JP2000227313A - Transmitted wavefront measuring instrument using reflecting mirror - Google Patents

Transmitted wavefront measuring instrument using reflecting mirror

Info

Publication number
JP2000227313A
JP2000227313A JP11029877A JP2987799A JP2000227313A JP 2000227313 A JP2000227313 A JP 2000227313A JP 11029877 A JP11029877 A JP 11029877A JP 2987799 A JP2987799 A JP 2987799A JP 2000227313 A JP2000227313 A JP 2000227313A
Authority
JP
Japan
Prior art keywords
mirror
light
incident light
same direction
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11029877A
Other languages
Japanese (ja)
Inventor
Kazuo Aoki
和男 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11029877A priority Critical patent/JP2000227313A/en
Publication of JP2000227313A publication Critical patent/JP2000227313A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily measure various transmitted wave fronts, such as planar wave fronts, spheric wave fronts, aspheric wave fronts, etc., with accuracy by constituting a reflecting mirror of a mirror which reflects light in the same direction as that of incident light. SOLUTION: As a reflecting mirror which reflects a wave front transmitted through a single lens body or an optical system, such a mirror as the micro corner-cube mirror, rectangular mirror, etc., which reflects light in the same direction as that of incident light is used. The micro corner-cube mirror is composed of a plurality of corner-cube mirrors and has an apex angle of, for example, 90 deg.. Therefore, the mirror can reflect light in the same direction as that of incident light though the phase is shifted from the incident angle. In addition, the phase shifting amount can be reduced by adjusting the diameters of the corner cubes. The rectangular mirror can reflect light in the same direction as that of the incident light though the phase is linearly shifted from the incident light, because rectangular V-grooves are arranged on the mirror.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はレンズ単体あるいは
複数のレンズで構成された光学系の透過波面を測定する
装置および方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring a transmitted wavefront of an optical system composed of a single lens or a plurality of lenses.

【0002】[0002]

【従来の技術】従来からレンズ単体あるいは複数のレン
ズで構成された光学系の透過波面(波面形状)はレーザ
干渉計を用いて測定されている。図3および図4に従来
の技術による透過波面の測定装置の概略図を示す。先
ず、図4に記された方法を説明する。レーザ干渉計1を
用いて透過波面を測定する場合は、レーザ光源からのレ
ーザ光の光路に被検物3への入射光を基準となる平面波
に矯正する光学系を配置し、この光路おける光学系の延
長線上に被検物3を配置し、参照レンズの参照平面4か
らの反射光と折り返しミラー5により反射した被検レン
ズの透過光との間で生じる干渉縞の本数(通常、ニュー
トン本数と呼ばれる)を、例えばモニター6上で測定す
ることによって、被検物3の透過波面を測定していた。
しかしながら、図4に示す装置を用いて非球面を有する
レンズを透過する波面を測定しようとすると、透過波面
の収差が大きくなって干渉縞の形成・測定が困難であっ
た。また、球面を有するレンズであっても、曲率が大き
くなると収差を生じやすくなり、正確な測定が困難であ
った。そこで、曲率の大きい球面や非球面のレンズの透
過波面を測定する時には、被検物の収差を補正するため
に図3に示す様なヌルレンズ2を用いたり、折り返し反
射ミラーを透過波面に対応した反射面形状にしていた。
2. Description of the Related Art Conventionally, the transmitted wavefront (wavefront shape) of an optical system composed of a single lens or a plurality of lenses has been measured using a laser interferometer. FIGS. 3 and 4 are schematic views of a transmission wavefront measuring apparatus according to the prior art. First, the method shown in FIG. 4 will be described. When measuring the transmitted wavefront using the laser interferometer 1, an optical system for correcting the incident light to the test object 3 into a plane wave serving as a reference is arranged in the optical path of the laser light from the laser light source, and the optical path in this optical path is adjusted. The test object 3 is arranged on an extension of the system, and the number of interference fringes (usually Newton number) generated between the reflected light from the reference plane 4 of the reference lens and the transmitted light of the test lens reflected by the folding mirror 5 Is measured on the monitor 6, for example, to measure the transmitted wavefront of the test object 3.
However, when trying to measure a wavefront transmitted through a lens having an aspherical surface using the apparatus shown in FIG. 4, the aberration of the transmitted wavefront becomes large, and it is difficult to form and measure interference fringes. Further, even with a lens having a spherical surface, if the curvature is large, aberrations are likely to occur, and accurate measurement is difficult. Therefore, when measuring the transmitted wavefront of a spherical or aspherical lens having a large curvature, a null lens 2 as shown in FIG. 3 was used to correct the aberration of the test object, or the folded reflecting mirror was adapted to the transmitted wavefront. It had a reflective surface shape.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ヌルレ
ンズにしても、折り返し反射ミラーにしても、1つの被
検物の測定に対して専用に必要となるために製造上の負
担が大きく、また測定毎のアライメントにも労力が必要
になり、問題となっていた。また、被検物への入射光が
平面、球面あるいは非球面のように様々な形状を有する
光学部品(レンズ)単体およびそれらにより構成された
光学系の透過波面を干渉光として形成し、それらを単一
な測定装置を用いて測定することは光学調整が煩雑なり
非常に困難であった。本発明は、この問題を解決し、平
面、球面あるいは非球面のような様々な透過波面を簡易
に精度良く測定する装置を提供することを目的とする。
However, whether a null lens or a reflecting mirror is used, a dedicated load is required for the measurement of one test object, so that the burden on manufacturing is large. Alignment also requires labor, which has been a problem. In addition, the incident light on the test object is formed as interference light by forming a single optical component (lens) having various shapes such as a flat surface, a spherical surface, or an aspherical surface and a transmitted wavefront of an optical system constituted by the components. It was very difficult to perform measurement using a single measuring device because of complicated optical adjustment. An object of the present invention is to solve this problem and to provide an apparatus for simply and accurately measuring various transmitted wavefronts such as a plane, a spherical surface, and an aspherical surface.

【0004】[0004]

【課題を解決するための手段】本発明では、上記課題を
解決するために、以下の手段を用いている。第1の手段
として、干渉計、参照面、および被検物を透過した波面
を折りかえすための折り返しミラーを有する透過波面の
測定装置に対して、折り返しミラーが入射光と同一の方
向に光を反射するミラーからなることとした。これによ
って被検物に応じてヌルレンズを設計・製作したり、被
検物を透過した波面の形状に応じて折り返しミラーを設
計・製作する必要がなくなる。
According to the present invention, the following means are used to solve the above-mentioned problems. As a first means, for a transmitted wavefront measuring device having an interferometer, a reference surface, and a turning mirror for turning the wavefront transmitted through the test object, the turning mirror transmits light in the same direction as the incident light. It is made of a reflecting mirror. This eliminates the need to design and manufacture a null lens according to the test object, and to design and manufacture a folding mirror according to the shape of the wavefront transmitted through the test object.

【0005】第2の手段として、第1の手段を実施する
際に、折り返しミラーが微小コーナーキューブミラーか
らなることとした。この手段によって、簡単に、精度の
良い、手段1に必要な折り返しミラーが得られ、性能の
良い測定装置が安価に得られる。第3の手段として、第
1の手段を実施する際に、折り返し反射ミラーが直角ミ
ラーで構成されたこととした。これにより、簡単に、安
価に手段1に必要な折り返しミラーが得られ、性能の良
い測定装置が安価に得られる。
[0005] As a second means, when implementing the first means, the folding mirror is made of a minute corner cube mirror. By this means, a highly accurate folding mirror required for the means 1 can be easily obtained, and a high-performance measuring device can be obtained at low cost. As a third means, when implementing the first means, the return reflecting mirror is constituted by a right-angle mirror. As a result, a folding mirror required for the means 1 can be obtained easily and inexpensively, and a high-performance measuring device can be obtained at low cost.

【0006】第4の手段として、第1又は2又3の手段
の測定装置に対して、干渉計あるいは被検物からの光を
平面波に矯正する光学系を有することとした。これによ
って、測定時のアライメントが容易になる。
As a fourth means, the measuring apparatus of the first or second or third means has an interferometer or an optical system for correcting light from the test object into a plane wave. This facilitates alignment during measurement.

【0007】[0007]

【発明の実施の形態】本発明の基本的な技術的思想は、
折り返しミラーとして入射する方向に光を反射する特性
のものを用いれば、被検物に収差があっても干渉縞が実
用的な範囲で十分形成・観察される、というものであ
る。このため、本発明ではレンズ単体あるいは光学系を
透過した波面を反射させる折り返しミラーに微小コーナ
ーキューブミラーあるいは直角ミラー等の入射光と同一
の方向に光を反射するミラーを用いる。微小コーナーキ
ューブミラーは図2(a)に示す様に複数のコーナーキ
ューブからなり、その頂角は90°を有している。その
ため入射光と位相はずれるものの同一の方向に光を反射
することができる。また、この位相のずれ量はコーナー
キューブの径により小さくすることができるため、単一
のコーナーキューブの径は0.1〜10mm程度が好まし
い。一方、直角ミラーは図2(b)に示す様に直角なV
溝を配置している。そのため線状ではあるが入射光と位
相はずれるものの同一の方向に反射することができる。
また、この位相のずれ量はV溝を小さくすることができ
るため、単一のV溝の幅は0.1〜10mm程度が好まし
い。折り返しミラーの作製方法は立方体を重ねあわせて
作製するか、または金型を作製し、樹脂成型で成形した
り、ガラス材を加熱して軟化させ成形することによって
行う。以上の様な折り返しミラーを用いることにより、
透過波面の測定装置において、装置に起因する収差およ
び被検物の透過波面に収差が乗っていたとしても折り返
しミラーで全て反射されるため、干渉光を再現性良く形
成することができる。したがって、煩雑な光学調整をし
なくともレンズ単体あるいは光学系の透過波面を測定、
評価することが可能となる。また、従来は専用に必要で
あったヌルレンズも不要になり、作業性が向上した。以
下に本発明の装置を用いた透過波面測定の手順を示す。 1)折り返しミラー調整:ティルト調整と撮像素子1画
素よりも小さくなるように距離を調整する。 2)サンプル測定:参照面を走査して画像を取り込み測
定する。 以上により、測定精度p-v λ/2程度の測定が可能となっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic technical idea of the present invention is as follows.
If a folding mirror having a characteristic of reflecting light in the incident direction is used, interference fringes can be sufficiently formed and observed within a practical range even if the test object has aberration. For this reason, in the present invention, a mirror that reflects light in the same direction as incident light, such as a minute corner cube mirror or a right angle mirror, is used as a lens alone or a folding mirror that reflects a wavefront transmitted through the optical system. The small corner cube mirror is composed of a plurality of corner cubes as shown in FIG. 2A, and has a vertical angle of 90 °. Therefore, the light can be reflected in the same direction although the phase is shifted from the incident light. Also, since the amount of this phase shift can be reduced by the diameter of the corner cube, the diameter of a single corner cube is preferably about 0.1 to 10 mm. On the other hand, the right-angle mirror has a right-angle V as shown in FIG.
The groove is arranged. Therefore, although it is linear, it can be reflected in the same direction although it is out of phase with the incident light.
Also, since the amount of this phase shift can reduce the V-groove, the width of a single V-groove is preferably about 0.1 to 10 mm. The folding mirror is manufactured by stacking cubes or by manufacturing a mold and molding it by resin molding, or by heating and softening a glass material to form it. By using the above-mentioned folding mirror,
In the transmitted wavefront measuring device, even if the aberration caused by the device and the transmitted wavefront of the test object have an aberration, they are all reflected by the return mirror, so that the interference light can be formed with good reproducibility. Therefore, the transmitted wavefront of the lens alone or the optical system can be measured without complicated optical adjustment,
It becomes possible to evaluate. Further, a null lens, which was conventionally required for exclusive use, is no longer necessary, thereby improving workability. The procedure of the transmitted wavefront measurement using the apparatus of the present invention will be described below. 1) Folding mirror adjustment: Adjusting the tilt and the distance so as to be smaller than one pixel of the image sensor. 2) Sample measurement: Scan a reference surface to capture an image and measure it. As described above, measurement with a measurement accuracy of about pv λ / 2 has become possible.

【0008】[0008]

【発明の効果】本発明によれば、平面、球面あるいは非
球面のような様々な透過波面を簡易に精度良く測定する
ことができる。
According to the present invention, various transmitted wavefronts such as flat, spherical and aspherical surfaces can be easily and accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の概念図FIG. 1 is a conceptual diagram of the apparatus of the present invention.

【図2】本発明の折り返しミラーの例 (a)微小キューブミラー、(b)直角V溝ミラーFIG. 2 shows an example of a folding mirror according to the present invention. (A) Micro cube mirror, (b) Right-angle V-groove mirror

【図3】従来の技術における透過波面測定装置の概念図
FIG. 3 is a conceptual diagram 1 of a transmitted wavefront measuring apparatus according to a conventional technique.

【図4】従来の技術における透過波面測定装置の概念図
FIG. 4 is a conceptual diagram 2 of a transmitted wavefront measuring apparatus according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 ・・・・ 干渉計 2 ・・・・ ヌルレンズ 3 ・・・・ 被検物 4 ・・・・ 参照平面 5 ・・・・ 折り返しミラー 6 ・・・・ モニター 7 ・・・・ 本発明の折り返しミラー DESCRIPTION OF SYMBOLS 1 ... Interferometer 2 ... Null lens 3 ... Test object 4 ... Reference plane 5 ... Reflecting mirror 6 ... Monitor 7 ... Reflecting of the present invention mirror

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 干渉計、参照面、および被検物を透過し
た波面を折りかえすための折り返しミラーを有する透過
波面の測定装置であって、前記折り返しミラーが入射光
と同一の方向に光を反射するミラーからなることを特徴
とする測定装置。
An apparatus for measuring a transmitted wavefront having an interferometer, a reference surface, and a turning mirror for turning a wavefront transmitted through a test object, wherein the turning mirror transmits light in the same direction as incident light. A measuring device comprising a reflecting mirror.
【請求項2】 前記ミラーが微小コーナーキューブミ
ラーからなることを特徴とする請求項1に記載の測定装
置。
2. The measuring device according to claim 1, wherein said mirror is a minute corner cube mirror.
【請求項3】 前記ミラーが直角ミラーで構成された
ことを特徴とする請求項1に記載の測定装置。
3. The measuring device according to claim 1, wherein the mirror is a right-angle mirror.
【請求項4】 請求項1又は2又3に記載の測定装置で
あって、干渉計あるいは被検物からの光を平面波に矯正
する光学系を有することを特徴とする測定装置。
4. The measuring apparatus according to claim 1, further comprising an interferometer or an optical system for correcting light from the test object into a plane wave.
JP11029877A 1999-02-08 1999-02-08 Transmitted wavefront measuring instrument using reflecting mirror Pending JP2000227313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11029877A JP2000227313A (en) 1999-02-08 1999-02-08 Transmitted wavefront measuring instrument using reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11029877A JP2000227313A (en) 1999-02-08 1999-02-08 Transmitted wavefront measuring instrument using reflecting mirror

Publications (1)

Publication Number Publication Date
JP2000227313A true JP2000227313A (en) 2000-08-15

Family

ID=12288220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11029877A Pending JP2000227313A (en) 1999-02-08 1999-02-08 Transmitted wavefront measuring instrument using reflecting mirror

Country Status (1)

Country Link
JP (1) JP2000227313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522468A (en) * 2004-02-11 2007-08-09 キネテイツク・リミテツド Surface shape measuring apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522468A (en) * 2004-02-11 2007-08-09 キネテイツク・リミテツド Surface shape measuring apparatus and method
US7907262B2 (en) 2004-02-11 2011-03-15 Qinetiq Limited Surface shape measurement apparatus and method

Similar Documents

Publication Publication Date Title
KR100225923B1 (en) Phase shifting diffraction interferometer
CN102052902B (en) High-precision wide-range low-coherent interference shift demodulation device and demodulation method thereof
JPS62168008A (en) Measuring instrument for aspherical shape
CN101793500A (en) Method and device for measuring central thickness of differential confocal lens
US20220187161A1 (en) Deflectometry Measurement System
US10989524B2 (en) Asymmetric optical interference measurement method and apparatus
CN110779443B (en) Edge sensor for splicing mirror surface based on interference principle and working method thereof
JPS61178635A (en) Interference apparatus for measuring wave front aberration
CN102798353A (en) Measuring method of axicon transmission wave surface
CN103471561B (en) A kind of three-dimensional small-angle and method
US4762417A (en) Fringe scanning point diffraction interferometer by polarization
JP2002250622A (en) Shape-measuring method and device for optical element, and its type
JP2003050185A (en) Method for absolute calibration of interferometer
JP2000227313A (en) Transmitted wavefront measuring instrument using reflecting mirror
CN109458944A (en) The absolute verifying attachment of plane and its detection method based on synchronous conjugation differential interferometry
Gomez et al. Micro-optic reflection and transmission interferometer for complete microlens characterization
US8294904B2 (en) Fizeau lens having aspheric compensation
CN205642307U (en) Long -range shape of face measuring apparatu
JPS63241435A (en) Interferometer
CN114199521B (en) Optical lens parameter measuring device and method
CN116608792B (en) Wavefront interferometry system and method
CN212620587U (en) Long-distance angle focusing device suitable for optical and similar measurement systems
US8416420B1 (en) Computer generated hologram (ICGH) null
RU2467285C1 (en) Device for twist angle measurement
CN114199520B (en) Device and method for measuring parameters of optical lens