室とに区画
し、該外側恒温室に前記恒温液体発生装置に配管によっ
て接続される熱交換器を設けてなる請求項1記載の核磁
気共鳴装置。
2. A constant temperature chamber in which a nuclear magnetic resonance phenomenon generating portion such as a permanent magnet and an electromagnetic coil and a heat exchanger are accommodated by a double heat insulating wall on the outside and inside of the constant temperature bath. 2. The nuclear magnetic resonance according to claim 1, wherein the nuclear magnetic resonance is partitioned into a chamber and an outer thermostatic chamber formed by separating the heat insulating wall, and the outer thermostatic chamber is provided with a heat exchanger connected to the thermostatic liquid generator by a pipe. apparatus.
【請求項3】 前記恒温室内に窒素ガスを封入してなる
請求項1または2記載の核磁気共鳴装置。
3. The nuclear magnetic resonance apparatus according to claim 1, wherein nitrogen gas is sealed in the constant temperature chamber.
【請求項4】 断熱槽で囲まれた対をなす磁石の間に形
成される磁場に試料液を入れて核磁気共鳴現象を発生さ
せる核磁気共鳴発生装置(NMR装置)により前記試料
液の成分を検出するようにした液体成分検査装置であっ
て、 前記NMR装置からの前記試料液の核磁気共鳴による検
出信号を周波数スペクトルに変換する変換手段と、該周
波数スペクトルのピーク周波数を検出し、該ピーク周波
数が予め設定された基準周波数と同一になるような電流
補正値を求める演算処理手段と、 前記磁石に付設され、該電流補正値により前記磁石の磁
場強度を補正する補正磁場を発生する補正コイルとを備
えたことを特徴とする液体成分検査装置。
4. A component of the sample liquid by a nuclear magnetic resonance generator (NMR apparatus) which generates a nuclear magnetic resonance phenomenon by putting the sample liquid into a magnetic field formed between a pair of magnets surrounded by a heat insulating tank. A liquid component inspection apparatus configured to detect a peak frequency of the frequency spectrum, and a conversion unit configured to convert a detection signal of the sample liquid by nuclear magnetic resonance from the NMR apparatus into a frequency spectrum. An arithmetic processing means for calculating a current correction value such that a peak frequency becomes the same as a preset reference frequency; and a correction attached to the magnet and generating a correction magnetic field for correcting the magnetic field strength of the magnet with the current correction value. A liquid component inspection device comprising a coil.
【請求項5】 前記NMR装置への前記試料液の供給路
に該試料液の温度を所定温度に制御する試料液温調節装
置を設け、 更に、前記NMR装置内の前記磁石と前記断熱壁との間
に該磁石に給熱し、あるいは、該磁石から奪熱する循環
液が通流する循環液管を設けるとともに、該循環液管へ
の循環液の温度を所定温度に制御する循環液温調節装置
を設けてなる請求項4記載の液体成分検査装置。
5. A sample solution temperature control device for controlling a temperature of the sample solution to a predetermined temperature in a supply path of the sample solution to the NMR device, further comprising: a magnet and the heat insulating wall in the NMR device. A circulating fluid pipe through which circulating fluid for supplying heat to the magnet or removing heat from the magnet flows, and controlling a temperature of the circulating fluid to the circulating fluid pipe to a predetermined temperature. The liquid component inspection apparatus according to claim 4, further comprising an apparatus.
【請求項6】 液体成分が液体飲料製造装置内の飲料液
体供給管内を流れる飲料液体の成分であることを特徴と
する請求項4若しくは5記載の液体成分検査装置。
6. The liquid component inspection device according to claim 4, wherein the liquid component is a component of a beverage liquid flowing in a beverage liquid supply pipe in the liquid beverage production device.
JP11038093A 1999-02-17 1999-02-17 Nuclear magnetic resonance device and liquid constituent inspection device using the device Withdrawn JP2000235010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11038093A JP2000235010A (en) 1999-02-17 1999-02-17 Nuclear magnetic resonance device and liquid constituent inspection device using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11038093A JP2000235010A (en) 1999-02-17 1999-02-17 Nuclear magnetic resonance device and liquid constituent inspection device using the device

Publications (1)

Publication Number Publication Date
JP2000235010A true JP2000235010A (en) 2000-08-29

Family

ID=12515870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11038093A Withdrawn JP2000235010A (en) 1999-02-17 1999-02-17 Nuclear magnetic resonance device and liquid constituent inspection device using the device

Country Status (1)

Country Link
JP (1) JP2000235010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432543B1 (en) 2013-04-22 2014-08-25 한국과학기술연구원 Method to identify sesame oil using nuclear magnetic resonance spectroscopy
CN108072676A (en) * 2016-11-09 2018-05-25 中国石油化工股份有限公司 A kind of emulation nuclear magnetic resonance spectroscopy system and its application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432543B1 (en) 2013-04-22 2014-08-25 한국과학기술연구원 Method to identify sesame oil using nuclear magnetic resonance spectroscopy
CN108072676A (en) * 2016-11-09 2018-05-25 中国石油化工股份有限公司 A kind of emulation nuclear magnetic resonance spectroscopy system and its application

Similar Documents

Publication Publication Date Title
Davydov et al. A method for studying the magnetic susceptibility of colloidal solutions in ferrofluidic cells
US8610434B2 (en) Cryogen-free cooling system for electron paramagnetic resonance system
US7750636B2 (en) NMR system
WO2009113397A1 (en) Magnetic resonance imaging device and cooling device
Cézar et al. Development of a novel flow control system with arduino microcontroller embedded in double effect absorption chillers using the LiBr/H2O pair
CN109781779B (en) Method and device suitable for measuring specific constant pressure heat capacity of dissolved gas fluid
US6825667B1 (en) Magnetic resonance imaging apparatus and method for maintaining high uniformity of magnetic field in magnetic resonance imaging apparatus
CN105675381A (en) Super-low-vibration helium cold accumulation system and control method thereof
CN113473822B (en) Two-phase liquid cooling test system and method
RU2485463C1 (en) Device for air thermostatting of calorimetric cell
JP2000235010A (en) Nuclear magnetic resonance device and liquid constituent inspection device using the device
US8198897B2 (en) Superconductive magnetic device, magnetic resonance imaging apparatus and magnetic field inhomogeneity compensation method
Pocock et al. Isothermal Joule–Thomson coefficient of nitrogen
CN109596566A (en) A kind of gas detection absorption inside cavity temperature and pressure integrated control unit
JPS61277030A (en) Apparatus for calibrating vacuum gauge
Clay et al. Cryogenic and electrical test cryostat for instrumented superconductive RF cavities (Chechia)
Davydov et al. On the possibility of determining the thermodynamic temperature of colloid solutions by the nuclear magnetic resonance method
CN114644322B (en) Hyperpolarized noble gas production apparatus
JP4067546B2 (en) Magnetic resonance imaging apparatus and static magnetic field uniformity maintaining method
JP3420737B2 (en) Temperature variable magnetic resonance device
US20030162302A1 (en) On-flow preheating in NMR measurements
JP2003004678A (en) Method and device for measuring amount of adsorbed component
JPS60109207A (en) Refrigerator for electromagnet apparatus
JP3699804B2 (en) Oxygen measuring device for atmosphere monitor in PCV
Yuan et al. Subcooled Flow Boiling Inception and Heat Transfer of Water in a Circular Tube Under Pulsatile Flow

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509