JP2000232121A - Method for forming bump electrode of semiconductor device - Google Patents

Method for forming bump electrode of semiconductor device

Info

Publication number
JP2000232121A
JP2000232121A JP11032944A JP3294499A JP2000232121A JP 2000232121 A JP2000232121 A JP 2000232121A JP 11032944 A JP11032944 A JP 11032944A JP 3294499 A JP3294499 A JP 3294499A JP 2000232121 A JP2000232121 A JP 2000232121A
Authority
JP
Japan
Prior art keywords
bare chip
bump
electrode
semiconductor device
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11032944A
Other languages
Japanese (ja)
Inventor
Katsutoshi Furuhata
勝利 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11032944A priority Critical patent/JP2000232121A/en
Publication of JP2000232121A publication Critical patent/JP2000232121A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure the realiability of electrical connection between an electrode of a stable circuit substrate and a bump of a bare chip IC by forming a bump electrode on the aluminum electrode pad of a semiconductor device and shaping the bump electrode irregularly. SOLUTION: After a bump electrode 8 is formed on the aluminum electrode pad of a bare chip IC 1, the bare chip IC 1 is mounted to a stage 21 while its active surface is kept upward. Then, the upper surface of the electrode 8 is made irregular 9 by lowering a pressurizing tool 22, and while the irregular active surface 7 of the bare chip IC 1 is kept downward, namely, in a face-down state, it is sucked by a heating/pressurizing tool 23. Further, the active surface 7 of the bare chip IC 1 is directed to an anithotropic conductive film 24, and the bare chip IC 1 is placed thereon, and then the anithotropic conductive film 24 is pressurized and heated by means of the bare chip IC 1 so as to mount the bare chip IC 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置のバン
プ電極形成方法に関する。
The present invention relates to a method for forming a bump electrode of a semiconductor device.

【0002】[0002]

【従来の技術】従来からの公知の技術として、半導体装
置を裸のまま下向き(フェイスダウン)にて、加熱加圧
し回路基板のパターン上に接続する、フリップチップ実
装構造が提案されている。この実装方法での従来技術を
ガラスエポキシ基板への実装を例に、工程順に従い図3
を用いて説明する。
2. Description of the Related Art As a conventionally known technique, a flip-chip mounting structure has been proposed in which a semiconductor device is heated and pressed downward (face down) while being naked and connected to a pattern on a circuit board. The conventional technique in this mounting method is shown in FIG.
This will be described with reference to FIG.

【0003】図3(a)はフリップチップ実装する直前
の状態を示す断面図である。図3(a)において半導体
装置であるところのベアチップIC1が実装される回路
基板2の部品実装面3には複数の配線パターンが導電材
料にて形成されており、各配線パターンの先端の表面に
は、金メッキがなされた電極5が形成されている。ま
た、各配線パターンは、電極5の部分を除いてソルダー
レジスト6で覆われている。ここで回路基板2は、配線
パターンを複数の層に配置した、ガラスエポキシよりな
る多層基板である。配線パターンの下の絶縁層10を介
して2層目の配線パターン11が設けられ、さらにその
下にも絶縁層10を介し3層目の配線パターン12が設
けられている。
FIG. 3A is a sectional view showing a state immediately before flip-chip mounting. In FIG. 3A, a plurality of wiring patterns are formed of a conductive material on a component mounting surface 3 of a circuit board 2 on which a bare chip IC 1 which is a semiconductor device is mounted. Has an electrode 5 plated with gold. Each wiring pattern is covered with a solder resist 6 except for a part of the electrode 5. Here, the circuit board 2 is a multilayer board made of glass epoxy in which wiring patterns are arranged in a plurality of layers. A second-layer wiring pattern 11 is provided via an insulating layer 10 below the wiring pattern, and a third-layer wiring pattern 12 is further provided thereunder via an insulating layer 10.

【0004】ベアチップIC1には、能動面7にアルミ
等の導電材料で形成された複数の電極が基板の電極に対
応させて配置され、各電極の表面にはバンプ8が形成さ
れている。バンプ8はAuやSn−Pb合金等の金属材
料で形成されている。
In the bare chip IC1, a plurality of electrodes formed of a conductive material such as aluminum are arranged on the active surface 7 in correspondence with the electrodes of the substrate, and bumps 8 are formed on the surface of each electrode. The bump 8 is formed of a metal material such as Au or Sn-Pb alloy.

【0005】ベアチップIC1の能動面を下向きにし
て、加熱・加圧ツール23にてベアチップIC1を吸着
する。その後、そのままの状態で加熱・加圧ツール23
にてベアチップIC1を加熱、加圧し回路基板2の電極
5の部分に押し付け実装する。
The bare chip IC 1 is sucked by the heating / pressing tool 23 with the active surface of the bare chip IC 1 facing downward. Then, the heating / pressing tool 23 is left as it is.
Then, the bare chip IC1 is heated and pressurized, and pressed against the electrode 5 of the circuit board 2 for mounting.

【0006】しかしながら前記のような半導体装置の実
装構造では、半導体装置を実装する導体パターンが形成
された回路基板が、液晶表示パネルのガラス基板のよう
な基板自身の表面平坦性の優れたものには問題はない
が、ガラスエポキシを基材とし、導体パターンが形成さ
れた回路基板に代表されるような、表面の平坦性が確保
できない基板に実装する場合は、バンプ8と電極5の接
合面で問題があった。
However, in the above-described semiconductor device mounting structure, the circuit board on which the conductor pattern for mounting the semiconductor device is formed has a superior surface flatness such as a glass substrate of a liquid crystal display panel. Although there is no problem, when mounting on a substrate that cannot ensure the flatness of the surface, such as a circuit board having a conductive pattern formed on a glass epoxy base material, the bonding surface between the bump 8 and the electrode 5 There was a problem.

【0007】図3(b)は、ベアチップIC1が回路基
板2の電極5に接触した直後の状態を示している。バン
プ8と電極5が、導通している部分と、していない部分
が存在している。
FIG. 3B shows a state immediately after the bare chip IC1 comes into contact with the electrode 5 of the circuit board 2. There are portions where the bumps 8 and the electrodes 5 are conductive, and portions where they are not.

【0008】その後さらに、半導体装置に加熱加圧を加
え、回路基板2への実装が終了した状態を図3(c)に
示すが、ここで回路基板2の部品実装面3は、加熱加圧
により絶縁層10が軟化し電極5が適度に沈み込んでい
る。この絶縁層の沈み込みが、回路基板2の部品実装面
3のうねりを吸収し電極5と配線パターン4の電気的導
通を確保している。つまり、絶縁層の加熱軟化特性が実
装性や電気的品質を大きく左右しているのである。
FIG. 3C shows a state in which the semiconductor device is further heated and pressed to complete the mounting on the circuit board 2, wherein the component mounting surface 3 of the circuit board 2 is heated and pressed. As a result, the insulating layer 10 is softened and the electrode 5 sinks appropriately. The sinking of the insulating layer absorbs the undulation of the component mounting surface 3 of the circuit board 2 and secures electrical conduction between the electrode 5 and the wiring pattern 4. That is, the heat softening characteristic of the insulating layer greatly affects the mountability and the electrical quality.

【0009】図3(d)は絶縁層10が硬すぎる場合の
実装後の断面図を示す。絶縁層が硬すぎると回路基板2
のうねりを吸収できずに回路基板2の部品実装面3の表
面のうねりの山の部分では、バンプ8と電極5の導通が
確保されるが(図面の矢印A部)、うねりの谷の部分で
は導通できない状態(図面の矢印B部)となってしま
う。また、導通不良にはならないものの、回路基板2の
うねりの山の部分の、バンプ8からの局所的な圧力によ
り、ベアチップICが破壊する恐れもある。
FIG. 3D is a cross-sectional view after mounting when the insulating layer 10 is too hard. If the insulating layer is too hard, the circuit board 2
Although the undulation cannot be absorbed, conduction between the bumps 8 and the electrodes 5 is secured at the undulation peaks on the surface of the component mounting surface 3 of the circuit board 2 (arrow A in the drawing), but at the undulation valleys. In such a case, conduction cannot be achieved (arrow B in the drawing). In addition, although the conduction failure does not occur, the bare chip IC may be broken by local pressure from the bumps 8 at the undulation peaks of the circuit board 2.

【0010】一方、絶縁層が軟らか過ぎる場合は、図3
(e)に示す通り、加熱・加圧ツールからの荷重がバン
プ8を介し電極5を押し込み、沈み込みが大きくなり2
層目の配線パターン11とショートしてしまう(図面の
矢印C部)。また、ベアチップIC1の端部と配線パタ
ーンが接触するエッジショートの危険性もある。(図面
の矢印D部)つまり、絶縁層10は適度に沈み込みバン
プ8と電極5の導通を確保しつつ、しかも2層目の配線
パターンとは絶縁性を保つ必要があった。
On the other hand, if the insulating layer is too soft,
As shown in (e), the load from the heating / pressing tool pushes the electrode 5 through the bump 8 and the sinking becomes large.
A short circuit occurs with the wiring pattern 11 of the layer (arrow C in the drawing). In addition, there is a risk of edge short-circuiting where the end of the bare chip IC1 and the wiring pattern are in contact. That is, it is necessary that the insulating layer 10 sinks appropriately to ensure conduction between the bump 8 and the electrode 5 and that the insulating layer 10 be insulated from the wiring pattern of the second layer.

【0011】[0011]

【発明が解決しようとする課題】上述した従来技術は、
絶縁層の特性により実装性が大きく左右されるという欠
点を有していた。つまり、実装時に加熱・加圧ツールよ
りベアチップICのバンプを介して回路基板に加えられ
る荷重に対し、絶縁層が固い場合は、回路基板のうねり
を吸収できずに電極とバンプの導通不良の部分が発生し
てしまう。
The prior art described above is
There is a disadvantage that the mountability is greatly affected by the characteristics of the insulating layer. In other words, if the insulating layer is hard against the load applied to the circuit board via the bumps of the bare chip IC from the heating / pressing tool at the time of mounting, the undulation of the circuit board cannot be absorbed, and the portion of the electrode and the bump that has poor conduction cannot be absorbed. Will occur.

【0012】一方軟らかい場合は、回路基板の層間での
ショートやベアチップICのエッジショートの危険性が
ある。絶縁層は適度に沈み込み、回路基板の部品実装面
のうねりを吸収しベアチップICのバンプと、回路基板
の電極の電気的導通を確保しつつ2層目以降の配線パタ
ーンとの絶縁性を保つ必要があり、絶縁層に何を選定す
るかが非常に重要であった。
On the other hand, if it is soft, there is a risk of short-circuit between layers of the circuit board and edge short-circuit of the bare chip IC. The insulating layer sinks in moderately, absorbs undulations on the component mounting surface of the circuit board, and maintains insulation between the bumps of the bare chip IC and the wiring patterns of the second and subsequent layers while ensuring electrical continuity between the electrodes of the circuit board. It was necessary, and what was selected for the insulating layer was very important.

【0013】電子機器の多機能化に伴い、複数の半導体
装置を1枚の回路基板に高密度に実装されるマルチチッ
プモジュール(以下MCMという)の場合を考えると、
さらに大きな問題がある。あるベアチップICに最適な
絶縁層を選択しても必ずしもサイズやバンプ数の異なる
他のベアチップICに最適とは限らないからである。つ
まり従来技術では、MCMのすべてのベアチップの実装
性を満足する絶縁層を選択する事は困難であった。
Considering the case of a multi-chip module (hereinafter referred to as an MCM) in which a plurality of semiconductor devices are mounted on a single circuit board at a high density as electronic devices become multifunctional,
There is an even bigger problem. This is because even if an insulating layer optimal for a certain bare chip IC is selected, it is not always optimal for another bare chip IC having a different size and a different number of bumps. That is, in the related art, it has been difficult to select an insulating layer that satisfies the mountability of all bare chips of the MCM.

【0014】本発明は上記課題に鑑みてなされたもので
あり、その目的とするところは、回路基板にうねりがあ
ったとしても、安定した回路基板の電極と、ベアチップ
ICのバンプとの電気的接続信頼性を確保できる実装構
造を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to provide an electric connection between a stable electrode of a circuit board and a bump of a bare chip IC even if the circuit board has undulation. An object of the present invention is to provide a mounting structure capable of securing connection reliability.

【0015】[0015]

【課題を解決するための手段】以上のような問題を解決
するために、本発明の半導体装置のバンプ電極形成方法
は、半導体装置のバンプ電極に凹凸を設けることを特徴
とする。
In order to solve the above-mentioned problems, a method for forming a bump electrode of a semiconductor device according to the present invention is characterized in that bump electrodes of the semiconductor device are provided with irregularities.

【0016】請求項1に係る本発明の半導体装置のバン
プ電極形成方法は、半導体装置のバンプ形成工程におい
て、半導体装置のアルミ電極パット上にバンプ電極を形
成した後、前記バンプの電極を凹凸形状に整形する事を
特徴とする。
According to a first aspect of the present invention, there is provided a method for forming a bump electrode of a semiconductor device, comprising: forming a bump electrode on an aluminum electrode pad of the semiconductor device in the bump forming step of the semiconductor device; It is characterized by shaping into.

【0017】また、請求項2に係る本発明の半導体装置
のバンプ電極形成方法は、バンプ電極が金からなること
を特徴とする。
According to a second aspect of the present invention, there is provided a bump electrode forming method for a semiconductor device, wherein the bump electrode is made of gold.

【0018】また、請求項3に係る本発明の半導体装置
のバンプ電極形成方法は、バンプ電極がメッキ法により
形成されたことを特徴とする。
According to a third aspect of the present invention, there is provided a bump electrode forming method for a semiconductor device, wherein the bump electrode is formed by a plating method.

【0019】また、請求項4に係る本発明の半導体装置
のバンプ電極形成方法は、バンプ電極がボールボンディ
ング法により形成されたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a bump electrode forming method for a semiconductor device, wherein the bump electrode is formed by a ball bonding method.

【0020】また、請求項5に係る本発明の半導体装置
のバンプ電極形成方法は、バンプ電極が転写バンプ法に
より形成されたことを特徴とする、請求項1記載の半導
体装置のバンプ電極形成方法。
According to a fifth aspect of the present invention, in the method of forming a bump electrode of a semiconductor device according to the present invention, the bump electrode is formed by a transfer bump method. .

【0021】[0021]

【発明の実施の形態】(1) 第1実施形態 以下図面により、本発明の実施形態を詳述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) First Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

【0022】図1(a)〜(c)は、本発明の実施形態
を実装の工程順に示した断面図である。本実施形態は、
異方性導電膜を用いたガラスエポキシ基板へのフリップ
チップ実装を例に説明する。
FIGS. 1A to 1C are sectional views showing an embodiment of the present invention in the order of mounting steps. In this embodiment,
An example of flip-chip mounting on a glass epoxy substrate using an anisotropic conductive film will be described.

【0023】まず図1(a)において、メッキ法により
バンプ8を形成したベアチップIC1をステージ21の
上に能動面7を上にした状態で搭載する。ここでツール
22はバンプを一括加重して、バンプ上面に凹凸を整形
する加圧ツールである。この加圧ツールの表面には細か
な凹凸が設けられている。この加圧ツール22を下げる
ことによりバンプ8の上面に凹凸9を整形する。ここ
で、凹凸の段差は、異方性導電膜に分散されている、導
電粒子径φ5μmと同じく、5μm程度が望ましい。
First, in FIG. 1A, a bare chip IC 1 on which bumps 8 are formed by a plating method is mounted on a stage 21 with an active surface 7 facing up. Here, the tool 22 is a pressure tool that weights the bumps at once and shapes the bumps on the bumps. Fine irregularities are provided on the surface of the pressing tool. By lowering the pressing tool 22, the unevenness 9 is formed on the upper surface of the bump 8. Here, the step of the unevenness is desirably about 5 μm, like the conductive particle diameter φ5 μm dispersed in the anisotropic conductive film.

【0024】次に図1(b)は、ベアチップIC1を実
装する直前の状態を示す。図1(b)において、前工程
でバンプ8の表面に凹凸9をつけたベアチップIC1の
能動面7を下にしたフェイスダウン状態にして、加熱・
加圧ツール23に吸着する。ここで回路基板2は部品実
装面以外にも配線パターンを有する多層基板である。回
路基板2はガラスエポキシを基材としているので部品実
装面3には、うねり、反りがある。10は絶縁層を示
す。回路基板2の部品実装面3には既に異方性導電膜2
4が仮圧着されている状態を示す。ここで、異方性導電
膜とは、絶縁性樹脂25に導電粒子26が均一分散され
て形成されており、この導電粒子26がバンプ8と電極
5の間に介在し電気的導通を確保するのである。
FIG. 1B shows a state immediately before the bare chip IC 1 is mounted. In FIG. 1 (b), the bare chip IC 1 in which the bumps 8 are provided with irregularities 9 in the previous step is placed in a face-down state with the active surface 7 facing down.
It is adsorbed on the pressure tool 23. Here, the circuit board 2 is a multilayer board having a wiring pattern other than the component mounting surface. Since the circuit board 2 is made of glass epoxy, the component mounting surface 3 has undulation and warpage. Reference numeral 10 denotes an insulating layer. The component mounting surface 3 of the circuit board 2 already has an anisotropic conductive film 2
4 shows a state of being temporarily crimped. Here, the anisotropic conductive film is formed by uniformly dispersing the conductive particles 26 in the insulating resin 25, and the conductive particles 26 are interposed between the bumps 8 and the electrodes 5 to secure electrical conduction. It is.

【0025】次に、ベアチップIC1の能動面7が異方
性導電膜24に向くように設定して異方性導電膜24上
にベアICチップ1を載せ、ベアチップIC1を介し異
方性導電膜24を加圧加熱(180度C、20秒程度)
してベアチップIC1の実装を行う。加熱することによ
り、異方性導電膜24の絶縁性樹脂25が軟化し、加圧
することにより押し広げられ、ベアチップIC1の能動
面7と回路基板2の部品実装面3の間を充填する。ま
た、余った絶縁性樹脂25は、押し出され、ベアチップ
IC1の側面を充填し保護する。
Next, the active surface 7 of the bare chip IC1 is set so as to face the anisotropic conductive film 24, and the bare IC chip 1 is mounted on the anisotropic conductive film 24. 24 is heated under pressure (180 ° C, about 20 seconds)
Then, the bare chip IC1 is mounted. By heating, the insulating resin 25 of the anisotropic conductive film 24 is softened, and is spread out by applying pressure to fill the space between the active surface 7 of the bare chip IC 1 and the component mounting surface 3 of the circuit board 2. The surplus insulating resin 25 is extruded and fills and protects the side surface of the bare chip IC1.

【0026】図1(c)は半導体装置の実装を終了した
状態を示す断面図である。回路基板2の部品実装面3と
ベアチップIC1の能動面7側とは、異方性導電膜24
の絶縁性樹脂26を介して接合される。また、異方性導
電膜24に混在する導電粒子26はバンプ8により回路
基板2の電極5に押圧されるので回路基板2とベアチッ
プIC1とは電気的にも接続される。
FIG. 1C is a sectional view showing a state where the mounting of the semiconductor device has been completed. The component mounting surface 3 of the circuit board 2 and the active surface 7 side of the bare chip IC1 are in contact with the anisotropic conductive film 24.
Are bonded via the insulating resin 26. In addition, the conductive particles 26 mixed in the anisotropic conductive film 24 are pressed against the electrodes 5 of the circuit board 2 by the bumps 8, so that the circuit board 2 and the bare chip IC1 are also electrically connected.

【0027】ここで、バンプ8の表面に整形された凹凸
は電極5に押圧されるが、回路基板のうねりの山の部分
では、バンプ8の凹凸部は大きく塑性変形し、一方うね
りの谷の部分ではバンプ8の塑性変形は少ない。回路基
板2のうねりをバンプ8で吸収するので回路基板2の部
品実装面の電極5と2層目の配線パターン11及び3層
目の配線パターン12の間隔は変らず層間の配線パター
ンのショートは発生しない。
Here, the irregularities formed on the surface of the bump 8 are pressed by the electrode 5, but the irregularities of the bump 8 are largely plastically deformed at the undulation peaks of the circuit board, while the undulation valleys are formed. In portions, the plastic deformation of the bump 8 is small. Since the undulations of the circuit board 2 are absorbed by the bumps 8, the distance between the electrode 5 on the component mounting surface of the circuit board 2 and the wiring patterns 11 and 12 of the second layer does not change, and short-circuiting of the wiring patterns between the layers does not occur. Does not occur.

【0028】つまり、ベアチップICのバンプ8に凹凸
9を設ける事により、絶縁層10の特性によらず安定し
た実装構造が実現できる。
That is, by providing the bumps 8 of the bare chip IC with the irregularities 9, a stable mounting structure can be realized regardless of the characteristics of the insulating layer 10.

【0029】尚、本実施形態は、ベアチップICのバン
プはメッキ法により形成されたものを例に詳述したが、
ボールボンディング法、転写バンプ法いずれの方法で形
成されたバンプにも適用可能なことはいうまでもない。
In the present embodiment, the bumps of the bare chip IC have been described in detail by way of example formed by plating.
It goes without saying that the present invention can be applied to bumps formed by either the ball bonding method or the transfer bump method.

【0030】(2) 第2実施形態 本実施形態は、第1実施形態の変形例である。第1実施
形態では、表面に凹凸のある加圧ツールにて一括してベ
アチップICのバンプ上面に凹凸を整形したのに対し、
本変形例はより大きな凹形状を整形し、より大きなうね
り、反りを有する回路基板にも対応できるバンプ形成方
法を述べる。
(2) Second Embodiment This embodiment is a modification of the first embodiment. In the first embodiment, the bumps of the bare chip IC are collectively shaped with bumps on the upper surface using a pressure tool having bumps on the surface.
This modification describes a bump forming method that shapes a larger concave shape and can cope with a circuit board having a larger undulation and warpage.

【0031】フリップチップ実装工法において、シング
ルポイントボンディングTAB方式が実用化されてい
る。例えば、工業調査会 1994年2月10日発行の
ハイブリッドマイクロエレクトロニクス協会編 「エレ
クトロニクス実装技術 基礎講座 第1巻 総論」に記
載があるが、図2(a)に示す通り、ベアチップIC1
のバンプと回路基板よりでているリード30を、1本づ
つボンディングツール32にて、荷重と超音波を加えな
がら実装していく方式である。
In the flip chip mounting method, a single point bonding TAB method has been put to practical use. For example, as described in the Hybrid Microelectronics Association, published by the Industrial Research Council on February 10, 1994, "Electronic Packaging Technology Fundamental Course, Vol. 1, General", as shown in FIG.
In this method, the bumps and the leads 30 formed from the circuit board are mounted one by one by a bonding tool 32 while applying a load and ultrasonic waves.

【0032】本実施形態では、このシングルポイントボ
ンディングTAB方式の設備を用い、ベアチップICの
バンプに凹形状を整形する。
In the present embodiment, a concave shape is formed in the bump of the bare chip IC using the equipment of the single point bonding TAB method.

【0033】図2(b)において、加熱台31に載せた
ベアチップIC1のバンプ8に、ボンディングツール3
2より荷重と超音波を加え、図2(c)に示すようなバ
ンプ中央部が凹となる形状を整形する。第1実施形態で
述べた凹凸の形成方法は、一括荷重による方法のため、
整形するバンプ数が多い場合は総荷重の高い大がかりな
設備が必要となる。一方、本実施形態の方法は、バンプ
ごとに凹形状を形成するため、より大きな凹凸を整形で
き、しかも低荷重であるため、ベアチップICにより少
ないダメージで形成できる。そして、より大きな凹形状
を整形してあるため、、より大きなうねり、反りを有す
る回路基板にも対応できる。
In FIG. 2B, the bonding tool 3 is attached to the bump 8 of the bare chip IC 1 placed on the heating table 31.
A load and an ultrasonic wave are applied from Step 2 to shape the concave portion of the bump as shown in FIG. Since the method of forming unevenness described in the first embodiment is a method using a collective load,
If the number of bumps to be shaped is large, large-scale equipment with a high total load is required. On the other hand, in the method of the present embodiment, since a concave shape is formed for each bump, larger irregularities can be shaped, and since the load is low, the bare chip IC can be formed with less damage. Since the larger concave shape is shaped, it is possible to cope with a circuit board having larger undulation and warpage.

【0034】[0034]

【発明の効果】以上のように、本発明の半導体装置のバ
ンプ電極形成方法によれば、回路基板のうねりを絶縁層
で吸収するのではなく、ベアチップICのバンプに整形
した凹凸を塑性変形させることにより吸収させる為、安
定した実装品質を実現し、信頼性の高い半導体装置の実
装構造を提供でき、極めて実現性が高い物である。
As described above, according to the bump electrode forming method of the semiconductor device of the present invention, the undulation of the circuit board is not absorbed by the insulating layer, but the bumps of the bare chip IC are plastically deformed. As a result, stable mounting quality can be achieved, and a highly reliable semiconductor device mounting structure can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す実装構造の断面図
を示す。
FIG. 1 is a sectional view of a mounting structure according to a first embodiment of the present invention.

【図2】本発明の第2実施形態を示す実装構造の断面図
を示す。
FIG. 2 is a sectional view of a mounting structure according to a second embodiment of the present invention.

【図3】従来技術の実装構造の断面図を示す。FIG. 3 shows a cross-sectional view of a conventional mounting structure.

【符号の説明】[Explanation of symbols]

1…ベアチップIC 2…回路基板 3…部品実装面 5…電極 6…ソルダーレジスト 7…能動面 8…バンプ 9…凹凸 10…絶縁層 11…2層目の配線パターン 12…3層目の配線パターン 21…ステージ 22…加圧ツール 23…加熱・加圧ツール 24…異方性導電膜 25…絶縁性樹脂 26…導電粒子 30…リード 31…加熱台 32…ボンディングツール DESCRIPTION OF SYMBOLS 1 ... Bare chip IC 2 ... Circuit board 3 ... Component mounting surface 5 ... Electrode 6 ... Solder resist 7 ... Active surface 8 ... Bump 9 ... Unevenness 10 ... Insulating layer 11 ... Second layer wiring pattern 12 ... 3rd layer wiring pattern DESCRIPTION OF SYMBOLS 21 ... Stage 22 ... Pressure tool 23 ... Heating / pressure tool 24 ... Anisotropic conductive film 25 ... Insulating resin 26 ... Conductive particles 30 ... Lead 31 ... Heating table 32 ... Bonding tool

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体装置のバンプ形成工程において、半
導体装置のアルミ電極パット上にバンプ電極を形成した
後、前記バンプの電極を凹凸形状に整形する事を特徴と
する半導体装置のバンプ電極形成方法。
1. A bump electrode forming method for a semiconductor device, comprising: forming a bump electrode on an aluminum electrode pad of the semiconductor device in a bump forming step of the semiconductor device, and then shaping the bump electrode into an uneven shape. .
【請求項2】バンプ電極が金からなることを特徴とす
る、請求項1記載の半導体装置のバンプ電極形成方法。
2. The method according to claim 1, wherein the bump electrode is made of gold.
【請求項3】バンプ電極がメッキ法により形成されたこ
とを特徴とする、請求項1記載の半導体装置のバンプ電
極形成方法。
3. The method according to claim 1, wherein the bump electrode is formed by a plating method.
【請求項4】バンプ電極がボールボンディング法により
形成されたことを特徴とする、請求項1記載の半導体装
置のバンプ電極形成方法。
4. The method according to claim 1, wherein the bump electrodes are formed by a ball bonding method.
【請求項5】バンプ電極が転写バンプ法により形成され
たことを特徴とする、請求項1記載の半導体装置のバン
プ電極形成方法。
5. The method according to claim 1, wherein the bump electrode is formed by a transfer bump method.
JP11032944A 1999-02-10 1999-02-10 Method for forming bump electrode of semiconductor device Pending JP2000232121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11032944A JP2000232121A (en) 1999-02-10 1999-02-10 Method for forming bump electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11032944A JP2000232121A (en) 1999-02-10 1999-02-10 Method for forming bump electrode of semiconductor device

Publications (1)

Publication Number Publication Date
JP2000232121A true JP2000232121A (en) 2000-08-22

Family

ID=12373072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11032944A Pending JP2000232121A (en) 1999-02-10 1999-02-10 Method for forming bump electrode of semiconductor device

Country Status (1)

Country Link
JP (1) JP2000232121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277733A (en) * 2007-04-06 2008-11-13 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277733A (en) * 2007-04-06 2008-11-13 Hitachi Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US6985362B2 (en) Printed circuit board and electronic package using same
JP4023159B2 (en) Manufacturing method of semiconductor device and manufacturing method of laminated semiconductor device
JP3633559B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP3822040B2 (en) Electronic device and manufacturing method thereof
JP3994262B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
US6722028B2 (en) Method of making electronic device
US6081038A (en) Semiconductor chip package structure
JP2738568B2 (en) Semiconductor chip module
JP2002368188A (en) Semiconductor device and method for manufacturing the same
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
US6396155B1 (en) Semiconductor device and method of producing the same
JP2000277649A (en) Semiconductor and manufacture of the same
JP3981817B2 (en) Manufacturing method of semiconductor device
JP3582513B2 (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
KR101440340B1 (en) Supporting device and method for manufacturing semiconductor package using the same
JP2000232121A (en) Method for forming bump electrode of semiconductor device
JP2002026073A (en) Semiconductor device and its manufacturing method
JPH11163054A (en) Structure of semiconductor device and its manufacture
KR20040037561A (en) Semiconductor package
JPH10112472A (en) Semiconductor device and its manufacture
JPH10233417A (en) Semiconductor device and its manufacture
JP3397045B2 (en) Semiconductor device and manufacturing method thereof
JP3337922B2 (en) Semiconductor device and manufacturing method thereof
JPH11204572A (en) Mounting structure of semiconductor device and manufacture thereof
JP2000252323A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050118