JP2000231918A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000231918A
JP2000231918A JP11349537A JP34953799A JP2000231918A JP 2000231918 A JP2000231918 A JP 2000231918A JP 11349537 A JP11349537 A JP 11349537A JP 34953799 A JP34953799 A JP 34953799A JP 2000231918 A JP2000231918 A JP 2000231918A
Authority
JP
Japan
Prior art keywords
battery
electrode
current collector
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11349537A
Other languages
Japanese (ja)
Other versions
JP3806562B2 (en
Inventor
Atsushi Yanai
敦志 柳井
Katsuisa Yanagida
勝功 柳田
Takeshi Maeda
丈志 前田
Atsuhiro Funabashi
淳浩 船橋
Toshiyuki Noma
俊之 能間
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34953799A priority Critical patent/JP3806562B2/en
Publication of JP2000231918A publication Critical patent/JP2000231918A/en
Application granted granted Critical
Publication of JP3806562B2 publication Critical patent/JP3806562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent current exceeding a predetermined value from being continuously generated and to provide high energy density in a nonaqueous electrolyte secondary battery wherein a wound electrode body is housed in a battery can, and positive and negative electrodes constituting the wound electrode body are coated with electrode materials on the surfaces of band-like collectors. SOLUTION: At least one collector of positive and negative electrodes is constituted of a plurality of collector pieces 42 arranged in one direction and a PTC element 5 coupling adjacent collector pieces 42 each other. In this embodiment, at least one of the positive and negative electrodes is interposed between the opposit surfaces of the non-coated part of the collector and the base end part of a collector tab through the PTC element 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池缶の内部に発
電要素となる電極体を収納して構成される非水電解液二
次電池に関し、特に、所定値を越える電流が発生したと
きに速やかにその電流を抑制することが出来る非水電解
液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a battery can containing an electrode body serving as a power generating element, and more particularly to a non-aqueous electrolyte secondary battery when a current exceeding a predetermined value is generated. The present invention relates to a non-aqueous electrolyte secondary battery capable of rapidly suppressing the current.

【0002】[0002]

【従来の技術】近年、電気自動車やハイブリッド車の電
源として、大容量化、高エネルギー密度化の可能なリチ
ウム二次電池が注目されている。例えば図4及び図5に
示す円筒型リチウム二次電池は、筒体(11)の両端部に蓋
体(12)(12)を溶接固定してなる円筒状の電池缶(1)の内
部に、巻き取り電極体(2)を収容して構成されている。
両蓋体(12)(12)には、正負一対の電極端子機構(9)(9)
が取り付けられており、巻き取り電極体(2)と両電極端
子機構(9)(9)とが、複数本の集電タブ(3)により互い
に接続されて、巻き取り電極体(2)が発生する電力を一
対の電極端子機構(9)(9)から外部に取り出すことが可
能となっている。又、蓋体(12)には安全弁(13)が取り付
けられている。
2. Description of the Related Art In recent years, lithium secondary batteries capable of increasing capacity and increasing energy density have attracted attention as power sources for electric vehicles and hybrid vehicles. For example, the cylindrical lithium secondary battery shown in FIGS. 4 and 5 has a cylindrical battery can (1) formed by welding and fixing lids (12) and (12) to both ends of a cylindrical body (11). , And accommodates the wound electrode body (2).
Both lids (12) and (12) have a pair of positive and negative electrode terminal mechanisms (9) (9)
Is attached, and the winding electrode body (2) and the two electrode terminal mechanisms (9) and (9) are connected to each other by a plurality of current collecting tabs (3), so that the winding electrode body (2) is The generated power can be taken out from the pair of electrode terminal mechanisms (9) (9). Further, a safety valve (13) is attached to the lid (12).

【0003】巻き取り電極体(2)は、図6に示す如く、
リチウム複合酸化物を含む正極(23)と炭素材料を含む負
極(21)の間に、非水電解液が含浸されたセパレータ(22)
を介在させて、これらを渦巻き状に巻回して構成されて
いる。巻き取り電極体(2)の正極(23)及び負極(21)から
は夫々複数本の集電タブ(3)が引き出され、極性が同じ
複数本の集電タブ(3)の先端部(31)が、図5の如く1つ
の電極端子機構(9)に接続されている。尚、図5におい
ては、便宜上、一部の集電タブの先端部が電極端子機構
(9)に接続されている状態のみを示し、他の集電タブに
ついては、電極端子機構(9)に接続された先端部分の図
示を省略している。
[0003] As shown in FIG.
A separator (22) impregnated with a non-aqueous electrolyte between a positive electrode (23) containing a lithium composite oxide and a negative electrode (21) containing a carbon material
And these are spirally wound. A plurality of current collecting tabs (3) are drawn out from the positive electrode (23) and the negative electrode (21) of the winding electrode body (2), respectively. ) Are connected to one electrode terminal mechanism (9) as shown in FIG. In FIG. 5, for the sake of convenience, the tip of a part of the current collecting tabs is connected to the electrode terminal mechanism.
Only the state connected to (9) is shown, and for the other current collecting tabs, the illustration of the tip portion connected to the electrode terminal mechanism (9) is omitted.

【0004】電極端子機構(9)は、電池缶(1)の蓋体(1
2)を貫通して取り付けられたネジ部材(91)を具え、該ネ
ジ部材(91)の基端部には鍔部(92)が形成されている。蓋
体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋
体(12)と締結部材(91)の間の電気的絶縁性とシール性が
保たれている。ネジ部材(91)には、筒体(11)の外側から
ワッシャ(94)が嵌められると共に、第1ナット(95)及び
第2ナット(96)が螺合しており、第1ナット(95)を締め
付けて、ネジ部材(91)の鍔部(92)とワッシャ(94)によっ
て絶縁パッキング(93)を挟圧し、シール性を高めてい
る。前記複数本の集電タブ(3)の先端部(31)は、ネジ部
材(91)の鍔部(92)に、レーザ溶接や超音波溶接によって
固定されている。
The electrode terminal mechanism (9) is provided with a lid (1) of the battery can (1).
The screw member (91) has a flange (92) formed at the base end of the screw member (91). An insulating packing (93) is attached to the through-hole of the lid (12), so that electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted into the screw member (91) from the outside of the cylindrical body (11), and a first nut (95) and a second nut (96) are screwed into the screw member (91). ) Is tightened, and the insulating packing (93) is clamped by the flange (92) of the screw member (91) and the washer (94) to enhance the sealing performance. The tips (31) of the plurality of current collecting tabs (3) are fixed to the flange (92) of the screw member (91) by laser welding or ultrasonic welding.

【0005】巻取り電極体(2)の正極(23)及び負極(21)
に集電タブ(3)を接続するための構造としては、各電極
を構成する帯状の集電体の表面に、電極材料の塗布され
ている塗工部と電極材料の塗布されていない非塗工部と
を形成し、該非塗工部に集電タブの基端部をレーザ溶接
や超音波溶接等によって固定する構造が知られている
(特開平6-267528[H01M2/26])。
The positive electrode (23) and the negative electrode (21) of the wound electrode body (2)
As a structure for connecting the current collecting tab (3) to the surface, the surface of the strip-shaped current collector constituting each electrode is coated on the coated portion where the electrode material is coated and the uncoated portion where the electrode material is not coated. There is known a structure in which a base portion of a current collection tab is fixed to the uncoated portion by laser welding, ultrasonic welding, or the like.
(JP-A-6-267528 [H01M2 / 26]).

【0006】ところで、上述の如き非水電解液二次電池
においては、電池内部でショート等が発生すると、大電
流が流れる虞れがあるため、図7に示す如く、例えば正
極(8)として、集電体(81)の両面にそれぞれPTC素子
層(82)を介して電極材料(83)を配置した電極構造が提案
されている(特開平7-220755号[H01M10/38])。PTC
素子層(82)を構成しているPTC素子は、正の抵抗温度
係数を有する素子であって、所定値を越える電流が流れ
ると、その電気抵抗値が急激に増大して、電流抑制効果
を発揮するものである。該二次電池によれば、電池内部
でショート等が発生しても、所定値を越える電流が継続
して流れることはない。
In the above-mentioned non-aqueous electrolyte secondary battery, when a short circuit or the like occurs in the battery, a large current may flow. For example, as shown in FIG. There has been proposed an electrode structure in which an electrode material (83) is disposed on both surfaces of a current collector (81) via PTC element layers (82), respectively (Japanese Patent Laid-Open No. 7-220755 [H01M10 / 38]). PTC
The PTC element constituting the element layer (82) is an element having a positive temperature coefficient of resistance, and when a current exceeding a predetermined value flows, its electric resistance value sharply increases, and a current suppressing effect is obtained. To demonstrate. According to the secondary battery, even if a short circuit or the like occurs inside the battery, a current exceeding a predetermined value does not continuously flow.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図7に
示すPTC素子層(82)を具えた従来の非水電解液二次電
池においては、集電体(81)と電極材料(83)の間にPTC
素子層(82)が介在しているため、電池缶の単位容積当た
りの電極材料(83)の量が、PTC素子層(82)を具えない
電池に比べて、PTC素子層(82)の容積分だけ少なくな
り、この結果、電池缶の単位容積当たりの放電容量、即
ちエネルギー密度が大きく低下する問題があった。
However, in the conventional non-aqueous electrolyte secondary battery provided with the PTC element layer (82) shown in FIG. 7, the distance between the current collector (81) and the electrode material (83) is increased. To PTC
Since the element layer (82) is interposed, the amount of the electrode material (83) per unit volume of the battery can is smaller than that of the battery without the PTC element layer (82). As a result, there is a problem that the discharge capacity per unit volume of the battery can, that is, the energy density is greatly reduced.

【0008】そこで本発明の目的は、所定値を越える電
流の継続的な発生を阻止すること出来ると共に、高いエ
ネルギー密度を実現することが出来る非水電解液二次電
池を提供することである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of preventing continuous generation of a current exceeding a predetermined value and realizing a high energy density.

【0009】[0009]

【課題を解決する為の手段】本発明に係る非水電解液二
次電池において、電池缶(1)に収容された電極体(2)を
構成する正極及び負極の少なくとも何れか一方の電極
は、その集電体が、一方向に沿って配列された複数の集
電体片(42)と、隣接する集電体片(42)どうしを互いに連
結するPTC素子(5)とによって構成されていることを
特徴とする。
In the nonaqueous electrolyte secondary battery according to the present invention, at least one of the positive electrode and the negative electrode constituting the electrode body (2) housed in the battery can (1) is The current collector is constituted by a plurality of current collector pieces (42) arranged in one direction and a PTC element (5) for connecting adjacent current collector pieces (42) to each other. It is characterized by being.

【0010】上記本発明の非水電解液二次電池において
は、複数の集電体片(42)の間にPTC素子(5)を介在さ
せる構造を採用しているので、PTC素子(5)は、集電
体片(42)どうしを連結するのに必要な最小限の長さに形
成することが出来、これによって、電池缶(1)の内部で
PTC素子(5)が占める容積は、従来の如く集電体と電
極材料の間にPTC素子層を介在させる構成に比べて、
大幅に減少する。この結果、電極材料の量が従来よりも
増加して、エネルギー密度は、PTC素子を具えない電
池と同等の高い値となる。
The non-aqueous electrolyte secondary battery according to the present invention employs a structure in which the PTC element (5) is interposed between the plurality of current collector pieces (42). Can be formed to the minimum length necessary to connect the current collector pieces (42), so that the volume occupied by the PTC element (5) inside the battery can (1) is: Compared to a conventional configuration in which a PTC element layer is interposed between a current collector and an electrode material,
Dramatically reduced. As a result, the amount of the electrode material increases as compared with the conventional case, and the energy density becomes a high value equivalent to that of a battery having no PTC element.

【0011】具体的構成においては、互いに連結すべき
一対の集電体片(42)(42)の端部が、前記PTC素子(5)
を間に挟んで上下に重ね合わされ、PTC素子(5)の両
面に接合されている。該具体的構成によれば、PTC素
子(5)と集電体片(42)の間の接合面積を十分に大きくと
ることが出来、これによって集電体片(42)どうしの連結
が強固なものとなる。
In a specific configuration, the ends of the pair of current collector pieces (42) to be connected to each other are connected to the PTC element (5).
Are sandwiched between the upper and lower sides, and are joined to both surfaces of the PTC element (5). According to this specific configuration, the junction area between the PTC element (5) and the current collector piece (42) can be made sufficiently large, and thereby the connection between the current collector pieces (42) is strong. It will be.

【0012】又、集電体片(42)の枚数A、電極体(2)の
巻き取り方向に沿う電極の全長B及びPTC素子(5)の
長さCの間には、 A×C/B<0.1 の関係がなりたつ。後述の実験結果によって実証する様
に、上記関係を満足することによって、放電容量は従来
よりも大幅に増大する。
The number A of the current collector pieces 42, the total length B of the electrodes along the winding direction of the electrode body 2 and the length C of the PTC element 5 are: A × C / The relation of B <0.1 has been established. As demonstrated by the experimental results described later, by satisfying the above relationship, the discharge capacity is significantly increased as compared with the conventional case.

【0013】又、本発明に係る非水電解液二次電池にお
いて、電池缶(1)に収容された電極体(2)を構成する正
極及び負極はそれぞれ、帯状の集電体(61)の表面に、電
極材料(62)の塗布されている塗工部と電極材料(62)の塗
布されていない非塗工部とを形成して構成され、該非塗
工部に集電タブ(3)の基端部が接続され、該集電タブ
(3)の先端部は電極端子機構(9)に接続されている。そ
して、正極及び負極の少なくとも何れか一方は、前記集
電体(61)の非塗工部と集電タブ(3)の基端部との対向面
間にPTC素子(7)を介在させて構成されている。
In the non-aqueous electrolyte secondary battery according to the present invention, the positive electrode and the negative electrode constituting the electrode body (2) housed in the battery can (1) are each formed of a strip-shaped current collector (61). On the surface, a coated portion to which the electrode material (62) is applied and a non-coated portion to which the electrode material (62) is not formed are formed, and the current collecting tab (3) is formed on the non-coated portion. Is connected to the current collecting tab
The tip of (3) is connected to the electrode terminal mechanism (9). At least one of the positive electrode and the negative electrode is provided with a PTC element (7) interposed between an uncoated portion of the current collector (61) and a facing surface of a base end of the current collecting tab (3). It is configured.

【0014】上記本発明の非水電解液二次電池によれ
ば、集電体(61)の非塗工部と集電タブ(3)の間にPTC
素子(7)を介在させる構造を採用しているので、PTC
素子(7)は、集電タブ(3)の幅と同等の長さに形成する
ことが出来、これによって、電池缶(1)の内部でPTC
素子(7)が占める容積は、従来の如く集電体と電極材料
の間にPTC素子層を介在させる構成に比べて、大幅に
減少する。この結果、電極材料の量が従来よりも増加し
て、エネルギー密度は、PTC素子を具えない電池と同
等の高い値となる。
According to the non-aqueous electrolyte secondary battery of the present invention, the PTC is provided between the uncoated portion of the current collector (61) and the current collecting tab (3).
Since the structure of interposing the element (7) is adopted, PTC
The element (7) can be formed to have a length equal to the width of the current collecting tab (3), so that the PTC can be formed inside the battery can (1).
The volume occupied by the element (7) is greatly reduced as compared with a conventional configuration in which a PTC element layer is interposed between a current collector and an electrode material. As a result, the amount of the electrode material increases as compared with the conventional case, and the energy density becomes a high value equivalent to that of a battery having no PTC element.

【0015】具体的構成において、PTC素子(7)の厚
さは10μm乃至500μmである。後述の実験結果に
よって実証する様に、PTC素子(7)の厚さを上記範囲
内に形成することによって、充分な電流抑制効果が維持
されると共に、放電容量は従来よりも増大する。
In a specific configuration, the thickness of the PTC element (7) is 10 μm to 500 μm. As demonstrated by the experimental results described later, by forming the thickness of the PTC element (7) within the above range, a sufficient current suppressing effect is maintained and the discharge capacity is increased as compared with the conventional case.

【0016】[0016]

【発明の効果】本発明に係る非水電解液二次電池によれ
ば、所定値を越える継続的な電流の発生を阻止すること
が出来ると共に、高いエネルギー密度を実現することが
出来る。
According to the non-aqueous electrolyte secondary battery according to the present invention, it is possible to prevent continuous generation of current exceeding a predetermined value and to realize high energy density.

【0017】[0017]

【発明の実施の形態】以下、本発明を円筒型リチウム二
次電池に実施した形態につき、図面に沿って具体的に説
明する。本発明に係る二次電池においては、正極にのみ
PTC素子による電流抑制機能を与える構成の他、正極
及び負極の両方、若しくは負極にのみ、同様の電流抑制
機能を与える構成を採用することも可能である。尚、本
発明に係る二次電池は、巻取り電極体(2)の具体的構成
を除いて、他の構成については図4及び図5に示す電池
と同一であり、同一の構成については説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention applied to a cylindrical lithium secondary battery will be specifically described below with reference to the drawings. In the secondary battery according to the present invention, in addition to the configuration in which the PTC element provides the current suppression function only to the positive electrode, a configuration in which the same current suppression function is provided only to both the positive electrode and the negative electrode or only the negative electrode can be employed. It is. The secondary battery according to the present invention is the same as the batteries shown in FIGS. 4 and 5 except for the specific configuration of the wound electrode body (2), and the same configuration will be described. Is omitted.

【0018】[0018]

【第1実施例】本実施例の二次電池においては、図1に
示す如く、正極(4)が、巻取り電極体の巻き取り方向に
配列された複数の集電体片(42)と、各集電体片(42)の両
面に塗布された電極材料(43)と、隣接する集電体片(42)
どうしを互いに連結するPTC素子(5)とから構成され
ており、集電体片(42)の表面には、電極材料(43)の塗布
された塗工部と、電極材料(43)の塗布されていない非塗
工部が形成されて、該非塗工部に集電タブ(3)の基端部
が接合されている。
First Embodiment In the secondary battery of the present embodiment, as shown in FIG. 1, a positive electrode (4) is provided with a plurality of current collector pieces (42) arranged in the winding direction of a winding electrode body. The electrode material (43) applied to both sides of each current collector piece (42), and the adjacent current collector pieces (42)
It comprises a PTC element (5) for connecting the parts to each other, and a coating part coated with an electrode material (43) and a coating part coated with an electrode material (43) on the surface of the current collector piece (42). An uncoated portion is formed, and the base end of the current collecting tab (3) is joined to the uncoated portion.

【0019】ここで隣接する一対の集電体片(42)(42)
は、図1中に拡大して示す様に、PTC素子(5)によっ
て互いに連結されるべき端部が、PTC素子(5)を間に
挟んで上下に重ね合わされ、PTC素子(5)の両面に導
電性接着剤(図示省略)を用いて接合されている。
Here, a pair of adjacent collector pieces (42) (42)
As shown in the enlarged view of FIG. 1, the ends to be connected to each other by the PTC element (5) are vertically overlapped with the PTC element (5) interposed therebetween. Are bonded using a conductive adhesive (not shown).

【0020】上記正極(4)の製造工程においては、図2
に示す如く、複数枚の集電体片(42)の表面にそれぞれ、
集電タブ(3)の接合領域とPTC素子(5)の接合領域を
除いて、電極材料(43)を塗布し、中央部に、集電タブ
(3)を接合すべき第1の非塗工部(44)を形成すると共
に、両端部に、PTC素子(5)を接合すべき第2の非塗
工部(45)(45)を形成する。これによって複数枚の正極片
が得られることになる。次に、隣接する集電体片(42)(4
2)の対応する第2非塗工部(45)(45)の間にPTC素子
(5)を挟んで、各第2非塗工部(45)とPTC素子(5)と
を導電性接着剤を用いて接合し、複数枚の集電体片(42)
を互いに連結する。その後、各集電体片(42)の第1非塗
工部(44)に集電タブ(3)の基端部を重ね、レーザ溶接、
超音波溶接などによって集電タブ(3)を接合する。
In the manufacturing process of the positive electrode (4), FIG.
As shown in the figure, on the surface of a plurality of current collector pieces (42), respectively,
The electrode material (43) is applied except for the joining area of the current collecting tab (3) and the joining area of the PTC element (5).
A first non-coated portion (44) to be joined with (3) is formed, and second non-coated portions (45) and (45) to be joined with the PTC element (5) are formed at both ends. I do. As a result, a plurality of positive electrode pieces are obtained. Next, the adjacent current collector pieces (42) (4
2) PTC element between the corresponding second uncoated parts (45) and (45)
The second non-coated portion (45) and the PTC element (5) are joined with a conductive adhesive across the (5), and a plurality of current collector pieces (42)
Are connected to each other. Thereafter, the base end of the current collecting tab (3) is overlapped on the first uncoated portion (44) of each current collector piece (42), and laser welding is performed.
The current collecting tab (3) is joined by ultrasonic welding or the like.

【0021】この様にして作製された正極(4)を用いる
以外は従来と同様にして、図6に示す如き巻取り電極体
(2)を作製し、該巻取り電極体(2)を図5に示す如く電
池缶(1)に収容して、円筒型リチウム二次電池を完成す
る。
A wound electrode body as shown in FIG. 6 was prepared in the same manner as in the prior art except that the positive electrode (4) thus produced was used.
(2) is prepared, and the wound electrode body (2) is accommodated in a battery can (1) as shown in FIG. 5 to complete a cylindrical lithium secondary battery.

【0022】尚、PTC素子(5)としては、結晶性合成
樹脂のシラン化合物系架橋剤による架橋化物に導電性無
機充填剤を分散させたものを採用することが出来る。こ
こで、合成樹脂としては、高密度ポリエチレン、ポリプ
ロピレン、ナイロン、ポリアセタール、ポリ塩化ビニ
ル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリ
四フッ化エチレン、ポリエチレンテレフタレート等を用
い、また導電性無機充填剤としては、カーボンブラッ
ク、TiC、BC、CrC、ZrC、TiB、ZrN、
TiN、Al、Cu等の粉体を用い、シラン化合物系架
橋剤としては、ビニルシラン、エポキシシラン、アミノ
シラン、メルカプトシラン等を用いることが出来る。
Incidentally, as the PTC element (5), an element obtained by dispersing a conductive inorganic filler in a crosslinked product of a crystalline synthetic resin with a silane compound based crosslinking agent can be employed. Here, as the synthetic resin, high-density polyethylene, polypropylene, nylon, polyacetal, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene terephthalate, etc. are used, and as the conductive inorganic filler, , Carbon black, TiC, BC, CrC, ZrC, TiB, ZrN,
Powders such as TiN, Al, and Cu can be used, and vinylsilane, epoxysilane, aminosilane, mercaptosilane, and the like can be used as the silane compound-based crosslinking agent.

【0023】次に、上記第1実施例の円筒型リチウム二
次電池の性能を確認するために行なった実験の内容及び
結果について説明する。
Next, the contents and results of an experiment conducted to confirm the performance of the cylindrical lithium secondary battery of the first embodiment will be described.

【0024】実験1 次の様にして本発明電池A及び比較電池Xを作製し、電
池特性を測定した。 [正極の作製]正極活物質(LiCoO)、導電剤(カ
ーボン粉末)及び結着剤(フッ素樹脂粉末)からなる正極
合剤を、正極集電体としてのアルミニウム箔(厚さ20
μm)の両面にドクターブレード法により塗布し、15
0℃で2時間の真空乾燥を施して、正極片(幅50m
m、長さ500mm、非塗工部長さ15mm)を3枚作
製した。
[0024]Experiment 1  A battery A of the present invention and a comparative battery X were prepared in the following manner.
Pond characteristics were measured. [Preparation of positive electrode] Positive electrode active material (LiCoO2), Conductive agent (
Positive electrode consisting of carbon powder) and a binder (fluororesin powder)
The mixture was used as an aluminum foil (thickness 20) as a positive electrode current collector.
μm) on both sides by the doctor blade method.
After vacuum drying for 2 hours at 0 ° C., a positive electrode piece (width 50 m
m, length 500mm, uncoated part length 15mm)
Made.

【0025】[負極の作製]負極材料(黒鉛粉末)と結着
剤(フッ素樹脂粉末)からなる負極合剤を、負極集電体と
しての銅箔(厚さ20μm)の両面にドクターブレード法
により塗布し、150℃で2時間の真空乾燥を施して、
負極(幅55mm、長さ1600mm、非塗工部長さ5
mm)を作製した。
[Preparation of Negative Electrode] A negative electrode mixture comprising a negative electrode material (graphite powder) and a binder (fluororesin powder) was applied to both surfaces of a copper foil (thickness: 20 μm) as a negative electrode current collector by a doctor blade method. Apply, apply vacuum drying at 150 ° C for 2 hours,
Negative electrode (width 55 mm, length 1600 mm, uncoated part length 5
mm).

【0026】[PTC素子の作製]高密度ポリエチレン
(60重量%)に、カーボンブラック(40重量%)及びシ
ランカップリング剤(4重量部)を混練した後、これをシ
ート状に形成し、幅5cm、長さ15mmに切断し、P
TC素子を作製した。そして、PTC素子を正極の非塗
工部に導電性接着剤によって接合し、上記3枚の正極片
を互いに連結した。
[Production of PTC element] High density polyethylene
(60% by weight), carbon black (40% by weight) and a silane coupling agent (4 parts by weight) are kneaded, then formed into a sheet, cut into a width of 5 cm and a length of 15 mm.
A TC device was manufactured. Then, the PTC element was joined to the non-coated portion of the positive electrode by a conductive adhesive, and the three positive electrode pieces were connected to each other.

【0027】[電解液の調製]エチレンカーボネートと
ジエチルカーボネートの混合溶媒にLiPF6溶質を溶
かし、電解液を調製した。
[Preparation of Electrolyte] An LiPF 6 solute was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate to prepare an electrolyte.

【0028】[電池の組立]正極及び負極をセパレータ
を介して渦巻き状に巻き取り、巻取り電極体を作製し
た。尚、セパレータとしては、イオン透過性を有するポ
リプロピレン製の微多孔膜を用いた。そして、巻取り電
極体を電池缶に挿入して、正極タブを電池缶の正極端子
に溶接すると共に、負極タブを電池缶の負極端子に溶接
し、更に電解液を注入した後、電池缶を封口して、本発
明電池Aを作製した。又、正極集電体と電極材料の間に
PTC素子層(厚さ20μm)を挟み込んだ幅50mm、
長さ1500mmの正極を用いること以外は上記本発明
電池Aと同様にして、比較電池Xを作製した。
[Assembly of Battery] A positive electrode and a negative electrode were spirally wound through a separator to prepare a wound electrode body. As the separator, a microporous membrane made of polypropylene having ion permeability was used. Then, the wound electrode body is inserted into the battery can, the positive electrode tab is welded to the positive terminal of the battery can, the negative electrode tab is welded to the negative terminal of the battery can, and after further injecting the electrolyte, the battery can is removed. After sealing, Battery A of the present invention was produced. In addition, a width of 50 mm with a PTC element layer (thickness of 20 μm) sandwiched between the positive electrode current collector and the electrode material,
A comparative battery X was prepared in the same manner as the battery A of the present invention except that a positive electrode having a length of 1500 mm was used.

【0029】[電池特性の測定]充電電流50mA、充
電終止電圧4.1V、放電電流50mA、放電終止電圧
2.7Vの条件で、充放電試験を行ない、放電容量を測
定した。
[Measurement of Battery Characteristics] A charge / discharge test was performed under the conditions of a charge current of 50 mA, a charge end voltage of 4.1 V, a discharge current of 50 mA, and a discharge end voltage of 2.7 V, and a discharge capacity was measured.

【0030】従来電池と本発明電池の放電容量の比較を
行なった結果を表1に示す。
Table 1 shows the results of comparing the discharge capacities of the conventional battery and the battery of the present invention.

【表1】 [Table 1]

【0031】表1の結果から明らかな様に、本発明電池
Aは、比較電池Xに比べて、放電容量が大きく、電池特
性が良好である。これは、本発明電池では、複数に分割
した電極片をPTC素子により連結する構造が採用され
ているために、比較電池よりもPTC素子の容積が減少
し、その減少分だけ電極材料の量が増大して、エネルギ
ー密度が高くなったためと考えられる。
As is clear from the results in Table 1, the battery A of the present invention has a larger discharge capacity and better battery characteristics than the comparative battery X. This is because, in the battery of the present invention, the structure in which the plurality of divided electrode pieces are connected by the PTC element is adopted, so that the volume of the PTC element is smaller than that of the comparative battery, and the amount of the electrode material is reduced by the reduced amount. It is considered that the energy density increased and the energy density increased.

【0032】実験2 次に、正極を構成する集電体片の枚数A、正極の全長
B、及びPTC素子の長さCの関係について検討するべ
く、次の本発明電池B1〜B6を作製した。即ち、長さ
75cmの集電体片2枚を正極に用いること以外は本発
明電池Aと同様にして、本発明電池B1を作製した。長
さ30cmの集電体片5枚を正極に用いること以外は本
発明電池Aと同様にして、本発明電池B2を作製した。
長さ15cmの集電体片10枚を正極に用いること以外
は本発明電池Aと同様にして、本発明電池B3を作製し
た。長さ1cmのPTC素子を用いること以外は本発明
電池Aと同様にして、本発明電池B4を作製した。長さ
2cmのPTC素子を用いること以外は本発明電池Aと
同様にして、本発明電池B5を作製した。長さ6cmの
PTC素子を用いること以外は本発明電池Aと同様にし
て、本発明電池B6を作製した。
[0032]Experiment 2  Next, the number A of the current collector pieces constituting the positive electrode and the total length of the positive electrode
Consider the relationship between B and the length C of the PTC element.
Next, the following batteries B1 to B6 of the present invention were produced. That is, the length
Except for using two 75cm current collector pieces for the positive electrode
Battery B1 of the present invention was produced in the same manner as in battery A. Long
Except for using 5 pieces of 30 cm current collector as the positive electrode
Battery B2 of the invention was made in the same manner as Battery A of the invention.
Other than using 10 pieces of current collector pieces with a length of 15 cm for the positive electrode
Is a battery B3 of the present invention prepared in the same manner as the battery A of the present invention.
Was. The present invention except that a PTC element having a length of 1 cm is used.
Battery B4 of the invention was made in the same manner as Battery A. length
Battery A of the present invention was used except that a 2 cm PTC element was used.
Similarly, battery B5 of the invention was produced. 6cm long
Same as Battery A of the present invention except that a PTC element is used.
Thus, Battery B6 of the present invention was produced.

【0033】本発明電池A及びB1〜B6について、パ
ラメータ(A×C/B)の値と、放電容量の測定結果を表
2に示す。
Table 2 shows the values of the parameters (A × C / B) and the measurement results of the discharge capacity of the batteries A and B1 to B6 of the present invention.

【表2】 [Table 2]

【0034】表2から明らかな様に、パラメータ(A×
C/B)が0.1よりも小さい電池において放電容量が特
に大きくなっており、このことから、パラメータ(A×
C/B)を0.1よりも小さく設定することが好ましいと
言える。
As apparent from Table 2, the parameter (A ×
The discharge capacity is particularly large in a battery having C / B) smaller than 0.1.
It can be said that it is preferable to set C / B) smaller than 0.1.

【0035】[0035]

【第2実施例】本実施例の二次電池においては、図3に
示す如く、正極(6)が、巻取り電極体の巻き取り方向に
長い帯板状の集電体(61)と、集電体(61)の両面に塗布さ
れた電極材料(62)と、集電体(61)の非塗工部(63)に接合
されたPTC素子(7)とから構成されており、該PTC
素子(7)の表面に集電タブ(3)の基端部が接合されてい
る。該正極(6)の製造工程においては、集電体(61)の表
面に、PTC素子(7)の接合領域を除いて、電極材料(6
2)を塗布し、複数箇所に非塗工部(63)を形成する。次
に、集電タブ(3)とPTC素子(7)とを超音波溶接やレ
ーザ溶接によって互いに接合した後、これを電極材料(6
2)の非塗工部(63)に超音波溶接やレーザ溶接によって接
合する。負極についても正極(6)と同様の構成が採用さ
れる(図示省略)。
Second Embodiment In the secondary battery of this embodiment, as shown in FIG. 3, a positive electrode (6) has a strip-shaped current collector (61) which is long in the winding direction of a winding electrode body. An electrode material (62) applied to both surfaces of the current collector (61), and a PTC element (7) joined to an uncoated portion (63) of the current collector (61). PTC
The base of the current collecting tab (3) is joined to the surface of the element (7). In the manufacturing process of the positive electrode (6), the electrode material (6) is formed on the surface of the current collector (61) except for the joining region of the PTC element (7).
2) is applied to form uncoated portions (63) at a plurality of locations. Next, after the current collecting tab (3) and the PTC element (7) are joined to each other by ultrasonic welding or laser welding, they are joined to an electrode material (6).
It is joined to the uncoated part (63) of 2) by ultrasonic welding or laser welding. The negative electrode has the same configuration as the positive electrode (6) (not shown).

【0036】この様にして作製された正極及び負極を用
いること以外は従来と同様にして、図6に示す如き巻取
り電極体(2)を作製し、該巻取り電極体(2)を図5に示
す如く電池缶(1)に収容して、円筒型リチウム二次電池
を完成する。尚、PTC素子(7)としては、導電性ポリ
マー(合成樹脂)を用いたものやセラミックスを用いたも
の等を採用することが出来、作動温度が80℃〜140
℃であるものが好ましい。ここで作動温度とは、温度上
昇によって抵抗値が室温時の1000倍に達するときの
温度をいう。また、PTC素子(7)としては、20℃に
おいて、10Ω・cm以下の固有抵抗を有するものが好まし
い。PTC素子(7)の厚さは、10〜500μmの範囲
であることが放電容量及び電流の遮断性において優れる
ので、この範囲が好ましい。
A wound electrode body (2) as shown in FIG. 6 was prepared in the same manner as in the prior art except that the thus prepared positive electrode and negative electrode were used. As shown in FIG. 5, the battery is accommodated in a battery can (1) to complete a cylindrical lithium secondary battery. As the PTC element (7), an element using a conductive polymer (synthetic resin), an element using ceramics, or the like can be employed.
C. is preferred. Here, the operating temperature refers to a temperature at which the resistance value reaches 1000 times that at room temperature due to a rise in temperature. The PTC element (7) preferably has a specific resistance of 10 Ω · cm or less at 20 ° C. It is preferable that the thickness of the PTC element (7) is in the range of 10 to 500 μm because the discharge capacity and the current interrupting property are excellent.

【0037】又、正極材料としては、リチウム含有複合
酸化物(例えばLiCoO)等、従来より非水系電池用
として使用されている種々の正極材料を採用することが
できる。この正極材料を、アセチレンブラック、カーボ
ンブラック等の導電剤、及びポリテトラフルオロエチレ
ン(PTFE)、ポリフッ化ビニリデン(PVdF)等の結
着剤と混練し、正極合剤として用いる。負極材料として
は、金属リチウム、リチウム合金、或いは炭素材料や金
属酸化物等のリチウムをドープ、脱ドープできる材料等
を採用することができる。電解質としては、6フッ化リ
ン酸リチウム等、従来よりリチウム二次電池用として使
用されている種々の電解液を用いることができる。セパ
レータとしては、イオン導電性に優れたポリエチレン製
やポリプロピレン製の微多孔性膜等、従来よりリチウム
二次電池用として使用されている種々のものを採用する
ことが出来る。
As the cathode material, various cathode materials conventionally used for non-aqueous batteries, such as a lithium-containing composite oxide (eg, LiCoO 2 ), can be used. This positive electrode material is kneaded with a conductive agent such as acetylene black and carbon black and a binder such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), and used as a positive electrode mixture. As the negative electrode material, metallic lithium, a lithium alloy, or a material such as a carbon material or a metal oxide which can be doped or dedoped with lithium can be used. As the electrolyte, various electrolytes conventionally used for lithium secondary batteries, such as lithium hexafluorophosphate, can be used. As the separator, various kinds of separators conventionally used for lithium secondary batteries, such as a microporous film made of polyethylene or polypropylene having excellent ion conductivity, can be used.

【0038】次に、上記第2実施例の円筒型リチウム二
次電池の性能を確認するために行なった実験の内容及び
結果について説明する。
Next, the contents and results of an experiment conducted for confirming the performance of the cylindrical lithium secondary battery of the second embodiment will be described.

【0039】実験1 次の様にして本発明電池A1及び比較電池Xを作製し、
電池特性を測定した。 [正極の作製]正極材料としてのコバルト酸リチウム
(LiCoO)粉末と、導電剤としての炭素粉末と、結
着剤としてのポリフッ化ビニリデン(PVdF)とを、重
量比90:5:5の比率で混合し、正極合剤を得た。次
いで、この正極合剤にN−メチル−2−ピロリドンを加
えてスラリー状にし、これを正極集電体としてのアルミ
ニウム箔に塗布した後、圧延し、更に幅240mmに切
断して、正極を作製した。
[0039]Experiment 1  A battery A1 of the present invention and a comparative battery X were prepared as follows.
Battery characteristics were measured. [Production of positive electrode] Lithium cobaltate as positive electrode material
(LiCoO2) Powder and carbon powder as conductive agent
Polyvinylidene fluoride (PVdF) as an adhesive
The mixture was mixed at a ratio of 90: 5: 5 to obtain a positive electrode mixture. Next
Then, N-methyl-2-pyrrolidone was added to this positive electrode mixture.
Into a slurry, and use this as aluminum as the positive electrode current collector.
After rolling on the aluminum foil, roll and cut to 240mm width
Then, a positive electrode was produced.

【0040】[負極の作製]負極材料としての天然黒鉛
粉末に、結着剤としてポリフッ化ビニリデン(PVdF)
を、重量比90:10の比率で混合し、負極合剤を得
た。次いで、この負極合剤にN−メチル−2−ピロリド
ンを加えてスラリー状にし、これを負極集電体としての
銅箔に塗布した後、圧延し、更に幅250mmに切断し
て、負極を作製した。
[Preparation of Negative Electrode] Natural graphite powder as a negative electrode material and polyvinylidene fluoride (PVdF) as a binder
Were mixed at a weight ratio of 90:10 to obtain a negative electrode mixture. Next, N-methyl-2-pyrrolidone was added to this negative electrode mixture to form a slurry, which was applied to a copper foil as a negative electrode current collector, rolled, and further cut into a width of 250 mm to produce a negative electrode. did.

【0041】[電解液の調製]エチレンカーボネート
(EC)とジエチルカーボネート(DEC)との等体積混合
溶媒に、溶質としての六フッ化リン酸リチウムを1モル
/リットルの割合で溶かして、電解液を調製した。
[Preparation of electrolyte solution] Ethylene carbonate
Lithium hexafluorophosphate as a solute was dissolved in an equal volume mixed solvent of (EC) and diethyl carbonate (DEC) at a ratio of 1 mol / liter to prepare an electrolytic solution.

【0042】[電池の組立]正極集電体に、厚さ100
μmのPTC素子とアルミニウム製の集電タブとを重ね
合わせ、PTC素子を集電体の非塗工部に接触させて、
超音波溶接等を用いてこれらを接合した。同様に、負極
の集電体の非塗工部に、厚さ100μmのPTC素子と
ニッケル製の集電タブとを重ね合わせ、超音波溶接等で
これらを接合した。尚、正極、負極とも、集電タブは1
0枚を等間隔に取り付けた。上記の正極、負極、及び電
解液の他、ポリプロピレン製の微多孔性薄膜からなるセ
パレーター等を用いて、直径60mm、高さ290mm
の本発明電池A1を作製した。
[Assembly of Battery] The positive electrode current collector was
The PTC element of μm and the current collecting tab made of aluminum are overlapped, and the PTC element is brought into contact with the uncoated portion of the current collector,
These were joined using ultrasonic welding or the like. Similarly, a 100 μm-thick PTC element and a nickel current collecting tab were overlapped on the uncoated portion of the negative electrode current collector, and these were joined by ultrasonic welding or the like. In addition, the current collection tab is 1 for both the positive electrode and the negative electrode.
0 sheets were attached at equal intervals. In addition to the above-described positive electrode, negative electrode, and electrolyte, a separator made of a microporous thin film made of polypropylene or the like is used, and has a diameter of 60 mm and a height of 290 mm.
Inventive battery A1 was produced.

【0043】又、集電体の両面に厚さ20μmのPTC
素子シートを貼り付けた後、正負極合剤を塗布して、正
極及び負極を作製し、これらの電極に集電タブを取り付
けた後、本発明電池A1と同様にして比較電池Xを作製
した。
Also, a PTC having a thickness of 20 μm is formed on both sides of the current collector.
After attaching the element sheet, a positive and negative electrode mixture was applied to prepare a positive electrode and a negative electrode, and after attaching a current collecting tab to these electrodes, a comparative battery X was produced in the same manner as the battery A1 of the present invention. .

【0044】[電池特性の測定]上記本発明電池A1及
び比較電池Xについて、10Aの電流で電池電圧4.2
Vまで充電した後、2.7Vに至るまで放電したときの
放電容量を測定した。その結果を表3に示す。
[Measurement of Battery Characteristics] With respect to the battery A1 of the present invention and the comparative battery X, the battery voltage was 4.2 at a current of 10 A.
After charging to V, the discharge capacity at the time of discharging to 2.7 V was measured. Table 3 shows the results.

【0045】[0045]

【表3】 [Table 3]

【0046】表3から明らかな様に、本発明電池A1は
比較電池Xと比べて、大きな放電容量を有しており、本
発明電池の有効性が裏付けられる。
As is clear from Table 3, the battery A1 of the present invention has a larger discharge capacity than the comparative battery X, which confirms the effectiveness of the battery of the present invention.

【0047】実験2 実験2では、次の本発明電池A2〜A6を作製して、P
TC素子の厚さが電池の放電容量に及ぼす影響について
検討を行なった。PTC素子の厚さを、本発明電池A2
では10μm、本発明電池A3では50μm、本発明電
池A4では200μm、本発明電池A5では500μ
m、本発明電池A6では1000μmと変えたこと以外
は本発明電池A1と同様にして、本発明電池A2〜A6
を作製した。
[0047]Experiment 2  In Experiment 2, the following batteries A2 to A6 of the present invention were prepared and
Influence of TC element thickness on battery discharge capacity
A study was conducted. The thickness of the PTC element was determined according to the battery A2 of the present invention.
10 μm, 50 μm for the battery A3 of the present invention, and
200 μm for pond A4, 500 μm for battery A5 of the present invention
m, except that the battery A6 of the present invention was changed to 1000 μm.
Are the batteries A2 to A6 of the invention in the same manner as the battery A1 of the invention.
Was prepared.

【0048】上記本発明電池A2〜A6の各電池につい
て、10Aの電流で電池電圧4.2Vまで充電した後、
2.7Vに至るまで放電したときの放電容量を測定し
た。その結果を表4に示す。
After charging each of the batteries A2 to A6 of the present invention to a battery voltage of 4.2 V with a current of 10 A,
The discharge capacity when discharging to 2.7 V was measured. Table 4 shows the results.

【0049】[0049]

【表4】 [Table 4]

【0050】表4から明らかな様に、PTC素子の厚さ
が10μm〜500μmの範囲に形成されている電池
が、放電容量の点で優れており、また厚さ10μm未満
のPTC素子は作製が困難であることから、PTC素子
の厚さをこの範囲に形成することが好ましいことが分か
る。更に、PTC素子の厚さを10μm〜200μmの
範囲に形成することがより好ましいことが分かる。
As is evident from Table 4, batteries having a PTC element thickness in the range of 10 μm to 500 μm are excellent in terms of discharge capacity, and a PTC element having a thickness of less than 10 μm can be manufactured. Since it is difficult, it is understood that it is preferable to form the thickness of the PTC element in this range. Further, it can be seen that it is more preferable that the thickness of the PTC element is formed in the range of 10 μm to 200 μm.

【0051】上述の第1実施例及び第2実施例の何れに
おいても、従来の電池に比べて、電池缶内でPTC素子
が占める容積が減少し、これに伴って電極材料の量が増
加することと、PTC素子の電気抵抗による電力損失が
減少するために、大きな放電容量が達成される。例えば
第1実施例では、比較電池の放電容量が2.5Ahであ
るのに対し、本発明電池の放電容量が3.5Ahとなっ
ており、40%の増大が達成されている。又、第2実施
例では、比較電池の放電容量が40Ahであるのに対
し、本発明電池の放電容量が70Ahとなっており、7
5%の増大が達成されている。この放電容量の増大は、
電極材料の増加によるものと、電気抵抗による電力損失
の減少によるものと推定される。特に、電極面積が大き
くなると、電気抵抗による電力損失の減少の効果が大き
くなるものと推定される。
In both the first embodiment and the second embodiment, the volume occupied by the PTC element in the battery can is reduced as compared with the conventional battery, and the amount of the electrode material is increased accordingly. In addition, since a power loss due to the electric resistance of the PTC element is reduced, a large discharge capacity is achieved. For example, in the first embodiment, the discharge capacity of the comparative battery is 2.5 Ah, while the discharge capacity of the battery of the present invention is 3.5 Ah, and a 40% increase is achieved. In the second embodiment, the discharge capacity of the battery of the present invention was 70 Ah, whereas the discharge capacity of the comparative battery was 40 Ah.
A 5% increase has been achieved. This increase in discharge capacity
It is presumed that this is due to an increase in the electrode material and a decrease in power loss due to electrical resistance. In particular, it is estimated that as the electrode area increases, the effect of reducing power loss due to electrical resistance increases.

【0052】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、上記実施例では、本発明を
円筒形二次電池に実施しているが、これに限らず、扁平
形、角形等、種々の形状を有する非水電解液二次電池に
実施出来るのは勿論である。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, in the above embodiment, the present invention is applied to a cylindrical secondary battery. However, the present invention is not limited to this, and can be applied to nonaqueous electrolyte secondary batteries having various shapes such as a flat shape and a square shape. Of course.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の電池に採用されている正
極の要部を示す斜視図である。
FIG. 1 is a perspective view showing a main part of a positive electrode employed in a battery according to a first embodiment of the present invention.

【図2】該正極の製造工程を説明する斜視図である。FIG. 2 is a perspective view illustrating a manufacturing process of the positive electrode.

【図3】本発明の第2実施例の電池に採用されている正
極の要部を示す斜視図である。
FIG. 3 is a perspective view showing a main part of a positive electrode employed in a battery according to a second embodiment of the present invention.

【図4】円筒型二次電池の外観を表わす斜視図である。FIG. 4 is a perspective view illustrating an appearance of a cylindrical secondary battery.

【図5】円筒型二次電池の要部を示す断面図である。FIG. 5 is a cross-sectional view showing a main part of a cylindrical secondary battery.

【図6】巻取り電極体の一部を展開して示す斜視図であ
る。
FIG. 6 is an exploded perspective view showing a part of the wound electrode body.

【図7】従来のPTC素子層を具えた正極の断面図であ
る。
FIG. 7 is a cross-sectional view of a positive electrode including a conventional PTC element layer.

【符号の説明】[Explanation of symbols]

(1) 電池缶 (2) 巻取り電極体 (3) 集電タブ (4) 正極 (42) 集電体片 (43) 電極材料 (44) 非塗工部 (45) 非塗工部 (5) PTC素子 (6) 正極 (61) 集電体 (62) 電極材料 (63) 非塗工部 (7) PTC素子 (1) Battery can (2) Winding electrode body (3) Current collecting tab (4) Positive electrode (42) Current collector piece (43) Electrode material (44) Uncoated part (45) Uncoated part (5 ) PTC element (6) Positive electrode (61) Current collector (62) Electrode material (63) Uncoated part (7) PTC element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 丈志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 船橋 淳浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Maeda 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Atsushi Funabashi 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電池缶(1)の内部に電極体(2)が収納さ
れ、電池缶(1)に取り付けた電極端子機構(9)から電極
体(2)の発生電力を取り出すことが可能であって、電極
体(2)を構成する正極及び負極はそれぞれ、帯状の集電
体の表面に電極材料を塗布して構成される非水電解液二
次電池において、正極及び負極の少なくとも何れか一方
の電極の集電体は、一方向に沿って配列された複数の集
電体片(42)と、隣接する集電体片(42)どうしを互いに連
結する正の抵抗温度係数を有する素子とによって構成さ
れていることを特徴とする非水電解液二次電池。
1. An electrode body (2) is housed inside a battery can (1), and power generated by the electrode body (2) can be taken out from an electrode terminal mechanism (9) attached to the battery can (1). In the non-aqueous electrolyte secondary battery formed by applying an electrode material on the surface of a belt-shaped current collector, at least one of the positive electrode and the negative electrode, The current collector of one of the electrodes has a plurality of current collector pieces (42) arranged along one direction and a positive temperature coefficient of resistance that connects adjacent current collector pieces (42) to each other. A non-aqueous electrolyte secondary battery characterized by comprising an element.
【請求項2】 互いに連結すべき一対の集電体片(42)(4
2)の端部が、前記素子を間に挟んで上下に重ね合わさ
れ、前記素子の両面に接合されている請求項1に記載の
非水電解液二次電池。
2. A pair of current collector pieces (42) (4) to be connected to each other.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the end of (2) is vertically overlapped with the element interposed therebetween and joined to both surfaces of the element.
【請求項3】 集電体片(42)の枚数A、前記一方向に沿
う電極の全長B及び前記素子の長さCの間には、下記数
1の関係がなりたつ請求項1又は請求項2に記載の非水
電解液二次電池。 【数1】A×C/B<0.1
3. The relationship expressed by the following equation (1) between the number A of the current collector pieces (42), the total length B of the electrodes along the one direction, and the length C of the element. 3. The non-aqueous electrolyte secondary battery according to 2. ## EQU1 ## A × C / B <0.1
【請求項4】 電池缶(1)の内部に電極体(2)が収納さ
れ、電池缶(1)に取り付けた電極端子機構(9)から電極
体(2)の発生電力を取り出すことが可能であって、電極
体(2)を構成する正極及び負極はそれぞれ、帯状の集電
体(61)の表面に、電極材料(62)の塗布されている塗工部
と電極材料(62)の塗布されていない非塗工部とを形成し
て構成され、該非塗工部に集電タブ(3)の基端部が接続
され、該集電タブ(3)の先端部は電極端子機構(9)に接
続されている非水電解液二次電池において、正極及び負
極の少なくとも何れか一方は、前記集電体(61)の非塗工
部と集電タブ(3)の基端部との対向面間に、正の抵抗温
度係数を有する素子を介在させて構成されていることを
特徴とする非水電解液二次電池。
4. An electrode body (2) is housed inside a battery can (1), and power generated by the electrode body (2) can be taken out from an electrode terminal mechanism (9) attached to the battery can (1). The positive electrode and the negative electrode constituting the electrode body (2) are respectively coated on the surface of the strip-shaped current collector (61) with the electrode material (62) coated thereon and the electrode material (62). A non-coated portion that is not coated is formed, the base portion of the current collecting tab (3) is connected to the non-coated portion, and the tip of the current collecting tab (3) is connected to an electrode terminal mechanism ( 9) In the non-aqueous electrolyte secondary battery connected to 9), at least one of the positive electrode and the negative electrode is a non-coated portion of the current collector (61) and a base end of the current collection tab (3). A non-aqueous electrolyte secondary battery comprising an element having a positive temperature coefficient of resistance interposed between opposing surfaces of the non-aqueous electrolyte solution.
【請求項5】 前記素子の厚さは10μm乃至500μ
mの範囲に形成されている請求項4に記載の非水電解液
二次電池。
5. The device according to claim 1, wherein said device has a thickness of 10 μm to 500 μm.
The non-aqueous electrolyte secondary battery according to claim 4, wherein the secondary battery is formed in a range of m.
JP34953799A 1998-12-09 1999-12-08 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3806562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34953799A JP3806562B2 (en) 1998-12-09 1999-12-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34953598 1998-12-09
JP10-349535 1998-12-09
JP34953799A JP3806562B2 (en) 1998-12-09 1999-12-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000231918A true JP2000231918A (en) 2000-08-22
JP3806562B2 JP3806562B2 (en) 2006-08-09

Family

ID=26578973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34953799A Expired - Fee Related JP3806562B2 (en) 1998-12-09 1999-12-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3806562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511412A (en) * 2008-02-05 2011-04-07 エスケー エナジー 株式会社 Lithium secondary battery and manufacturing method thereof
JP2014505335A (en) * 2011-06-30 2014-02-27 エルジー・ケム・リミテッド Secondary battery electrode assembly and lithium secondary battery including the same
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557413B1 (en) * 2018-04-25 2023-07-18 주식회사 엘지에너지솔루션 Manufacturing method for lithium metal electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511412A (en) * 2008-02-05 2011-04-07 エスケー エナジー 株式会社 Lithium secondary battery and manufacturing method thereof
JP2014505335A (en) * 2011-06-30 2014-02-27 エルジー・ケム・リミテッド Secondary battery electrode assembly and lithium secondary battery including the same
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
JPWO2015046469A1 (en) * 2013-09-30 2017-03-09 日立化成株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3806562B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
US6458485B2 (en) Nonaqueous electrolyte secondary cell
JP5526488B2 (en) Electrochemical devices
JP4454948B2 (en) Non-aqueous electrolyte secondary battery
JP3225864B2 (en) Lithium ion secondary battery and method of manufacturing the same
US20130177787A1 (en) Current collector and nonaqueous secondary battery
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
US20130177788A1 (en) Nonaqueous secondary battery
US20080248375A1 (en) Lithium secondary batteries
JP5239445B2 (en) Electrochemical devices
WO2012042830A1 (en) Nonaqueous electrolyte secondary battery
JP2011523179A (en) System and method for current collector tab configuration and foil thickness of a rechargeable battery
JPH10241665A (en) Electrode and battery using the same
JP2011096539A (en) Lithium secondary battery
JP2019053862A (en) Laminated electrode body and power storage element
JP3768026B2 (en) Non-aqueous electrolyte secondary battery
EP0910131B1 (en) Lithium secondary battery
JP4245429B2 (en) Battery with spiral electrode group
JP2011154955A (en) Lithium ion secondary battery
JP2000090932A (en) Lithium secondary battery
JP3806562B2 (en) Non-aqueous electrolyte secondary battery
JP3723352B2 (en) Secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
CN112335091B (en) Lithium ion secondary battery
JP2017183082A (en) Power storage device
JP2017168302A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees