JP2000231109A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JP2000231109A
JP2000231109A JP3439899A JP3439899A JP2000231109A JP 2000231109 A JP2000231109 A JP 2000231109A JP 3439899 A JP3439899 A JP 3439899A JP 3439899 A JP3439899 A JP 3439899A JP 2000231109 A JP2000231109 A JP 2000231109A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment film
thickness
film
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3439899A
Other languages
Japanese (ja)
Inventor
Satoshi Takato
聡 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Display Inc
Original Assignee
Advanced Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Display Inc filed Critical Advanced Display Inc
Priority to JP3439899A priority Critical patent/JP2000231109A/en
Publication of JP2000231109A publication Critical patent/JP2000231109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variance in the energy transmittance in a red region caused by minute changes in a cell gap to the min. and to suppress production of interference fringes by specifying the refractive index and film thickness of an alignment film. SOLUTION: An alignment film is formed on each of the inner face of a first transparent insulating substrate (glass 1) and a second transparent insulating substrate (glass 2) disposed at a specified distance, and a liquid crystal layer is disposed between the substrates. Plural thin film transistors, a SiN insulating film and pixel electrodes consisting of a transparent and electrically conductive film such as ITO are formed on the surface of the glass 1. Color filters(CF) and transparent electrodes comprising ITO are formed on the surface of the glass 2. By controlling the refractive index and film thickness of the alignment film to 1.64±0.06 and 105±30 nm, respectively, the optical film thickness of the alignment film is made to be 174±55.5 nm. Thereby, the generation of interference fringes in a red region produced by minute changes in a cell gap can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置に関
し、特に、赤色領域(610nm近傍)での干渉縞の発
生を抑制するための配向膜の膜厚の設定方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a liquid crystal display device, and more particularly to a method for setting the thickness of an alignment film for suppressing occurrence of interference fringes in a red region (around 610 nm).

【0002】[0002]

【従来の技術】液晶表示装置は、通常、透明電極が形成
された2枚の透明絶縁性基板を一定距離を隔てて対向さ
せ、これらの基板間に液晶層を配置するよう構成されて
いる。液晶の駆動は、透明電極に電圧を印加することに
より行うが、液晶と接触する基板面には予め配向膜を形
成し、ラビング処理という配向処理を行うのが一般的で
ある。配向膜の材料としては、ポリイミド等の有機膜や
SiO等の無機膜が用いられる。大型サイズの基板にポ
リイミドの配向膜を形成する方法としては、回転するロ
ーラーに溶剤で希釈したポリイミドを転写し、基板に印
刷するオフセット印刷法が主に用いられている。
2. Description of the Related Art Generally, a liquid crystal display device is configured such that two transparent insulating substrates on which transparent electrodes are formed are opposed to each other at a fixed distance, and a liquid crystal layer is disposed between these substrates. The liquid crystal is driven by applying a voltage to the transparent electrode. Generally, an alignment film is formed in advance on a substrate surface that comes into contact with the liquid crystal, and an alignment process called a rubbing process is performed. As a material of the alignment film, an organic film such as polyimide or an inorganic film such as SiO is used. As a method of forming a polyimide alignment film on a large-sized substrate, an offset printing method of transferring polyimide diluted with a solvent to a rotating roller and printing the polyimide on a substrate is mainly used.

【0003】配向膜の膜厚は、転写版の印加圧、ステー
ジ速度、温度及び湿度等が一定の場合、配向膜材料の粘
度に依存する。粘度と膜厚には正の相関があるので、粘
度を選択することによって膜厚を選択することができ
る。配向膜は、液晶に電圧を印加するための透明電極と
液晶の間に配置されているため、配向膜の膜厚が厚くな
りすぎると配向膜の部分で生じる電圧降下が大きくな
り、液晶に十分な電圧が加わらなくなる。一方、膜厚が
薄くなりすぎると、製造工程上膜厚分布が大きくなり、
その結果、配向膜での電圧降下にばらつきが生じ、液晶
に印加される電圧にもばらつきが生じる。また、上述の
ラビング工程において、ラビング布が配向膜表面に接す
る際に剥がれが生じ、液晶が配向できない部分が生じる
場合もある。そこで、従来は、配向膜の膜厚を40〜1
00nm程度の範囲で形成していた。
The thickness of the alignment film depends on the viscosity of the alignment film material when the applied pressure of the transfer plate, the stage speed, the temperature and the humidity are constant. Since there is a positive correlation between the viscosity and the film thickness, the film thickness can be selected by selecting the viscosity. Since the alignment film is disposed between the liquid crystal and the transparent electrode for applying a voltage to the liquid crystal, if the thickness of the alignment film is too large, the voltage drop generated in the alignment film becomes large, and the liquid crystal is not enough. No voltage is applied. On the other hand, if the film thickness is too thin, the film thickness distribution increases in the manufacturing process,
As a result, the voltage drop in the alignment film varies, and the voltage applied to the liquid crystal also varies. In addition, in the above-described rubbing step, the rubbing cloth may come off when the rubbing cloth comes into contact with the surface of the alignment film, and there may be a part where the liquid crystal cannot be aligned. Therefore, conventionally, the thickness of the alignment film is set to 40 to 1
It was formed in a range of about 00 nm.

【0004】配向膜の膜厚に関しては、従来より様々な
検討がなされており、例えば特開昭63−52118号
公報では、反射型の液晶表示素子において二重像を生じ
させないために、配向膜の膜厚を液晶セルの透過率と鏡
面との組み合わせにより100〜160nmに定めてい
る。また、特開平10−123522号公報では、反射
防止を目的として、配向膜の膜厚を、反射を防止したい
波長と配向膜の屈折率に関係づけて100nm以下と定
めている。
Various studies have been made on the thickness of the alignment film. For example, Japanese Patent Application Laid-Open No. 63-52118 discloses an alignment film in order to prevent a double image from being produced in a reflective liquid crystal display device. Is set to 100 to 160 nm by a combination of the transmittance of the liquid crystal cell and the mirror surface. Further, in Japanese Patent Application Laid-Open No. Hei 10-123522, for the purpose of preventing reflection, the thickness of the alignment film is set to 100 nm or less in relation to the wavelength at which reflection is to be prevented and the refractive index of the alignment film.

【0005】[0005]

【発明が解決しようとする課題】液晶表示装置を構成す
る2枚の透明絶縁性基板の間隔(以下、セルギャップと
称す)は、液晶層に多数のスペーサを配置することによ
り一定に保たれている。このセルギャップが面内で不均
一になると、干渉縞を伴う干渉ムラとして視認される。
セルギャップが不均一になる原因としては、例えば、
シールスペーサと面内スペーサの組み合わせ方が不適切
である、面内スペーサの散布密度が不均一である、
搬送時の真空吸着の加減によりスペーサ分布が偏る、
2枚の基板を貼り合わせる際の圧着が不均一である、等
の様々な原因が考えられる。このセルギャップの不均一
による干渉縞は、主に波長610nm近傍の赤色領域に
おいて顕著に見られるという問題があった。
The distance between two transparent insulating substrates constituting a liquid crystal display device (hereinafter referred to as a cell gap) is kept constant by arranging a large number of spacers in a liquid crystal layer. I have. When the cell gap becomes non-uniform in the plane, it is visually recognized as interference unevenness accompanied by interference fringes.
As a cause of the non-uniform cell gap, for example,
Improper combination of seal spacer and in-plane spacer, uneven distribution density of in-plane spacer,
The spacer distribution is biased due to the degree of vacuum suction during transport,
Various causes are considered, such as uneven pressure bonding when bonding two substrates. There is a problem that the interference fringes due to the non-uniform cell gap are noticeable mainly in the red region near the wavelength of 610 nm.

【0006】セルギャップの不均一により干渉ムラが発
生する現象を、アクティブマトリクス型TFT−LCD
を例に挙げて説明する。TFT−LCDを構成する2枚
のガラス基板内側の画素電極(ITO)部分には、液晶
層を含めて7層の光学薄膜が形成されている(図1参
照)。この7層を光が透過するときのエネルギー透過率
Tを計算により求めると、エネルギー透過率Tのセルギ
ャップ依存性は、図2に示すような単振動となる。な
お、計算方法については後述の実施の形態で詳しく記載
するため、ここでは説明を省略する。この単振動の周期
は約0. 2μmであり、セルギャップのわずか0. 1μ
mの変化によって、エネルギー透過率Tは最大値から最
小値まで変化することになる。このように、従来の液晶
表示装置では、セルギャップのわずかな変化によって光
の透過率が大きく変化してしまうため、極端な場合には
干渉縞が視認されるほどの干渉ムラが発生するという問
題があった。
[0006] The phenomenon that interference unevenness occurs due to non-uniform cell gap is considered as an active matrix type TFT-LCD.
Will be described as an example. Seven layers of optical thin films including a liquid crystal layer are formed on the pixel electrodes (ITO) inside the two glass substrates constituting the TFT-LCD (see FIG. 1). When the energy transmittance T when light passes through these seven layers is obtained by calculation, the cell gap dependence of the energy transmittance T becomes a simple oscillation as shown in FIG. Note that the calculation method will be described in detail in an embodiment described later, and thus the description thereof will be omitted. The period of this simple vibration is about 0.2 μm, and the cell gap is only 0.1 μm.
By changing m, the energy transmittance T changes from the maximum value to the minimum value. As described above, in the conventional liquid crystal display device, since the light transmittance greatly changes due to a slight change in the cell gap, in an extreme case, there is a problem that interference unevenness such that interference fringes are visually recognized occurs. was there.

【0007】本発明は、上記のような問題点を解消する
ためになされたもので、セルギャップのわずかな変化の
ために生じる赤色領域(610nm近傍)での干渉縞の
発生を抑制し、表示品位の高い液晶表示装置を得ること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and suppresses the occurrence of interference fringes in a red region (around 610 nm) caused by a slight change in the cell gap. It is an object to obtain a high-quality liquid crystal display device.

【0008】[0008]

【課題を解決するための手段】本発明に係わる液晶表示
装置は、一定距離を隔て対向して配置された第1及び第
2の透明絶縁性基板の各対向面上に配向膜が設けられ、
これらの基板間に液晶層が配置された液晶表示装置にお
いて、配向膜の屈折率を1. 64±0. 06、膜厚を1
05±30nmとすることにより、配向膜の光学膜厚を
174±55.5nmとしたものである。また、第1の
透明絶縁性基板は、その表面に複数の薄膜トランジス
タ、SiN等よりなる絶縁膜及びITO等の透明導電膜
よりなる画素電極が設けられているものである。さら
に、第2の透明絶縁性基板は、その表面にカラーフィル
タ及び透明電極が設けられているものである。
According to the liquid crystal display device of the present invention, an alignment film is provided on each of the opposing surfaces of the first and second transparent insulating substrates which are arranged to face each other at a predetermined distance.
In a liquid crystal display device in which a liquid crystal layer is arranged between these substrates, the refractive index of the alignment film is 1.64 ± 0.06, and the film thickness is 1
By setting the thickness to 05 ± 30 nm, the optical film thickness of the alignment film is set to 174 ± 55.5 nm. The first transparent insulating substrate is provided with a plurality of thin film transistors, an insulating film made of SiN or the like, and a pixel electrode made of a transparent conductive film such as ITO on its surface. Further, the second transparent insulating substrate has a surface on which a color filter and a transparent electrode are provided.

【0009】また、本発明に係わる液晶表示装置の製造
方法は、一定距離を隔て対向して配置された第1及び第
2の透明絶縁性基板の各対向面上に配向膜が設けられ、
これらの基板間に液晶層が配置された液晶表示装置の製
造において、特定の波長の入射光の透過率が液晶層の厚
さのわずかな変化によって変動する現象を最小限に抑え
るための配向膜の膜厚の設定方法であって、第1及び第
2の透明絶縁性基板の内側に配置された画素電極、絶縁
膜及び配向膜、液晶層等の全ての層を特定の波長λの入
射光が透過するときのエネルギー透過率Tを、配向膜の
膜厚または屈折率と液晶層の厚さをパラメータとして求
める工程と、横軸を液晶層の厚さ、縦軸をエネルギー透
過率Tとした単振動のグラフを、配向膜の各膜厚毎に作
成する工程と、横軸を配向膜の膜厚、縦軸をエネルギー
透過率Tが示す単振動の振幅の最大値Tmax と最小値T
min を比の形で表した透過率比Tmax /Tmin としてグ
ラフを作成し、透過率比が最小となる配向膜の膜厚を求
める工程を含んで製造するようにしたものである。ま
た、特定の波長として、赤色領域である610nmを入
力するものである。
Further, in the method of manufacturing a liquid crystal display device according to the present invention, an alignment film is provided on each of opposing surfaces of the first and second transparent insulating substrates which are arranged to face each other at a predetermined distance,
In the manufacture of a liquid crystal display device in which a liquid crystal layer is arranged between these substrates, an alignment film for minimizing a phenomenon in which the transmittance of incident light of a specific wavelength fluctuates due to a slight change in the thickness of the liquid crystal layer. A method of setting the thickness of a pixel electrode, an insulating film and an alignment film, a liquid crystal layer, and the like, disposed inside the first and second transparent insulating substrates, with incident light having a specific wavelength λ. The energy transmittance T at the time of transmission, the thickness or refractive index of the alignment film and the thickness of the liquid crystal layer as parameters, the horizontal axis represents the thickness of the liquid crystal layer, and the vertical axis represents the energy transmittance T. A step of creating a graph of simple vibration for each film thickness of the alignment film, the horizontal axis represents the film thickness of the alignment film, and the vertical axis represents the maximum value Tmax and the minimum value T of the amplitude of simple vibration indicated by the energy transmittance T.
A graph is prepared with the transmittance ratio Tmax / Tmin, where min is expressed in the form of a ratio, and the process includes a step of determining the film thickness of the alignment film that minimizes the transmittance ratio. In addition, as the specific wavelength, 610 nm which is a red region is input.

【0010】[0010]

【発明の実施の形態】実施の形態1.以下に、本発明の
実施の形態における液晶表示装置の製造方法を、アクテ
ィブマトリクス型TFT−LCDを例に挙げて説明す
る。本実施の形態における液晶表示装置は、図1に示す
ように、一定距離を隔て対向して配置された第1の透明
絶縁性基板(ガラス1)及び第2の透明絶縁性基板(ガ
ラス2)の各対向面上に配向膜が設けられ、これらの基
板間に液晶層が配置されており、ガラス1表面には、複
数の薄膜トランジスタ(図示せず)、SiNよりなる絶
縁膜及びITO等の透明導電膜よりなる画素電極が設け
られている。また、ガラス2表面には、カラーフィルタ
(CF)及びITOよりなる透明電極が設けられてい
る。本実施の形態は、液晶表示装置の製造において、特
定の波長の入射光の透過率が液晶層の厚さのわずかな変
化によって変動する現象を最小限に抑えるための配向膜
の膜厚の設定方法を提供するものである。なお、ここで
は、赤色領域(610nm近傍)において発生する干渉
縞を伴う干渉ムラが問題となっているため、特定の波長
λとして610nmを入力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a method for manufacturing a liquid crystal display device according to an embodiment of the present invention will be described using an active matrix type TFT-LCD as an example. As shown in FIG. 1, the liquid crystal display device according to the present embodiment includes a first transparent insulating substrate (glass 1) and a second transparent insulating substrate (glass 2) which are arranged to face each other at a predetermined distance. An alignment film is provided on each of the opposing surfaces, and a liquid crystal layer is disposed between these substrates. A plurality of thin film transistors (not shown), an insulating film made of SiN, and a transparent material such as ITO are provided on the surface of the glass 1. A pixel electrode made of a conductive film is provided. Further, a transparent electrode made of a color filter (CF) and ITO is provided on the surface of the glass 2. In the present embodiment, in the manufacture of a liquid crystal display device, the thickness of an alignment film is set to minimize the phenomenon that the transmittance of incident light of a specific wavelength fluctuates due to a slight change in the thickness of a liquid crystal layer. It provides a method. In this case, 610 nm is input as the specific wavelength λ because interference unevenness accompanied by interference fringes occurring in the red region (around 610 nm) is a problem.

【0011】まず、2枚の透明絶縁性基板の内側に配置
された画素電極、絶縁膜及び配向膜、液晶等の全ての層
を特定の波長λ(610nm)の入射光が透過するとき
のエネルギー透過率Tを、配向膜の膜厚または屈折率と
液晶層の厚さであるセルギャップをパラメータとして求
める。2枚の基板の内側には、図1に示すように、液晶
層を含めて7層の光学薄膜が形成されている。i番目の
層における特性マトリクスは式(1)の通りである。
First, the energy required when incident light having a specific wavelength λ (610 nm) is transmitted through all layers such as a pixel electrode, an insulating film and an alignment film, and a liquid crystal disposed inside two transparent insulating substrates. The transmittance T is determined using the thickness or refractive index of the alignment film and the cell gap, which is the thickness of the liquid crystal layer, as parameters. As shown in FIG. 1, seven optical thin films including a liquid crystal layer are formed inside the two substrates. The characteristic matrix in the i-th layer is as shown in Expression (1).

【0012】[0012]

【数1】 (Equation 1)

【0013】入射光が垂直入射の時、 δi =2πni i COSθi /λ=2πni i /λ である。ここで、ni 、di はそれぞれi番目の層の屈
折率及び膜厚である。1からn番目の層までの多層膜に
おける特性マトリックスは式(2)のように表される。
[0013] When the incident light is vertically incident is δ i = 2πn i d i COSθ i / λ = 2πn i d i / λ. Here, n i and d i are the refractive index and the film thickness of the i-th layer, respectively. The characteristic matrix in the multilayer film from the first to the n-th layer is represented by Expression (2).

【0014】[0014]

【数2】 (Equation 2)

【0015】とすると、エネルギー透過率Tは式(3)
のように表される。 T=4n0 2 /(n0 m11+n0 2 m12+m21+n0 m22)2 ・・(3) n0 :ガラスの屈折率 式3に各層の屈折率、膜厚及び波長λ(610nm)を
入力し、エネルギー透過率Tを求める。各膜の膜厚及び
屈折率の条件を表1に示す。なお、この計算において
は、液晶の屈折率は温度、方向によらず定数とする、
全ての薄膜は当方媒体とする、吸収は考慮しない、
光は垂直入射とする、という条件を前提としている。
Then, the energy transmittance T is given by the following equation (3).
It is represented as T = 4n 0 2 / (n 0 m11 + n 0 2 m12 + m21 + n 0 m22) 2 ·· (3) n 0: refractive index of each layer to the refractive index formula 3 of the glass, type the thickness and wavelength lambda (610 nm), the energy The transmittance T is determined. Table 1 shows the conditions of the thickness and the refractive index of each film. In this calculation, the refractive index of the liquid crystal is a constant regardless of temperature and direction.
All thin films are our medium, do not consider absorption,
It is assumed that light is incident perpendicularly.

【0016】[0016]

【表1】 [Table 1]

【0017】次に、横軸をセルギャップ(液晶層の厚
さ)、縦軸を上記の方法で求めたエネルギー透過率Tと
した単振動のグラフを、配向膜の各膜厚毎に作成する
(図2)。このように、エネルギー透過率Tは、セルギ
ャップを横軸にとった場合、単振動を示し、配向膜の膜
厚を変化させることにより振幅が変化する。このことか
ら、エネルギー透過率Tの振幅が最小となるように配向
膜の膜厚を設定することにより、その他の膜構成を変更
することなく、特定の波長、本実施の形態では610n
mにおける干渉縞を抑制することができる。
Next, a graph of a single vibration is prepared for each film thickness of the alignment film, with the horizontal axis representing the cell gap (the thickness of the liquid crystal layer) and the vertical axis representing the energy transmittance T obtained by the above method. (FIG. 2). As described above, when the cell gap is plotted on the horizontal axis, the energy transmittance T shows a single oscillation, and the amplitude changes by changing the thickness of the alignment film. From this, by setting the thickness of the alignment film so that the amplitude of the energy transmittance T is minimized, the specific wavelength, 610 n in the present embodiment, can be changed without changing other film configurations.
m can suppress interference fringes.

【0018】次に、横軸を配向膜の膜厚、縦軸をエネル
ギー透過率Tが示す単振動の振幅の最大値Tmax と最小
値Tmin を比の形で表した透過率比Tmax /Tmin とし
てグラフを作成し(図3)、透過率比が最小となる配向
膜の膜厚を求める。なお、ここでは、エネルギー透過率
の振幅を評価する値として透過率比を用いている。透過
率比が最小、すなわち1に近いほどエネルギー透過率の
振幅は小さくなる。図3より、配向膜の膜厚が105n
mの時、透過率比が最小値をとることがわかった。ま
た、配向膜の膜厚は、±30nmのマージンをとれば、透
過率比は4〜5%以内に収まる。さらに、ここでは、配
向膜の屈折率を1. 6として計算したが、1. 58〜
1. 7の範囲でも同様の結果が得られたため、配向膜の
屈折率はマージンをとって1. 64±0. 06とした。
ただし、配向膜の屈折率は、それほど大きく変化するこ
とはなく、配向膜の屈折率が1. 58以下、1. 7以上
の場合でも、透過率比の配向膜厚依存性の傾向に大きな
変わりはなかった。以上のことから、配向膜の屈折率を
1. 64±0. 06、膜厚を105±30nmとするこ
とにより、配向膜の光学膜厚を174±55. 5nmと
設定した。
Next, the horizontal axis represents the film thickness of the alignment film, and the vertical axis represents the transmittance ratio T max in the form of a ratio between the maximum value T max and the minimum value T min of the amplitude of the simple oscillation indicated by the energy transmittance T. A graph is created as / T min (FIG. 3), and the film thickness of the alignment film at which the transmittance ratio becomes minimum is determined. Here, the transmittance ratio is used as a value for evaluating the amplitude of the energy transmittance. The amplitude of the energy transmittance becomes smaller as the transmittance ratio becomes minimum, that is, closer to one. According to FIG. 3, the thickness of the alignment film is 105 n.
At m, it was found that the transmittance ratio took the minimum value. If the thickness of the alignment film has a margin of ± 30 nm, the transmittance ratio falls within 4 to 5%. Further, here, the calculation was performed with the refractive index of the alignment film being 1.6.
Since similar results were obtained in the range of 1.7, the refractive index of the alignment film was set to 1.64 ± 0.06 with a margin.
However, the refractive index of the alignment film does not change so much. Even when the refractive index of the alignment film is 1.58 or less and 1.7 or more, the transmittance ratio greatly changes in the tendency of the alignment film thickness dependence. There was no. From the above, the optical film thickness of the alignment film was set to 174 ± 55.5 nm by setting the refractive index of the alignment film to 1.64 ± 0.06 and the film thickness to 105 ± 30 nm.

【0019】上記の方法によって最適化された配向膜の
膜厚を採用した液晶表示装置の効果を確認するために、
表1に示した膜構成のTFTアレイ基板、カラーフィル
タ基板及び液晶によって構成されたパネルを用い、配向
膜の膜厚のみを変更して比較を行った。本実施の形態に
よるパネルの配向膜膜厚の面内分布は85±2nm、比
較品として用いた従来のパネルでは57±2nmであっ
た。これらのパネルにおいて、赤色領域での干渉ムラの
発生を観察した結果、従来品では1550パネル中3パ
ネル(0. 2%)発生しており、本実施の形態によるパ
ネルでは700パネル中、上記の不良が発生したものは
なかった。
In order to confirm the effect of the liquid crystal display device employing the thickness of the alignment film optimized by the above method,
Using a TFT array substrate, a color filter substrate and a liquid crystal panel having the film configuration shown in Table 1, a comparison was made by changing only the thickness of the alignment film. The in-plane distribution of the orientation film thickness of the panel according to the present embodiment was 85 ± 2 nm, and that of the conventional panel used as a comparative product was 57 ± 2 nm. As a result of observing the occurrence of interference unevenness in the red region in these panels, 3 out of 1550 panels (0.2%) occurred in the conventional product, and in the panel according to the present embodiment, out of 700 panels, No failure occurred.

【0020】以上のように、本実施の形態によれば、セ
ルギャップのわずかな変化のために生じる赤色領域での
エネルギー透過率の変動を、配向膜の屈折率、膜厚を最
適化することにより最小限に抑えることができ、従来問
題となっていた赤色領域での干渉縞を防止することが可
能となった。このため、表示品位の高い液晶表示装置を
高歩留まりで生産することが可能となった。
As described above, according to the present embodiment, a change in the energy transmittance in the red region caused by a slight change in the cell gap can be achieved by optimizing the refractive index and the film thickness of the alignment film. As a result, interference fringes in the red region, which has conventionally been a problem, can be prevented. For this reason, it has become possible to produce a liquid crystal display device with high display quality at a high yield.

【0021】実施の形態2.本実施の形態では、液晶表
示装置を構成するカラーフィルタの色材の膜厚及び屈折
率が異なる場合について、赤色領域での干渉ムラが見え
にくい範囲の配向膜の膜厚を上記実施の形態1と同様の
方法で計算した。結果を表2に示す。
Embodiment 2 FIG. In the present embodiment, in the case where the thickness and the refractive index of the color material of the color filter constituting the liquid crystal display device are different, the thickness of the alignment film in a range where interference unevenness in the red region is difficult to see is described in the first embodiment. It was calculated in the same way as. Table 2 shows the results.

【0022】[0022]

【表2】 [Table 2]

【0023】カラーフィルタの色材仕様が異なる場合、
配向膜の膜厚の最適値は変化するものの、いずれの場合
も上記実施の形態1において得られた105±30nm
の範囲内であれば、赤色の干渉ムラは見えにくい範囲に
あることがわかった。従って、上記実施の形態1におい
て得られた配向膜の膜厚は、表1に示した条件を備えた
液晶表示装置に限定されるものではなく、広範囲の液晶
表示装置に適用可能であることが明らかである。
When the color material specifications of the color filter are different,
Although the optimum value of the thickness of the alignment film changes, in each case, the value obtained in the above-described first embodiment is 105 ± 30 nm.
It was found that within the range, the red interference unevenness was in a range where it was difficult to see. Therefore, the thickness of the alignment film obtained in the first embodiment is not limited to the liquid crystal display device having the conditions shown in Table 1, but may be applicable to a wide range of liquid crystal display devices. it is obvious.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、配向膜
の屈折率を1. 64±0. 06、膜厚を105±30n
mとすることにより、セルギャップのわずかな変化のた
めに生じる赤色領域(610nm近傍)でのエネルギー
透過率の変動を最小限に抑えることができたので、従来
問題となっていた赤色領域での干渉縞の発生を抑制する
ことが可能となり、表示品位の高い液晶表示装置を高歩
留まりで生産することが可能となった。
As described above, according to the present invention, the refractive index of the alignment film is 1.64 ± 0.06 and the film thickness is 105 ± 30 n.
By setting m, the change in energy transmittance in the red region (around 610 nm) caused by a slight change in the cell gap could be minimized. The occurrence of interference fringes can be suppressed, and a liquid crystal display device with high display quality can be produced with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施の形態におけるアクティブマトリクス
型TFT−LCDの画素電極部分に形成された膜の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of a film formed in a pixel electrode portion of an active matrix type TFT-LCD according to the present embodiment.

【図2】 エネルギー透過率のセルギャップ依存性を示
す図である。
FIG. 2 is a diagram showing the cell gap dependence of the energy transmittance.

【図3】 透過率比の配向膜厚依存性を示す図である。FIG. 3 is a diagram showing the dependency of the transmittance ratio on the orientation film thickness.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一定距離を隔て対向して配置された第1
及び第2の透明絶縁性基板の各対向面上に配向膜が設け
られ、これらの基板間に液晶層が配置された液晶表示装
置において、上記配向膜の屈折率を1. 64±0. 0
6、膜厚を105±30nmとすることにより、上記配
向膜の光学膜厚を174±55. 5nmとしたことを特
徴とする液晶表示装置。
1. A first device arranged opposite to a predetermined distance.
And a liquid crystal display device in which an alignment film is provided on each facing surface of the second transparent insulating substrate and a liquid crystal layer is disposed between these substrates, the refractive index of the alignment film is set to 1.64 ± 0.0.
6. A liquid crystal display device wherein the optical film thickness of the alignment film is 174 ± 55.5 nm by setting the film thickness to 105 ± 30 nm.
【請求項2】 第1の透明絶縁性基板は、その表面に複
数の薄膜トランジスタ、SiN等よりなる絶縁膜及びI
TO等の透明導電膜よりなる画素電極が設けられている
ことを特徴とする請求項1記載の液晶表示装置。
2. The first transparent insulating substrate has a plurality of thin film transistors, an insulating film made of SiN or the like, and
2. The liquid crystal display device according to claim 1, further comprising a pixel electrode made of a transparent conductive film such as TO.
【請求項3】 第2の透明絶縁性基板は、その表面にカ
ラーフィルタ及び透明電極が設けられていることを特徴
とする請求項1または請求項2記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein a color filter and a transparent electrode are provided on a surface of the second transparent insulating substrate.
【請求項4】 一定距離を隔て対向して配置された第1
及び第2の透明絶縁性基板の各対向面上に配向膜が設け
られ、これらの基板間に液晶層が配置された液晶表示装
置の製造方法において、 特定の波長の入射光の透過率が上記液晶層の厚さのわず
かな変化によって変動する現象を最小限に抑えるための
上記配向膜の膜厚の設定方法であって、 上記第1及び第2の透明絶縁性基板の内側に配置された
画素電極、絶縁膜及び上記配向膜、上記液晶層等の全て
の層を特定の波長λの入射光が透過するときのエネルギ
ー透過率Tを、上記配向膜の膜厚または屈折率と上記液
晶層の厚さをパラメータとして求める工程、 横軸を上記液晶層の厚さ、縦軸をエネルギー透過率Tと
した単振動のグラフを、上記配向膜の各膜厚毎に作成す
る工程、 横軸を配向膜膜厚、縦軸をエネルギー透過率Tが示す単
振動の振幅の最大値T max と最小値Tmin を比の形で表
した透過率比Tmax /Tmin としてグラフを作成し、上
記透過率比が最小となる配向膜の膜厚を求める工程を含
むことを特徴とする液晶表示装置の製造方法。
4. A first device disposed opposite to a predetermined distance.
And an alignment film is provided on each opposing surface of the second transparent insulating substrate.
And a liquid crystal display device having a liquid crystal layer disposed between these substrates.
In the method of manufacturing the device, the transmittance of incident light of a specific wavelength is not affected by the thickness of the liquid crystal layer.
To minimize the phenomenon that fluctuates due to kana change
A method for setting the thickness of the alignment film, wherein the alignment film is disposed inside the first and second transparent insulating substrates.
All of the pixel electrode, insulating film and the above alignment film, the above liquid crystal layer, etc.
Energy when incident light of a specific wavelength λ passes through the layer
-The transmittance T is calculated based on the thickness or refractive index of the alignment film and the liquid
The thickness of the crystal layer as a parameter, the horizontal axis represents the thickness of the liquid crystal layer, and the vertical axis represents the energy transmittance T.
A graph of the simple vibration is created for each film thickness of the alignment film.
The horizontal axis represents the thickness of the alignment film, and the vertical axis represents the energy transmittance T.
Maximum value T of vibration amplitude maxAnd the minimum value TminIn the form of a ratio
Transmittance ratio Tmax/ TminCreate the graph as
A step of determining the thickness of the alignment film that minimizes the transmittance ratio.
A method for manufacturing a liquid crystal display device.
【請求項5】 特定の波長として、赤色領域である61
0nmを入力することを特徴とする請求項4記載の液晶
表示装置の製造方法。
5. The specific wavelength is 61 in the red region.
5. The method according to claim 4, wherein 0 nm is input.
JP3439899A 1999-02-12 1999-02-12 Liquid crystal display device and its production Pending JP2000231109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3439899A JP2000231109A (en) 1999-02-12 1999-02-12 Liquid crystal display device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3439899A JP2000231109A (en) 1999-02-12 1999-02-12 Liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
JP2000231109A true JP2000231109A (en) 2000-08-22

Family

ID=12413090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3439899A Pending JP2000231109A (en) 1999-02-12 1999-02-12 Liquid crystal display device and its production

Country Status (1)

Country Link
JP (1) JP2000231109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308770A2 (en) * 2001-10-31 2003-05-07 Optrex Corporation Liquid crystal display element
JP2006171673A (en) * 2004-12-17 2006-06-29 Samsung Electronics Co Ltd Thin film transistor display panel and liquid crystal display
US8896789B2 (en) 2011-05-13 2014-11-25 Fujifilm Corporation Optical film, polarizing plate, image display device, and 3D image display system
US9279993B2 (en) 2011-11-01 2016-03-08 Fujifilm Corporation Optical film, polarizing plate, picture display apparatus, and 3D picture display system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308770A2 (en) * 2001-10-31 2003-05-07 Optrex Corporation Liquid crystal display element
EP1308770A3 (en) * 2001-10-31 2003-09-24 Optrex Corporation Liquid crystal display element
JP2006171673A (en) * 2004-12-17 2006-06-29 Samsung Electronics Co Ltd Thin film transistor display panel and liquid crystal display
US7332743B2 (en) 2004-12-17 2008-02-19 Samsung Electronics Co., Ltd. Thin film transistor array panel and liquid crystal display
US8896789B2 (en) 2011-05-13 2014-11-25 Fujifilm Corporation Optical film, polarizing plate, image display device, and 3D image display system
US9279993B2 (en) 2011-11-01 2016-03-08 Fujifilm Corporation Optical film, polarizing plate, picture display apparatus, and 3D picture display system

Similar Documents

Publication Publication Date Title
US5548429A (en) Process for producing liquid crystal device whereby curing the sealant takes place after pre-baking the substrates
KR20020015046A (en) Liquid crystal display and method for producing the same
JPH06194639A (en) Liquid crystal display panel
WO2014206031A1 (en) Display panel, manufacturing method of same, and display device comprising same
WO2018126704A1 (en) Display panel, preparation method therefor, and display device
JP2001075090A (en) Manufacture of liquid crystal display device
KR20030032453A (en) liquid crystal display devices
JP2000231109A (en) Liquid crystal display device and its production
JPH11174427A (en) Liquid crystal display device and liquid crystal projector
KR20050004439A (en) A coated optical film, the fabrication method and the using of lcd
JP2001117101A (en) Liquid crystal display element and its manufacturing method
JP3017966B2 (en) Double super twist nematic liquid crystal display
JP2945893B1 (en) Liquid crystal display
KR100599618B1 (en) manufacturing method of liquid crystal device
JP2007033588A (en) Liquid crystal display element and liquid crystal projector
KR100815895B1 (en) Method For Fabricating A Ferroelectric Liquid Crystal Display Device
JPH05323309A (en) Active matrix type liquid crystal display element
JPH06273773A (en) Ferroelectric liquid crystal display device
JP2009216980A (en) Method of manufacturing liquid crystal device
JPH112809A (en) Liquid crystal display device and its manufacture
WO2005019918A1 (en) A color filter sheet structure and method thereof
JPS61114225A (en) Liquid crystal display panel
KR100257975B1 (en) Large viewing angle liquid crystal display device
JPH11133411A (en) Liquid crystal display device
JPS6233575B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071109

A131 Notification of reasons for refusal

Effective date: 20080325

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080516

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A02