JP2000234008A - Phenolic polymer and epoxy resin curing agent using the same - Google Patents

Phenolic polymer and epoxy resin curing agent using the same

Info

Publication number
JP2000234008A
JP2000234008A JP11036448A JP3644899A JP2000234008A JP 2000234008 A JP2000234008 A JP 2000234008A JP 11036448 A JP11036448 A JP 11036448A JP 3644899 A JP3644899 A JP 3644899A JP 2000234008 A JP2000234008 A JP 2000234008A
Authority
JP
Japan
Prior art keywords
resin
triphenylmethane
phenolic polymer
curing agent
etherified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11036448A
Other languages
Japanese (ja)
Inventor
Yuko Ito
雄幸 伊藤
Masato Ohira
正人 大平
Yoshihisa Sone
嘉久 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Chemical Co Ltd filed Critical Sumikin Chemical Co Ltd
Priority to JP11036448A priority Critical patent/JP2000234008A/en
Publication of JP2000234008A publication Critical patent/JP2000234008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a phenolic polymer having a low melt viscosity and a high glass transition temperature and being capable of being used as an epoxy curing agent by etherifying a specified proportion of the hydroxyl groups of a triphenylmethane type resin having a specified structure. SOLUTION: A partially etherified phenolic polymer is obtained by etherifying 5-50 mol% hydroxyl groups of a triphenylmethane type resin obtained by condensing a phenol with an aromatic carbonyl compound in the presence of an acidic catalyst and represented by the formula (wherein (n) is 0-4; (a), (b), (c), (d), and (e) are each 0-2; and the average of the substituted hydroxyl groups is 0.5-2.0 per phenyl). The partial esterification consists of dissolving a triphenylmethane resin in an organic solvent such as an alcohol, adding a base to the solution, adding an alkenically, allylically, or otherwise unsaturated halohydrocarbon to the mixture, and reacting the reaction mixture to obtain an alkenyl ether, an allyl ether or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種バインダー、
コーティング材、積層材、成形材料等に有用なフェノー
ル系重合体およびそれを用いたエポキシ樹脂用硬化剤に
関する。特に半導体封止用、プリント基板絶縁用などの
エポキシ硬化剤に好適な、低溶融粘度、高ガラス転移温
度、優れた硬化特性を兼ね備えたフェノール系重合体に
関する。
TECHNICAL FIELD The present invention relates to various binders,
The present invention relates to a phenolic polymer useful for a coating material, a laminate, a molding material, and the like, and a curing agent for an epoxy resin using the same. In particular, the present invention relates to a phenolic polymer having a low melt viscosity, a high glass transition temperature, and excellent curing properties, which is suitable for an epoxy curing agent for semiconductor encapsulation and for insulating printed boards.

【0002】[0002]

【従来の技術】近年、半導体パッケージは小型・薄型
化、多ピン化、高密度実装化に伴い、ピン挿入方式(D
IP)から表面実装方式(SOP,QFP)へと移行し
てきており、さらに最近はBGA(Ball Grid
Array)といった新しいパッケージ形態も登場し
てきている。BGAは同一ピン数のQFPに比べて、ピ
ッチ間隔が広い、パッケージサイズが小さい、実装不良
が少ないなどの特長を有し、今後QFPからの移行が急
速に進むと考えられている。
2. Description of the Related Art In recent years, as semiconductor packages have become smaller and thinner, have more pins, and have been mounted at higher density, a pin insertion method (D
IP) to surface mounting (SOP, QFP), and more recently BGA (Ball Grid).
New package forms such as Array) have also appeared. The BGA has features such as a wider pitch interval, a smaller package size, and less mounting defects than a QFP having the same number of pins, and it is considered that the transition from the QFP will proceed rapidly in the future.

【0003】BGAは従来のQFPやSOPと異なり、
エポキシ樹脂やBTレジンといった有機基板の上にチッ
プを搭載し、片面のみを樹脂封止した構造をしている。
よって、基板と封止材の熱収縮の差により反りが発生し
やすい。またQFPやSOPに比べて、ボンディングワ
イヤーが長い、基板の表面がソルダーレジストで被覆さ
れているなど従来パッケージとの違いがある。
[0003] BGA is different from conventional QFP and SOP,
The chip is mounted on an organic substrate such as epoxy resin or BT resin, and only one surface is sealed with resin.
Therefore, warpage is likely to occur due to the difference in thermal shrinkage between the substrate and the sealing material. There are also differences from conventional packages, such as a longer bonding wire and a substrate surface covered with a solder resist than QFP or SOP.

【0004】そのためBGA用の封止材には、反りが小
さいこと、流動性が高いこと(ワイヤー変形が小さいこ
と)、基板表面との密着性が良いことなどが求められて
いる。これら封止材への要求特性を満たすために、高ガ
ラス転移温度と低溶融粘度を兼ね備えたフェノール系樹
脂(硬化剤)の出現が強く望まれている。ガラス転移温
度が高いと反りが小さくなり、低溶融粘度であれば流動
性や密着性が向上し、フィラーも多く配合できるので半
田耐熱性や耐水性の面でも有利になる。
[0004] Therefore, a sealing material for BGA is required to have a small warpage, a high fluidity (small wire deformation), and a good adhesion to the substrate surface. In order to satisfy the required properties of these sealing materials, the appearance of a phenolic resin (curing agent) having both a high glass transition temperature and a low melt viscosity is strongly desired. If the glass transition temperature is high, the warpage is small, and if the melt viscosity is low, the fluidity and adhesion are improved, and a large amount of filler can be added, which is advantageous in terms of solder heat resistance and water resistance.

【0005】またビルドアップ基板の層間絶縁材にも、
耐水性に優れ、高ガラス転移温度で接着性のよいエポキ
シ樹脂組成物が望まれており、これを達成するために、
元々耐水性や保存安定性に優れたフェノール系硬化剤
で、高ガラス転移温度と低溶融粘度を両立するものが望
まれている。
[0005] Also, the interlayer insulating material of the build-up substrate
An epoxy resin composition having excellent water resistance and good adhesiveness at a high glass transition temperature is desired, and in order to achieve this,
A phenolic curing agent which is originally excellent in water resistance and storage stability and has both a high glass transition temperature and a low melt viscosity is desired.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0006】一般にガラス転移温度を上げるために、ヒ
ドロキシ基濃度を上げると、ヒドロキシ基同士の水素結
合のため溶融粘度が上昇する。すなわち、高ガラス転移
温度と低溶融粘度の両立は原理的に難しいのが実状であ
った。
In general, when the concentration of hydroxy groups is increased in order to increase the glass transition temperature, the melt viscosity increases due to hydrogen bonding between the hydroxy groups. That is, in reality, it was difficult in principle to achieve both a high glass transition temperature and a low melt viscosity.

【0007】この問題を解決するフェノール系硬化剤と
して、架橋密度に頼らず、分子の主鎖そのものをリジッ
ドにする方法(例えば「熱硬化性樹脂」Vol.15,No.3,P
20(1994)で提案されたナフトール系樹脂を用いるもの
等)、主鎖に嵩高い構造をペンダント状にぶら下げる方
法(特開平6−184258)などがあるが、いずれも
低溶融粘度で、しかもガラス転移温度を高くするという
点では不十分であった。
As a phenolic curing agent to solve this problem, a method of making the main chain of the molecule rigid without relying on the crosslink density (for example, “thermosetting resin” Vol. 15, No. 3,
20 (1994) using a naphthol-based resin) and a method of suspending a bulky structure in the main chain in a pendant manner (JP-A-6-184258). It was unsatisfactory in increasing the transition temperature.

【0008】また、BGA用封止材に使用されるフェノ
ール系硬化剤は、ガラス転移温度を上げるために水酸基
濃度が高いもの、いわゆる多官能タイプが用いられる。
代表的な例としてトリフェノールメタン型のフェノール
樹脂が挙げられる(特公平7−121979、特開平2
−173023など)。
As the phenolic curing agent used in the sealing material for BGA, a phenolic curing agent having a high hydroxyl group concentration in order to raise the glass transition temperature, that is, a so-called polyfunctional type is used.
A typical example is a phenol resin of the triphenolmethane type (Japanese Patent Publication No. 7-121979;
-173023).

【0009】またトリフェノールメタン型のフェノール
樹脂にアリル基を付与したタイプの樹脂も提案されてい
る(特開平4−23824)。これらの樹脂はガラス転
移温度が高いため熱収縮が小さく、また樹脂骨格的に自
由体積が大きいため、硬化収縮率も小さく、これが低反
りに寄与しているとされている。しかしこのタイプの樹
脂は、その反面、水酸基濃度が高いため水酸基の水素結
合により溶融粘度が高いといった問題点があった。
A resin in which an allyl group is added to a triphenolmethane-type phenol resin has also been proposed (JP-A-4-23824). These resins have a high glass transition temperature and thus have a small heat shrinkage, and have a large free volume as a resin skeleton, and therefore have a small cure shrinkage, which is said to contribute to low warpage. However, this type of resin, on the other hand, has a problem that the melt viscosity is high due to the hydrogen bond of the hydroxyl group due to the high hydroxyl group concentration.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記トリ
フェノールメタン型のフェノール樹脂の高ガラス転移温
度、低熱収縮性、低反り等の優れた物性を生かし、かつ
溶融粘度の低いフェノール系硬化剤を得るために鋭意検
討した結果、特定の構造を有するトリフェニルメタン型
樹脂のヒドロキシ基を部分エーテル化することにより低
溶融粘度でかつ高ガラス転移温度を有するフェノール系
重合体が得られることを見い出し本発明を完成した。
Means for Solving the Problems The present inventors make use of the excellent physical properties such as high glass transition temperature, low heat shrinkage and low warpage of the above-mentioned triphenolmethane type phenolic resin, and have a low melt viscosity phenolic resin. As a result of intensive studies to obtain a curing agent, a phenolic polymer with a low melt viscosity and a high glass transition temperature can be obtained by partially etherifying the hydroxy group of a triphenylmethane type resin having a specific structure. And completed the present invention.

【0011】すなわち本発明は式(1)で表わされるト
リフェニルメタン型樹脂のヒドロキシ基の5〜50モル
%がエーテル化された部分エーテル化フェノール系重合
体である。
That is, the present invention is a partially etherified phenolic polymer in which 5 to 50 mol% of hydroxy groups of the triphenylmethane type resin represented by the formula (1) are etherified.

【0012】[0012]

【化2】 式中、nは0〜4であり、1個のベンゼン核に置換する
ヒドロキシ基の数、a,b,c,d及びeは0〜2であ
り、フェニル基当たりの置換ヒドロキシ基の平均数は
0.5〜2.0個である。
Embedded image In the formula, n is 0 to 4, the number of hydroxy groups substituted on one benzene nucleus, a, b, c, d and e are 0 to 2, and the average number of substituted hydroxy groups per phenyl group Is from 0.5 to 2.0.

【0013】また本発明は、上記部分エーテル化フェノ
ール系重合体からなるエポキシ樹脂用硬化剤である。
Further, the present invention is a curing agent for an epoxy resin comprising the above partially etherified phenolic polymer.

【0014】[0014]

【発明の実施の形態】[トリフェニルメタン型樹脂の製
造]本発明で用いる上記式(1)で示されるトリフェニ
ルメタン型樹脂は、フェノール類と芳香族カルボニル化
合物基を、酸性触媒下で縮合させる公知の方法で得るこ
とが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Production of triphenylmethane type resin] The triphenylmethane type resin represented by the above formula (1) used in the present invention is obtained by condensing a phenol and an aromatic carbonyl compound group in the presence of an acidic catalyst. Can be obtained by a known method.

【0015】フェノール類としては例えばフェノール、
クレゾール、エチルフェノール、プロピルフェノール、
ブチルフェノール、ヘキシルフェノール、ノニルフェノ
ール、キシレノール、ブチルメチルフェノール等の1価
フェノールの他、カテコール、レゾルシン、ハイドロキ
ノン等の2価フェノールも使用することができるが、特
にフェノールが好ましい。
Examples of phenols include phenol,
Cresol, ethyl phenol, propyl phenol,
In addition to monohydric phenols such as butylphenol, hexylphenol, nonylphenol, xylenol, and butylmethylphenol, dihydric phenols such as catechol, resorcin and hydroquinone can be used, and phenol is particularly preferred.

【0016】芳香族カルボニル化合物としては例えば、
ベンズアルデヒド、ヒドロキシベンズアルデヒド、ジヒ
ドロキシベンズアルデヒド、メチルヒドロキシベンズア
ルデヒド、メトキシベンズアルデヒド等が挙げられる。
これらのうち、特にヒドロキシベンズアルデヒドが好ま
しい。
As the aromatic carbonyl compound, for example,
Examples include benzaldehyde, hydroxybenzaldehyde, dihydroxybenzaldehyde, methylhydroxybenzaldehyde, methoxybenzaldehyde and the like.
Of these, hydroxybenzaldehyde is particularly preferred.

【0017】原料として用いる上記フェノール類及び芳
香族カルボニル化合物の種類により、式(1)における
各フェニル基に置換するヒドロキシ基の数を調整するこ
とができるが、本発明におけるトリフェニルメタン型樹
脂中の、フェニル基当たりの置換ヒドロキシ基の平均数
すなわち[a+b+n(c+d)+e]/(2n+3)
は0.5〜2.0個、好ましくは0.8〜1.2個であ
る。
The number of hydroxy groups to be substituted for each phenyl group in the formula (1) can be adjusted depending on the types of the phenols and aromatic carbonyl compounds used as raw materials. The average number of substituted hydroxy groups per phenyl group, ie [a + b + n (c + d) + e] / (2n + 3)
Is 0.5 to 2.0, preferably 0.8 to 1.2.

【0018】フェノール類と芳香族カルボニル化合物と
の縮合反応は公知の酸性触媒を用いて行われる。酸性触
媒としては例えば塩酸、硫酸、パラトルエンスルホン酸
等である。
The condensation reaction between the phenol and the aromatic carbonyl compound is carried out using a known acidic catalyst. Examples of the acidic catalyst include hydrochloric acid, sulfuric acid, and paratoluenesulfonic acid.

【0019】上記縮合反応を行った後、減圧濃縮や水蒸
気蒸留等により、未反応物を除去して縮合物が得られ
る。
After performing the above condensation reaction, unreacted substances are removed by concentration under reduced pressure or steam distillation to obtain a condensate.

【0020】[アリルエーテル化トリフェニルメタン型
樹脂の製造]本発明の部分エーテル化フェノール系重合
体は、式(1)で示されるトリフェニルメタン型樹脂の
ヒドロキシ基(−OH)を、鎖状炭化水素基(−R)で
部分的にエーテル化してアルコキシ基(−OR)とした
ものである。ここにRは、アルケニル基、アルキル基等
の鎖状炭化水素基であり、アルケニル基等の不飽和鎖状
炭化水素基、メチル基、エチル基、プロピル基、ブチル
基等のアルキル基を挙げることができるが、これらの中
で、アリル基、ブテニル基、フェニルプロペニル基、1
−エチル−2−プロペニル基等のアルケニル基、特にア
リル基によるエーテル化物が好ましい。特にエポキシ樹
脂用硬化剤として用いる部分エーテル化フェノール系重
合体は、アリル基等、不飽和鎖状炭化水素基による部分
エーテル化物が好ましい。
[Production of allyl etherified triphenylmethane type resin] The partially etherified phenolic polymer of the present invention is obtained by converting the hydroxy group (-OH) of the triphenylmethane type resin represented by the formula (1) into a chain. It is partially etherified with a hydrocarbon group (-R) to form an alkoxy group (-OR). Here, R is a chain hydrocarbon group such as an alkenyl group and an alkyl group, and examples thereof include an unsaturated chain hydrocarbon group such as an alkenyl group and an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group. Of which allyl, butenyl, phenylpropenyl, and
An etherified product by an alkenyl group such as -ethyl-2-propenyl group, particularly an allyl group is preferred. In particular, the partially etherified phenolic polymer used as a curing agent for an epoxy resin is preferably a partially etherified product of an unsaturated chain hydrocarbon group such as an allyl group.

【0021】トリフェニルメタン型樹脂の部分エーテル
化の方法は、フェノール類をアリル化する公知の方法で
得ることができる。
The method for partial etherification of the triphenylmethane type resin can be obtained by a known method for allylating phenols.

【0022】即ち、ベースレジンとなるトリフェニルメ
タン型樹脂を有機溶媒に溶解した後、塩基を添加し、次
いでハロゲン化炭化水素、例えば塩化アリル、臭化アリ
ル、ヨウ化アリル等を加えて室温〜100℃で1〜5時
間反応させることにより製造することができる。
That is, after dissolving a triphenylmethane type resin serving as a base resin in an organic solvent, a base is added, and then a halogenated hydrocarbon, for example, allyl chloride, allyl bromide, allyl iodide or the like is added. It can be produced by reacting at 100 ° C. for 1 to 5 hours.

【0023】ここで使用する有機溶媒としてはメタノー
ル、エタノール、n−プロパノール、n−ブタノール等
のアルコール類、アセトン、メチルエチルケトン等のケ
トン類、ジメチルスルホキシド、N,N−ジメチルホル
ムアミド等の非プロトン性極性溶媒が挙げられる。得よ
うとする樹脂の使用目的によって有機溶媒を変えればよ
いので、トリフェニルメタン型樹脂と反応生成物が可溶
であり、塩基によって有機溶媒自身が分解、反応等を起
こさないものであれば使用することができる。好ましく
は、アルコール類が挙げられる。
The organic solvent used herein includes alcohols such as methanol, ethanol, n-propanol and n-butanol; ketones such as acetone and methyl ethyl ketone; aprotic polar compounds such as dimethyl sulfoxide and N, N-dimethylformamide. Solvents. The organic solvent may be changed according to the intended use of the resin to be obtained, so that the triphenylmethane type resin and the reaction product are soluble, and the organic solvent itself is not decomposed by the base, and is used if the reaction does not occur. can do. Preferably, alcohols are used.

【0024】また、塩基は水酸化ナトリウム、水酸化カ
リウム等のアルカリ金属水酸化物や、炭酸カリウム、炭
酸ナトリウム等のアルカリ炭酸塩が挙げられる。添加量
はアリルエーテル化すべきフェノール性ヒドロキシ基に
対して等モルの割合で添加するのが好ましい。使用する
ハロゲン化炭化水素の量は、塩基に対して当量以上であ
る。
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali carbonates such as potassium carbonate and sodium carbonate. The amount of the phenolic hydroxyl group to be allyletherified is preferably equimolar to the phenolic hydroxy group. The amount of the halogenated hydrocarbon used is at least equivalent to the base.

【0025】本発明のエーテル化フェノール系重合体
は、トリフェニルメタン型樹脂のヒドロキシ基の5〜5
0モル%、好ましくは10〜25モル%がエーテル化さ
れた部分化エーテル化物であり、エーテル化率をこの範
囲に保つことにより、エポキシ硬化剤に好適な、低溶融
粘度、高ガラス転移温度、優れた硬化特性を兼ね備えた
重合体が得られる。エーテル化率が5モル%未満では、
溶融粘度が高く、作業性が劣る。また50モル%を超え
ると、ガラス転移温度が低く、またゲル化時間が長くか
かる等、硬化特性が悪くなる。
The etherified phenolic polymer of the present invention is characterized in that the hydroxyl group of the triphenylmethane type resin is 5 to 5
0 mol%, preferably 10 to 25 mol% is a partially etherified product which is etherified, and by maintaining the etherification ratio within this range, a low melt viscosity, a high glass transition temperature, A polymer having excellent curing properties is obtained. If the etherification rate is less than 5 mol%,
High melt viscosity and poor workability. On the other hand, if it exceeds 50 mol%, the glass transition temperature is low and the gelation time is long, and the curing properties are poor.

【0026】本発明の部分エーテル化フェノール系重合
体は、バインダー、コーティング材、積層材、成形材料
等の用途に広く使用できるが、特に部分アリルエーテル
化物等、鎖状不飽和炭化水素基による部分エーテル化フ
ェノール系重合体は、低溶融粘度、高ガラス転移温度、
優れた硬化特性を有するところから、特に半導体封止
用、プリント基板絶縁用などのエポキシ硬化剤に適して
いる。
The partially etherified phenolic polymer of the present invention can be widely used for applications such as binders, coating materials, laminates and molding materials. Etherified phenolic polymer has low melt viscosity, high glass transition temperature,
Since it has excellent curing properties, it is particularly suitable as an epoxy curing agent for semiconductor encapsulation, printed circuit board insulation, and the like.

【0027】[エポキシ樹脂硬化物]エポキシ樹脂硬化
物は上記部分不飽和炭化水素基によるエーテル化トリフ
ェニルメタン型樹脂とエポキシ樹脂及び硬化促進剤を混
合し、100〜250℃の温度範囲で硬化させることに
より得られる。
[Epoxy resin cured product] The epoxy resin cured product is obtained by mixing the above-mentioned etherified triphenylmethane type resin with a partially unsaturated hydrocarbon group, an epoxy resin and a curing accelerator, and curing at a temperature of 100 to 250 ° C. It can be obtained by:

【0028】エポキシ樹脂としては、例えばビスフェノ
ールA型エポキシ樹脂、ビスフェノールF型エポキシ樹
脂、クレゾールノボラック型エポキシ樹脂、フェノール
ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂
などのグリシジルエーテル型エポキシ樹脂、グリシジル
エステル型エポキシ樹脂、グリシジルアミン型エポキシ
樹脂、ハロゲン化エポキシ樹脂など、分子中にエポキシ
基を二個以上有するエポキシ樹脂が挙げられる。これら
エポキシ樹脂は単独で使用しても、2種類以上を併用し
てもよい。
Examples of the epoxy resin include glycidyl ether type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin and biphenyl type epoxy resin, and glycidyl ester type epoxy resin. And epoxy resins having two or more epoxy groups in the molecule, such as glycidylamine type epoxy resins and halogenated epoxy resins. These epoxy resins may be used alone or in combination of two or more.

【0029】本発明の部分エーテル化トリフェニルメタ
ン型樹脂は部分的にエーテル化されたことにより、適度
の割り合いでヒドロキシ基が存在しているので、エポキ
シ樹脂硬化剤として用いた場合、高ガラス転移温度等、
優れた硬化特性を維持し、しかも低粘度化を実現させる
ことができる。この場合のエポキシ樹脂との硬化物の1
例を下記式(2)で示す。
Since the partially etherified triphenylmethane type resin of the present invention is partially etherified and has an appropriate proportion of hydroxy groups, when used as an epoxy resin curing agent, a high glass Transition temperature,
Excellent curing characteristics can be maintained, and lower viscosity can be realized. In this case, 1 of the cured product with the epoxy resin
An example is shown by the following equation (2).

【0030】[0030]

【化3】 (式中、n=0〜4、Rは鎖状炭化水素基を表す。)Embedded image (In the formula, n = 0 to 4, R represents a chain hydrocarbon group.)

【0031】またアリル基等の不飽和炭化水素基による
部分エーテル化トリフェニルメタン型樹脂の場合は、エ
ポキシ樹脂による硬化反応条件(特にポストキュア条
件)下では部分的にアリル基が芳香族へクライゼン転位
してヒドロキシ基が再生し、さらにこれがエポキシ基と
反応して、例えば式(3)のごとき構造を有するエポキ
シ樹脂硬化物が得られる。これにより架橋密度の低下を
起こさず、高ガラス転移温度が維持される。
In the case of a triphenylmethane resin partially etherified with an unsaturated hydrocarbon group such as an allyl group, the allyl group partially becomes aromatic under the curing reaction conditions (particularly post-curing conditions) with an epoxy resin. The hydroxy group is regenerated by rearrangement, and further reacts with the epoxy group to obtain a cured epoxy resin having a structure such as the formula (3). As a result, a high glass transition temperature is maintained without lowering the crosslink density.

【0032】[0032]

【化4】 (式中、n=0〜4、Rはアルケニル基を表す。)Embedded image (In the formula, n = 0 to 4, R represents an alkenyl group.)

【0033】[0033]

【実施例】以下に実施例を挙げて、本発明を具体的に説
明する。なお本発明で得られた部分エーテル化フェノー
ル樹脂の物性測定は以下のとおりである。
EXAMPLES The present invention will be specifically described below with reference to examples. The measurement of physical properties of the partially etherified phenol resin obtained in the present invention is as follows.

【0034】(1)エーテル化率 樹脂のエーテル化率はアセチル化法によりヒドロキシ基
当量を測定して求めた。
(1) Degree of etherification The degree of etherification of the resin was determined by measuring the hydroxy group equivalent by an acetylation method.

【0035】(2)溶融粘度 樹脂の溶融粘度はICIコーン&プレート型粘度計(リ
サーチ・イクイップメント社製:ロンドン)を用いて1
50℃で測定した。
(2) Melt Viscosity The melt viscosity of the resin was measured using an ICI cone & plate type viscometer (manufactured by Research Equipment: London).
It was measured at 50 ° C.

【0036】(3)ゲル化時間 樹脂にクレゾールノボラック型エポキシ樹脂を当量比
1:1で混合し、さらに硬化促進剤としてトリフェニル
ホスフィンを1phr混合し、ストロークキュア法によ
り175℃で測定した。
(3) Gelation time The resin was mixed with a cresol novolak type epoxy resin at an equivalent ratio of 1: 1 and triphenylphosphine as a curing accelerator was mixed with 1 phr, and the mixture was measured at 175 ° C. by a stroke cure method.

【0037】(4)ガラス転移温度(Tg) (3)の混合物を180℃で6時間硬化させ、リガク社
製TMA8310を用いて熱機械分析(TMA)法によ
り線膨張係数を測定して求めた。
(4) Glass transition temperature (Tg) The mixture of (3) was cured at 180 ° C. for 6 hours, and the coefficient of linear expansion was measured by a thermomechanical analysis (TMA) method using TMA8310 manufactured by Rigaku Corporation. .

【0038】[製造例A](トリフェニルメタン型樹脂
の製造) 撹拌装置、コンデンサー、及び窒素ガス導入管を備えた
ガラス製反応釜に、フェノール885g、サリチルアル
デヒド(o−ヒドロキシベンズアルデヒド)115g、
36%塩酸10gを加え、窒素気流下で撹拌しながら昇
温し、110℃で3時間の反応を行った。その後減圧蒸
留を行い、未反応のフェノール、サリチルアルデヒドを
除去し、トリフェニルメタン型樹脂を得た。
[Production Example A] (Production of triphenylmethane type resin) In a glass reactor equipped with a stirrer, a condenser and a nitrogen gas inlet tube, 885 g of phenol, 115 g of salicylaldehyde (o-hydroxybenzaldehyde),
10 g of 36% hydrochloric acid was added, the temperature was raised while stirring under a nitrogen stream, and the reaction was carried out at 110 ° C. for 3 hours. Thereafter, vacuum distillation was performed to remove unreacted phenol and salicylaldehyde, thereby obtaining a triphenylmethane type resin.

【0039】[製造例B]アルデヒドとして夫々3,4
ジヒドロキシベンズアルデヒド及びベンズアルデヒドを
用い、製造例Aと同様にして、3,4ジヒドロキシベン
ズアルデヒド/フェノール縮合物及びベンズアルデヒド
/フェノール縮合物を合成し、両者を55:45(重量
比)で混合し、トリフェニルメタン型樹脂混合物を得
た。
[Production Example B] 3,4
Using dihydroxybenzaldehyde and benzaldehyde, 3,4 dihydroxybenzaldehyde / phenol condensate and benzaldehyde / phenol condensate were synthesized in the same manner as in Production Example A, and both were mixed at a ratio of 55:45 (weight ratio). A mold resin mixture was obtained.

【0040】製造例A及びBで得られたトリフェニルメ
タン型樹脂の物性は表1のとおりである。
Table 1 shows the physical properties of the triphenylmethane type resins obtained in Production Examples A and B.

【0041】[0041]

【表1】 S.A : サリチルアルデヒド D.H.B.A :ジヒドロキシベンズアルデヒド B.A : ベンズアルデヒド[Table 1] SA: salicylaldehyde DHBA: dihydroxybenzaldehyde BA: benzaldehyde

【0042】[製造例C](フェノールアラルキル樹脂
の製造) 製造例Aで用いた反応釜に、1,4−ジ(クロロメチ
ル)ベンゼン175g、フェノール188gを加え、窒
素気流下で撹拌しながら昇温し、120℃で2時間の反
応を行った。さらに温度を150℃に上げ2時間反応さ
せた。このとき発生する塩化水素は水酸化ナトリウム水
溶液でトラップ除去した。その後1,8−ジアザビシク
ロ(5,4,0)ウンデセンを0.1%水溶液を0.1
g添加し減圧蒸留を行い、未反応のフェノールを除去し
目的物を得た。得られたフェノールアラルキル樹脂は、
150℃における溶融粘度が3.6ポイズ、OH基当量
が175g/eqであった。
[Production Example C] (Production of phenol aralkyl resin) To the reaction vessel used in Production Example A, 175 g of 1,4-di (chloromethyl) benzene and 188 g of phenol were added, and the mixture was stirred and stirred under a nitrogen stream. The mixture was heated and reacted at 120 ° C. for 2 hours. The temperature was further raised to 150 ° C. and the reaction was performed for 2 hours. The hydrogen chloride generated at this time was removed by trapping with an aqueous sodium hydroxide solution. Then, 0.1% aqueous solution of 1,8-diazabicyclo (5,4,0) undecene was added to 0.1% aqueous solution.
g was added and distillation was performed under reduced pressure to remove unreacted phenol to obtain the desired product. The obtained phenol aralkyl resin is
The melt viscosity at 150 ° C. was 3.6 poise, and the OH group equivalent was 175 g / eq.

【0043】[実施例1](20%アリルエーテル化ト
リフェニルメタン樹脂) 撹拌装置、コンデンサー、及び滴下ロートを備えたガラ
ス製反応釜に、製造例Aで得たトリフェニルメタン型樹
脂100g、メタノール300gを仕込み溶解させ、水
酸化カリウム11.2g(NET)を加え均一になるま
で撹拌した。これに塩化アリル19.1gを15分かけ
て滴下後、40℃で1時間撹拌し、さらに65℃で5時
間加熱撹拌してアリルエーテル化反応を完結させた。次
いで反応液を濾過して副生した塩化カリウムを除去した
後、メタノールを除去した。残留物をメチルイソブチル
ケトンで溶解させ、純水で洗浄後、メチルイソブチルケ
トンを除去し、アリルエーテル化トリフェニルメタン型
樹脂を得た。エーテル化率は20モル%であった。この
アリルエーテル化物について、150 ℃における溶融粘
度、ガラス転移点及びゲル化時間を測定した。結果を表
2に示す。
[Example 1] (20% allyl etherified triphenylmethane resin) In a glass reactor equipped with a stirrer, a condenser and a dropping funnel, 100 g of the triphenylmethane type resin obtained in Production Example A, methanol 300 g was charged and dissolved, 11.2 g (NET) of potassium hydroxide was added, and the mixture was stirred until it became uniform. After adding 19.1 g of allyl chloride dropwise over 15 minutes, the mixture was stirred at 40 ° C. for 1 hour, and further heated and stirred at 65 ° C. for 5 hours to complete the allyl etherification reaction. Next, the reaction solution was filtered to remove by-produced potassium chloride, and then methanol was removed. The residue was dissolved in methyl isobutyl ketone, washed with pure water, and the methyl isobutyl ketone was removed to obtain an allyl etherified triphenylmethane resin. The etherification rate was 20 mol%. The melt viscosity at 150 ° C., the glass transition point, and the gelation time of this allyl etherified product were measured. Table 2 shows the results.

【0044】[実施例2](10%アリルエーテル化ト
リフェニルメタン樹脂) 実施例1で用いた反応釜に、製造例Aで得たトリフェニ
ルメタン型樹脂60.6g、メタノール300gを仕込
み溶解させ、水酸化カリウム5.6gを加え均一になる
まで撹拌した。これに塩化アリル9.6gを15分かけ
て滴下後、40℃で1時間撹拌し、さらに65℃で5時
間加熱撹拌してアリルエーテル化反応を完結させた。次
いで反応液を濾過して副生した塩化カリウムを除去した
後、メタノールを除去した。残留物をメチルイソブチル
ケトンで溶解させ、純水で洗浄後、メチルイソブチルケ
トンを除去し、エーテル化率10モル%のアリルエーテ
ル化トリフェニルメタン型樹脂が得られた。このエーテ
ル化物について、実施例と同様に物性を測定した。結果
を表2に示す。
[Example 2] (10% allyl etherified triphenylmethane resin) 60.6 g of the triphenylmethane type resin obtained in Production Example A and 300 g of methanol were charged and dissolved in the reactor used in Example 1. Then, 5.6 g of potassium hydroxide was added and the mixture was stirred until it became uniform. After 9.6 g of allyl chloride was added dropwise over 15 minutes, the mixture was stirred at 40 ° C. for 1 hour, and further heated and stirred at 65 ° C. for 5 hours to complete the allyl etherification reaction. Next, the reaction solution was filtered to remove by-produced potassium chloride, and then methanol was removed. The residue was dissolved in methyl isobutyl ketone, washed with pure water, and the methyl isobutyl ketone was removed to obtain an allyl etherified triphenylmethane resin having an etherification rate of 10 mol%. Physical properties of this etherified product were measured in the same manner as in the examples. Table 2 shows the results.

【0045】[実施例3](20%メチルエーテル化ト
リフェニルメタン樹脂) 実施例1で用いた反応釜に、製造例Aで得たトリフェニ
ルメタン型樹脂100g、メタノール300gを仕込み
溶解させ、水酸化カリウム11.2g(NET)を加え
均一になるまで撹拌した。これにヨウ化メチル35.5
gを15分かけて滴下後、40℃で1時間撹拌し、さら
に65℃で5時間加熱撹拌してメチルエーテル化反応を
完結させた。次いで反応液を濾過して副生した塩化カリ
ウムを除去した後、メタノールを除去した。残留物をメ
チルイソブチルケトンで溶解させ、純水で洗浄後、メチ
ルイソブチルケトンを除去しメチルエーテル化トリフェ
ニルメタン型樹脂を得た(エーテル化率20%)。この
エーテル化物について、実施例1と同様に物性を測定し
た。結果を表2に示す。
[Example 3] (20% methyl etherified triphenylmethane resin) Into the reactor used in Example 1, 100 g of the triphenylmethane type resin obtained in Production Example A and 300 g of methanol were charged and dissolved. 11.2 g (NET) of potassium oxide was added and the mixture was stirred until it became uniform. This is followed by methyl iodide 35.5
g was added dropwise over 15 minutes, and the mixture was stirred at 40 ° C. for 1 hour and further heated and stirred at 65 ° C. for 5 hours to complete the methyl etherification reaction. Next, the reaction solution was filtered to remove by-produced potassium chloride, and then methanol was removed. The residue was dissolved in methyl isobutyl ketone, washed with pure water, and the methyl isobutyl ketone was removed to obtain a methyl etherified triphenylmethane type resin (etherification ratio: 20%). The properties of the etherified product were measured in the same manner as in Example 1. Table 2 shows the results.

【0046】[実施例4](20%アリルエーテル化ト
リフェニルメタン樹脂) 実施例1で用いた反応釜に、製造例Bで得たトリフェニ
ルメタン型樹脂100g、メタノール300gを仕込み
溶解させ、水酸化カリウム11.2g(NET)を加え
均一になるまで撹拌した。これに塩化アリル19.1g
を15分かけて滴下後、40℃で1時間撹拌し、さらに
65℃で5時間加熱撹拌してアリルエーテル化反応を完
結させた。次いで反応液を濾過して副生した塩化カリウ
ムを除去した後、メタノールを除去した。残留物をメチ
ルイソブチルケトンで溶解させ、純水で洗浄後、メチル
イソブチルケトンを除去しアリルエーテル化トリフェニ
ルメタン型樹脂を得た(エーテル化率20%)。このエ
ーテル化物について、実施例と同様に物性を測定した。
結果を表2に示す。
[Example 4] (20% allyl etherified triphenylmethane resin) Into the reactor used in Example 1, 100 g of the triphenylmethane type resin obtained in Production Example B and 300 g of methanol were charged and dissolved. 11.2 g (NET) of potassium oxide was added and the mixture was stirred until it became uniform. 19.1 g of allyl chloride
Was added dropwise over 15 minutes, and the mixture was stirred at 40 ° C. for 1 hour, and further heated and stirred at 65 ° C. for 5 hours to complete the allyl etherification reaction. Next, the reaction solution was filtered to remove by-produced potassium chloride, and then methanol was removed. The residue was dissolved in methyl isobutyl ketone, washed with pure water, and then the methyl isobutyl ketone was removed to obtain an allyl etherified triphenylmethane type resin (etherification ratio: 20%). Physical properties of this etherified product were measured in the same manner as in the examples.
Table 2 shows the results.

【0047】[実施例5](20%アリルエーテル化ト
リフェニルメタン樹脂) 実施例1で得られた20モル%アリルエーテル化物につ
いて、クレゾールノボラック型エポキシ樹脂との当量比
を1.2:1に変更した以外は実施例1と同様にして、
ガラス転移温度及びゲル化時間を測定した。結果を表2
に示す。
[Example 5] (20% allyl etherified triphenylmethane resin) The equivalent ratio of the 20 mol% allyl etherified product obtained in Example 1 to the cresol novolak type epoxy resin was 1.2: 1. Except having changed, it carried out similarly to Example 1, and
Glass transition temperature and gel time were measured. Table 2 shows the results
Shown in

【0048】[比較例1](60%アリルエーテル化ト
リフェニルメタン樹脂) 実施例1で用いた反応釜に、製造例Aで得たトリフェニ
ルメタン型樹脂100g、メタノール300gを仕込み
溶解させ、水酸化カリウム33.7g(NET)を加え
均一になるまで撹拌した。これに塩化アリル53.6g
を15分かけて滴下後、40℃で1時間撹拌し、さらに
65℃で5時間加熱撹拌してアリルエーテル化反応を完
結させた。次いで反応液を濾過して副生した塩化カリウ
ムを除去した後、メタノールを除去した。残留物をメチ
ルイソブチルケトンで溶解させ、純水で洗浄後、メチル
イソブチルケトンを除去し、エーテル化率60モル%の
アリルエーテル化トリフェニルメタン型樹脂が得られ
た。このエーテル化物について、実施例と同様に物性を
測定した。結果を表2に示す。
[Comparative Example 1] (60% allyl etherified triphenylmethane resin) Into the reaction vessel used in Example 1, 100 g of the triphenylmethane type resin obtained in Production Example A and 300 g of methanol were charged and dissolved. 33.7 g (NET) of potassium oxide was added and the mixture was stirred until uniform. 53.6 g of allyl chloride
Was added dropwise over 15 minutes, and the mixture was stirred at 40 ° C. for 1 hour, and further heated and stirred at 65 ° C. for 5 hours to complete the allyl etherification reaction. Next, the reaction solution was filtered to remove by-produced potassium chloride, and then methanol was removed. The residue was dissolved in methyl isobutyl ketone, washed with pure water, and the methyl isobutyl ketone was removed to obtain an allyl etherified triphenylmethane resin having an etherification rate of 60 mol%. Physical properties of this etherified product were measured in the same manner as in the examples. Table 2 shows the results.

【0049】[比較例2]製造例Aで得たトリフェニル
メタン型樹脂を、エーテル化せず、そのままで物性を測
定した。結果を表2に示す。
Comparative Example 2 The triphenylmethane type resin obtained in Production Example A was measured for physical properties as it was without etherification. Table 2 shows the results.

【0050】[比較例3](アリルエーテル化フェノー
ルアラルキル樹脂の製造) 実施例1で用いた反応釜に、製造例Cで得たフェノール
アラルキル樹脂100g、メタノール300gを仕込み
溶解させ、水酸化カリウム6.4gを加え均一になるま
で撹拌した。これに塩化アリル10.9gを15分かけ
て滴下後、40℃で1時間撹拌し、さらに65℃で5時
間加熱撹拌してアリルエーテル化反応を完結させた。次
いで反応液を濾過して副生した塩化カリウムを除去した
後、メタノールを除去した。残留物をメチルイソブチル
ケトンで溶解させ、純水で洗浄後、メチルイソブチルケ
トンを除去し目的物を得た。得られたアリル化フェノー
ルアラルキル樹脂の物性を測定した。結果を表2に示
す。
[Comparative Example 3] (Production of allyl etherified phenol aralkyl resin) Into the reaction vessel used in Example 1, 100 g of the phenol aralkyl resin obtained in Production Example C and 300 g of methanol were charged and dissolved. 0.4 g was added and stirred until uniform. After 10.9 g of allyl chloride was added dropwise over 15 minutes, the mixture was stirred at 40 ° C. for 1 hour, and further heated and stirred at 65 ° C. for 5 hours to complete the allyl etherification reaction. Next, the reaction solution was filtered to remove by-produced potassium chloride, and then methanol was removed. The residue was dissolved in methyl isobutyl ketone, washed with pure water, and then the methyl isobutyl ketone was removed to obtain the desired product. Physical properties of the obtained allylated phenol aralkyl resin were measured. Table 2 shows the results.

【0051】[0051]

【表2】 [Table 2]

【0052】表2の結果から明らかなように、エーテル
化をしないトリフェニルメタン型樹脂は、ガラス転移点
は高いが、溶融粘度が高く、流動性や密着性が悪い。ま
たエーテル化率の高いアリルエーテル化物は、低溶融粘
度であるが、ガラス転移点が低く、良好な物性のものが
得られない。またフェノールアラルキル樹脂を、本発明
と同様に部分エーテル化しても、ガラス転移点の低いも
のしか得られない。これに比べ、エーテル化率5〜50
モル%の範囲でエーテル化した本発明のトリフェニルメ
タン型樹脂は、高ガラス転移点で、しかも低溶融粘度で
あり、またゲル化時間も短く硬化特性が優れている。
As is evident from the results in Table 2, the triphenylmethane-type resin which is not etherified has a high glass transition point, but has a high melt viscosity and poor fluidity and adhesion. Further, an allyl etherified product having a high etherification rate has a low melt viscosity, but has a low glass transition point and cannot have good physical properties. Even if the phenol aralkyl resin is partially etherified as in the present invention, only a resin having a low glass transition point can be obtained. In comparison, the etherification rate was 5 to 50.
The triphenylmethane-type resin of the present invention etherified in the mole% range has a high glass transition point, a low melt viscosity, a short gelation time, and excellent curing properties.

【0053】[実施例6](エポキシ樹脂組成物の製
造) エポキシ樹脂(トリフェニルメタン型、日本化薬(株)
製”EPPN−501H”、エポキシ当量165g/e
q)、実施例1で得られたフェノール系硬化剤及び他の
配合剤を、表3に示す割合で配合し、充分に予備混合し
た後、ミキシングロールで混練して冷却し、これを粉砕
することにより、目的とするエポキシ樹脂組成物からな
る成形材料を得た。このようにして得られた成形材料に
ついて、各種物性を測定評価した。結果を表3に示す。
[Example 6] (Production of epoxy resin composition) Epoxy resin (triphenylmethane type, Nippon Kayaku Co., Ltd.)
"EPPN-501H", epoxy equivalent 165g / e
q), the phenolic curing agent obtained in Example 1 and other compounding agents are compounded in the proportions shown in Table 3, sufficiently premixed, kneaded with a mixing roll, cooled, and pulverized. As a result, a molding material comprising the desired epoxy resin composition was obtained. With respect to the molding material thus obtained, various physical properties were measured and evaluated. Table 3 shows the results.

【0054】なおこれらの成形材料の物性の測定は、以
下の方法で行った。 (1)スパイラルフロー EMMI規格に準じた金型を用いて、175℃で、70
kgf/cm2 の圧力で測定した。
The physical properties of these molding materials were measured by the following methods. (1) Spiral flow Using a mold conforming to the EMMI standard, at 175 ° C, 70
It was measured at a pressure of kgf / cm 2 .

【0055】(2)溶融粘度 エポキシ樹脂組成物の175℃における最低溶融粘度
を、フローテスター法(荷重:20kgf/cm2 、ノ
ズル:1mmΦ×2mmL)で測定した。
(2) Melt Viscosity The minimum melt viscosity of the epoxy resin composition at 175 ° C. was measured by a flow tester method (load: 20 kgf / cm 2 , nozzle: 1 mmΦ × 2 mmL).

【0056】(3)ガラス転移点 成形材料を成形硬化して(成形条件:175℃×150
秒、ポストキュア条件:150℃×2時間+180℃×
6時間)、5×5×2mmの硬化物を調製し、TMA法
によりガラス転移点を求めた。
(3) Glass transition point The molding material is molded and cured (molding conditions: 175 ° C. × 150).
Second, post cure condition: 150 ° C x 2 hours + 180 ° C x
(6 hours) A cured product of 5 × 5 × 2 mm was prepared, and the glass transition point was determined by the TMA method.

【0057】[比較例4](エポキシ樹脂組成物の製
造) 実施例4において、フェノール系硬化剤として、実施例
1で得られたフェノール系硬化剤の代わりに、製造例A
で得たトリフェニルメタン型樹脂を、エーテル化せず、
そのままで用いた以外は実施例4と同様にして、エポキ
シ樹脂組成物からなる成形材料を得、その物性を測定し
た。結果を表3に示す。
[Comparative Example 4] (Production of epoxy resin composition) In Example 4, the phenolic curing agent was replaced with the phenolic curing agent obtained in Example 1 and the production example A was used.
Without etherifying the triphenylmethane type resin obtained in
A molding material comprising an epoxy resin composition was obtained in the same manner as in Example 4 except that the molding material was used as it was, and its physical properties were measured. Table 3 shows the results.

【0058】[0058]

【表3】 [Table 3]

【0059】表3の結果から明らかなように本発明の部
分エーテル化フェノール系重合体を硬化剤を用いたエポ
キシ樹脂組成物は、低粘度、高流動性と高ガラス転移点
とが両立する優れた物性を有しており、本発明の部分エ
ーテル化フェノール系重合体はエポキシ樹脂用硬化剤と
して有用である。
As is evident from the results in Table 3, the epoxy resin composition of the present invention using the partially etherified phenolic polymer as a curing agent has excellent low viscosity, high fluidity and high glass transition point. The partially etherified phenolic polymer of the present invention is useful as a curing agent for epoxy resins.

【0060】[0060]

【発明の効果】本発明によれば、トリフェニルメタン型
樹脂のヒドロキシ基を特定のエーテル化率で部分エーテ
ル化することにより、高ガラス転移温度、低熱収縮性と
いうトリフェノールメタン型のフェノール樹脂の特徴を
生かし、かつトリフェノールメタン型樹脂の欠点とされ
ていた高溶融粘度の問題を解決することができた。これ
によりBGA等、最新の半導体封止材料に対応でき、エ
ポキシ硬化剤として利用できるフェノール系重合体が得
られた。
According to the present invention, the triphenylmethane type phenolic resin having a high glass transition temperature and a low heat shrinkage property is obtained by partially etherifying the hydroxy group of the triphenylmethane type resin at a specific etherification rate. It was able to solve the problem of high melt viscosity, which was a drawback of triphenolmethane type resin, by making use of its features. As a result, a phenolic polymer which can be used for the latest semiconductor encapsulating materials such as BGA and can be used as an epoxy curing agent was obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽根 嘉久 茨城県鹿嶋市大字光3番地 住金ケミカル 株式会社開発研究所内 Fターム(参考) 4J033 CA01 CA05 CA11 CA12 CA13 CA42 CB18 CC03 CC08 HA12 HB01 HB08 4J036 AD01 AD07 AD08 AD09 AF01 AF06 DA01 FB08 JA07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshihisa Sone 3, Oaza, Hikari, Kashima-shi, Ibaraki Sumikin Chemical Co., Ltd. F-term (reference) 4J033 CA01 CA05 CA11 CA12 CA13 CA42 CB18 CC03 CC08 HA12 HB01 HB08 4J036 AD01 AD07 AD08 AD09 AF01 AF06 DA01 FB08 JA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 式(1)で表わされるトリフェニルメタ
ン型樹脂のヒドロキシ基の5〜50モル%がエーテル化
された部分エーテル化フェノール系重合体。 【化1】 式中、nは0〜4、a,b,c,d,及びeは0〜2で
あり、フェニル基当たりの置換ヒドロキシ基の平均数
は、0.5〜2.0個である。
1. A partially etherified phenolic polymer in which 5 to 50 mol% of hydroxy groups of a triphenylmethane type resin represented by the formula (1) are etherified. Embedded image In the formula, n is 0 to 4, a, b, c, d, and e are 0 to 2, and the average number of substituted hydroxy groups per phenyl group is 0.5 to 2.0.
【請求項2】 エーテルがアルケニルエーテルであるこ
とを特徴とする請求項1記載の部分エーテル化フェノー
ル系重合体。
2. The partially etherified phenolic polymer according to claim 1, wherein the ether is an alkenyl ether.
【請求項3】 エーテルがアリルエーテルであることを
特徴とする請求項2記載の部分エーテル化フェノール系
重合体。
3. The partially etherified phenolic polymer according to claim 2, wherein the ether is an allyl ether.
【請求項4】 請求項1〜3のいずれかに記載の部分エ
−テル化フェノール系重合体からなるエポキシ樹脂用硬
化剤。
4. A curing agent for an epoxy resin comprising the partially etherified phenolic polymer according to claim 1.
JP11036448A 1999-02-15 1999-02-15 Phenolic polymer and epoxy resin curing agent using the same Pending JP2000234008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11036448A JP2000234008A (en) 1999-02-15 1999-02-15 Phenolic polymer and epoxy resin curing agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11036448A JP2000234008A (en) 1999-02-15 1999-02-15 Phenolic polymer and epoxy resin curing agent using the same

Publications (1)

Publication Number Publication Date
JP2000234008A true JP2000234008A (en) 2000-08-29

Family

ID=12470105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11036448A Pending JP2000234008A (en) 1999-02-15 1999-02-15 Phenolic polymer and epoxy resin curing agent using the same

Country Status (1)

Country Link
JP (1) JP2000234008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017423A (en) * 2010-07-08 2012-01-26 Nitto Denko Corp Method for producing cured product of thermosetting resin composition and cured product obtained by the same
JP2012197400A (en) * 2011-03-23 2012-10-18 Hitachi Chemical Co Ltd Epoxy resin composition and cured material thereof
JP2014169428A (en) * 2013-02-05 2014-09-18 Nippon Kayaku Co Ltd Allyl ether resin and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017423A (en) * 2010-07-08 2012-01-26 Nitto Denko Corp Method for producing cured product of thermosetting resin composition and cured product obtained by the same
JP2012197400A (en) * 2011-03-23 2012-10-18 Hitachi Chemical Co Ltd Epoxy resin composition and cured material thereof
JP2014169428A (en) * 2013-02-05 2014-09-18 Nippon Kayaku Co Ltd Allyl ether resin and method for producing the same

Similar Documents

Publication Publication Date Title
US5618984A (en) Phenol aralkyl resins, preparation process thereof and epoxy resin compositions
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
WO2007043684A1 (en) Phenol polymer, production method thereof and use thereof
JP2008189708A (en) Low-melt viscosity phenol novolak resin, method for producing the same and cured product of epoxy resin using the same
JP2008156553A (en) Low-melt-viscosity phenol novolak resin, its preparation method and its use
EP1475398B1 (en) Indole resins, epoxy resins and resin compositions containing the same
JP3196141B2 (en) Epoxy resin composition
JP3633674B2 (en) Liquid epoxy resin composition for sealing and cured product thereof
JP3656198B2 (en) Improved novolac type epoxy resin and resin composition for sealing electronic parts
JP2000234008A (en) Phenolic polymer and epoxy resin curing agent using the same
JP3833940B2 (en) Phenol polymer, process for producing the same, and epoxy resin curing agent using the same
JP3139857B2 (en) Epoxidized hydroxynaphthalene copolymer, its production method and use
JP2000103941A (en) Epoxy resin composition and semiconductor sealing material
JP3318870B2 (en) Epoxy resin composition
JP3813105B2 (en) Epoxy resin composition having excellent curability, cured product thereof and use thereof
JPH06192361A (en) Phenolic resin and epoxy resin composition and maleimide resin composition comprising the same
JP2001114863A (en) Epoxy resin composition and its cured material
JP4667753B2 (en) Epoxy resin production method, epoxy resin composition and cured product
JP2023023714A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition based thereon, and cured product
JP3888915B2 (en) Epoxy resin curing agent
JP2000204225A (en) Phenolic polymer composition and its production
JPH07173235A (en) Allylnapththol cocondensate and epoxy resin composition
JPH09157353A (en) Epoxy resin composition suitable for semiconductor sealing
JPH0867746A (en) Phenol aralkyl resin, its production and epoxy resin composition
JP2000204131A (en) Phenol polymer composition