JP2000220576A - Control valve for variable displacement compressor - Google Patents

Control valve for variable displacement compressor

Info

Publication number
JP2000220576A
JP2000220576A JP11021440A JP2144099A JP2000220576A JP 2000220576 A JP2000220576 A JP 2000220576A JP 11021440 A JP11021440 A JP 11021440A JP 2144099 A JP2144099 A JP 2144099A JP 2000220576 A JP2000220576 A JP 2000220576A
Authority
JP
Japan
Prior art keywords
valve
opening
pressure
chamber
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021440A
Other languages
Japanese (ja)
Other versions
JP3899719B2 (en
Inventor
Takeshi Mizufuji
健 水藤
Masaki Ota
太田  雅樹
Hiroshi Ataya
拓 安谷屋
Akira Matsubara
亮 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP02144099A priority Critical patent/JP3899719B2/en
Priority to EP00101797A priority patent/EP1024286A3/en
Publication of JP2000220576A publication Critical patent/JP2000220576A/en
Application granted granted Critical
Publication of JP3899719B2 publication Critical patent/JP3899719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Abstract

PROBLEM TO BE SOLVED: To simplify the structure of a control valve in carrying out the OFF- side control and the ON-side control of the compressor of a variable displacement swash plate type by one control valve. SOLUTION: Inside the valve housing 51 of a control valve 51, an opening/ closing valve mechanism 60 for controlling the opening/closing of an air supply passage 28 for communicating a discharge chamber 22 with a crank chamber 5, and an adjust valve mechanism 70 for optionally adjusting the opening degree of an air extracting passage 27 for communicating a suction chamber 21 with the crank chamber 5 are incorporated to operate independently of each other. One coil 85 is shared b the first plunger 82 of the opening/closing valve mechanism and the second plunger 83 of the adjust valve mechanism. An adjust valve body 73 and a pressure sensitive member (bellows) 76 constituting the adjust valve mechanism are arranged in the same chamber 71, to which suction pressure Ps is applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クランク室の内圧
制御に基づいて斜板の傾角を変更し吐出容量を調節可能
な容量可変型圧縮機に用いられる制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control valve used in a variable displacement compressor capable of changing a tilt angle of a swash plate based on control of an internal pressure of a crank chamber to adjust a discharge capacity.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】一般
に容量可変型斜板式圧縮機の吐出容量は、クランク室の
内圧制御に基づき斜板角度を変更することにより調節さ
れる。クランク室内圧の制御方式の一つに抜き側制御が
ある。これは、吐出圧相当の高圧冷媒ガスをクランク室
に常に一定量供給することを前提としてクランク室から
のガス放出量を制御することでクランク圧(Pc)を調
節する制御方式である。かかる純粋な抜き側制御ではク
ランク圧の迅速な昇圧を図ることが困難であり、このこ
とが吐出容量の可変制御性の悪さ(即ち応答遅延)の一
因となっていた。このような純粋な抜き側制御の欠点を
克服すべく、抜き側制御弁機構と入れ側制御弁機構とを
併せ持つ制御弁が従来より提案されており、例えば、特
開平5−99136号公報及び特開平10−10324
9号公報にそれぞれ開示の制御弁がある。
2. Description of the Related Art Generally, the displacement of a variable displacement swash plate type compressor is adjusted by changing the swash plate angle based on the internal pressure control of a crank chamber. One of the control methods of the pressure in the crank chamber is a pull-out control. This is a control method in which the crank pressure (Pc) is adjusted by controlling the amount of gas released from the crank chamber on the assumption that a constant amount of high-pressure refrigerant gas equivalent to the discharge pressure is always supplied to the crank chamber. It is difficult to increase the crank pressure quickly by such pure control on the removal side, which has been one of the causes of poor variable control of the discharge capacity (that is, response delay). In order to overcome such drawbacks of pure pull-out control, a control valve having both a pull-side control valve mechanism and an inlet-side control valve mechanism has been conventionally proposed. For example, Japanese Patent Application Laid-Open No. 5-99136 discloses a control valve. Kaihei 10-10324
No. 9 has a control valve disclosed therein.

【0003】特開平5−99136号公報に開示の制御
弁は、圧縮機の吐出室とクランク室とを連通する第1連
通路を開閉制御する第1弁体232と、クランク室と吸
入室とを連通する第2連通路を開閉制御する第2弁体2
35と、両弁体を作動させるべく電磁駆動される共通の
伝達ロッドとを備え、その伝達ロッドの移動量に応じて
第1及び第2弁体の作動領域を完全分離して両弁が同時
に開弁しないような構成を採用する。しかしながら、特
開平5−99136号公報の制御弁では、略環状の第2
弁体235に対し前記伝達ロッドを相対摺動可能に内挿
しているため、第2弁体235が弁座部231bに着座
した後も、その弁体と伝達ロッドとの摺接部位のシール
性が不充分となりがちなために、クランク室から吸入室
へのガス漏れが避け難いという欠点がある。
[0003] The control valve disclosed in Japanese Patent Application Laid-Open No. 5-99136 discloses a first valve element 232 that controls opening and closing of a first communication passage that connects a discharge chamber and a crank chamber of a compressor, a crank chamber and a suction chamber. Valve body 2 that controls the opening and closing of a second communication passage that communicates
35, and a common transmission rod that is electromagnetically driven to operate both the valve bodies. The operation areas of the first and second valve bodies are completely separated according to the amount of movement of the transmission rod, so that both valves are simultaneously operated. Use a configuration that does not open the valve. However, the control valve disclosed in Japanese Patent Application Laid-Open No. 5-99136 discloses a substantially annular second valve.
Since the transmission rod is inserted into the valve body 235 so as to be relatively slidable, even after the second valve body 235 is seated on the valve seat portion 231b, the sealing property of the sliding contact portion between the valve body and the transmission rod is maintained. However, there is a disadvantage that gas leakage from the crank chamber to the suction chamber is inevitable.

【0004】他方、特開平10−103249号公報に
開示の制御弁は、吐出圧領域とクランク室とを繋ぐ給気
通路を開閉制御する開閉弁体90及びそれに一体化され
た開閉ロッド91と、クランク室と吸入圧領域とを繋ぐ
抽気通路の開度を調節する調整弁体102及びそれに一
体化された調整ロッド100とを備え、開閉ロッド91
内に調整ロッド100を相対移動可能に嵌挿して両弁体
90,102を独立に作動可能とすると共に、両ロッド
の下端部にそれぞれプランジャを設け、各プランジャを
共通のコイルによって電磁付勢可能としている。この特
開平10の制御弁によれば、各弁体が対応する弁座部に
着座する限り、前記特開平5の制御弁のような弁体とロ
ッドの間からのガス漏れという問題は存在しない。
On the other hand, a control valve disclosed in Japanese Patent Application Laid-Open No. 10-103249 includes an on-off valve body 90 for opening and closing an air supply passage connecting a discharge pressure region and a crank chamber, and an on-off rod 91 integrated therewith. An opening / closing rod 91 comprising an adjusting valve body 102 for adjusting the opening of a bleed passage connecting the crank chamber and the suction pressure region, and an adjusting rod 100 integrated therewith;
The two rods 90 and 102 can be operated independently by inserting an adjusting rod 100 therein so as to be relatively movable, and plungers are provided at lower ends of both rods, and each plunger can be electromagnetically biased by a common coil. And According to the control valve disclosed in Japanese Patent Application Laid-Open No. Hei 10 (1998), there is no problem of gas leakage from between the valve element and the rod as in the control valve described in Japanese Patent Application Laid-Open No. Hei 5 (1995) as long as each valve element is seated on the corresponding valve seat. .

【0005】ただし、特開平10−103249号公報
は、特殊なクラッチレスタイプの容量可変型斜板式圧縮
機用の制御弁構成を提案しているに過ぎない。即ち、そ
の圧縮機は、駆動軸の内端部領域に吸入通路42と吸入
室47との連通を遮断可能な遮断体38を備え、その遮
断体38による遮断動作に基づいて外部冷媒回路での冷
媒の流れを停止させるものである。遮断体38によって
吸入通路42と吸入室47との連通を阻止した場合に、
二つの吸入圧領域(即ち42と47)が現われる。それ
故、その圧縮機に組み込まれる制御弁においても、上流
側にある吸入通路42の一次吸入圧Pseをサンプリン
グするための感圧室96と、下流側にある吸入室47
(二次吸入圧Psc)に連通する調整弁室95とを別々
に設けて両室95,96を隔壁によって互いに隔絶し、
制御弁内部を介して吸入通路42と吸入室47とが直接
連通しないように配慮している。このため、前記両室9
5,96間の隔壁を貫通して設けなければならない感圧
ロッド106のロッドクリアランスの管理には慎重を期
する必要があるなど、製造管理及びコストの両面で不利
は否めない。
However, Japanese Patent Laid-Open No. 10-103249 merely proposes a control valve configuration for a special clutchless type variable displacement swash plate type compressor. That is, the compressor is provided with a blocking member 38 capable of blocking the communication between the suction passage 42 and the suction chamber 47 in the inner end region of the drive shaft, and based on the blocking operation by the blocking member 38, an external refrigerant circuit is provided. This is to stop the flow of the refrigerant. When the communication between the suction passage 42 and the suction chamber 47 is blocked by the blocking body 38,
Two suction pressure regions (ie, 42 and 47) appear. Therefore, also in the control valve incorporated in the compressor, the pressure sensing chamber 96 for sampling the primary suction pressure Pse of the suction passage 42 on the upstream side and the suction chamber 47 on the downstream side are sampled.
And a regulating valve chamber 95 communicating with the (secondary suction pressure Psc) is provided separately, and both chambers 95 and 96 are separated from each other by a partition.
Care is taken to prevent the suction passage 42 and the suction chamber 47 from directly communicating with each other via the inside of the control valve. For this reason, the two rooms 9
It is necessary to exercise caution in the management of the rod clearance of the pressure-sensitive rod 106 that must be provided through the partition wall between 5,96.

【0006】本発明の目的は、遮断体を備えない一般的
な容量可変型圧縮機に対しても適用可能であると共に、
従来の制御弁よりも構造が簡素で製造し易くコスト的に
も有利な、抜き側制御弁機構と入れ側制御弁機構とを併
せ持つ容量可変型圧縮機の制御弁を提供することにあ
る。
The object of the present invention is applicable to a general variable displacement compressor having no blocker,
An object of the present invention is to provide a control valve of a variable displacement compressor having both a pull-out control valve mechanism and an inlet-side control valve mechanism, which has a simpler structure, is easier to manufacture, and is more cost effective than conventional control valves.

【0007】[0007]

【課題を解決するための手段】本件の要旨は請求項1,
2,3,4及び5にそれぞれ記載した通りである。請求
項1の制御弁によれば、バルブハウジング内に開閉弁機
構と調整弁機構とを各々独立して作動可能に組み込むこ
とで、両機構が同一制御弁内で各々の機能を担保しつつ
単一構造化される。従って、圧縮機の容量制御構成の簡
素化及び小型化と製造コストの低減が図られる。又、第
1及び第2プランジャに対して1つのコイルを配設しそ
のコイルへの通電によって開閉弁体及び調整弁体を同時
に電磁付勢する構成としたので、そのコイルを両弁機構
の弁体の位置決め制御に共用することができ、構造の簡
略化が図られる。更に、調整弁機構を構成する調整弁体
及び感圧部材の少なくとも二つを吸入圧が及ぶ同じ室内
に配設している。つまり、調整弁体用の弁室と感圧部材
用の感圧室とを区別することなく、両室を兼ねる同じ室
内に調整弁体と感圧部材とを配設している。この点で特
開平10−103249号公報の制御弁よりも部屋数が
少なくて済み、又、隔壁を貫通する必要のある可動ロッ
ドの数も減ることから、製造管理及びコストの両面で本
件の制御弁の方が有利となる。但し、請求項1の制御弁
は、遮断体を備えたクラッチレス圧縮機には適さない。
The gist of the present invention is that of claim 1
As described in 2, 3, 4 and 5, respectively. According to the control valve of the first aspect, the opening / closing valve mechanism and the regulating valve mechanism are independently operably incorporated in the valve housing, so that both mechanisms can simply maintain the respective functions within the same control valve. It is structured. Therefore, simplification and downsizing of the capacity control configuration of the compressor and reduction in manufacturing cost are achieved. Also, since one coil is provided for the first and second plungers and the on-off valve body and the adjustment valve body are simultaneously electromagnetically energized by energizing the coils, the coil is used as a valve of both valve mechanisms. It can be commonly used for body positioning control, and the structure is simplified. Further, at least two of the adjusting valve body and the pressure-sensitive member constituting the adjusting valve mechanism are disposed in the same chamber to which the suction pressure is applied. In other words, the adjustment valve element and the pressure-sensitive member are disposed in the same chamber that serves as both chambers without distinguishing between the valve chamber for the adjustment valve element and the pressure-sensitive chamber for the pressure-sensitive member. In this respect, the number of rooms is smaller than that of the control valve disclosed in JP-A-10-103249, and the number of movable rods that need to penetrate the partition wall is also reduced. Valves are more advantageous. However, the control valve of claim 1 is not suitable for a clutchless compressor having a shutoff.

【0008】請求項2の制御弁によれば、開閉弁機構の
開閉弁体と第1プランジャとを連結するロッドと、調整
弁機構の調整弁体と第2プランジャとを連結するロッド
との二つのロッドのうちの一方を筒状に形成するととも
に、その一方のロッド内に他方のロッドを相対移動可能
に嵌挿した。このため、両弁機構の各弁体をそれらのプ
ランジャの一側方に近接配置することができ、二つの弁
機構を備えた制御弁の軸線方向への大型化を抑制でき
る。又、前記コイルをバルブハウジングの端部に配置す
ることができるため、制御弁を圧縮機のハウジング内に
組み込む際に、コイル部を圧縮機ハウジングの外に露出
した状態で組み込むことができ、コイルに対する配線作
業が容易となる。なお、この構成は、開閉弁体と調整弁
体の各々の独立作動を許容する具体的構成でもある。
According to the control valve of the second aspect, a rod for connecting the on-off valve body of the on-off valve mechanism to the first plunger and a rod for connecting the adjustment valve body of the adjustment valve mechanism to the second plunger. One of the two rods was formed in a cylindrical shape, and the other rod was fitted into one of the rods so as to be relatively movable. For this reason, each valve body of both valve mechanisms can be arranged close to one side of their plungers, and it is possible to suppress an increase in the size of a control valve having two valve mechanisms in the axial direction. Further, since the coil can be arranged at the end of the valve housing, when the control valve is installed in the housing of the compressor, the coil can be installed in a state where the coil portion is exposed outside the compressor housing. Wiring work becomes easier. Note that this configuration is also a specific configuration that allows the independent operation of each of the on-off valve body and the adjustment valve body.

【0009】請求項3の制御弁によれば、調整弁機構の
調整弁体と感圧部材とを接離可能に連結しているため、
コイルに対する電流の供給が停止され且つ吸入圧が高い
場合でも、感圧部材の変位動作に影響されることなく、
調整弁体を閉止バネの付勢作用によって調整弁孔に接近
する方向に移動させることができる。
According to the control valve of the third aspect, the adjusting valve body of the adjusting valve mechanism and the pressure-sensitive member are connected so as to be able to contact and separate from each other.
Even when the supply of current to the coil is stopped and the suction pressure is high, without being affected by the displacement operation of the pressure-sensitive member,
The adjusting valve body can be moved in a direction approaching the adjusting valve hole by the urging action of the closing spring.

【0010】請求項4の制御弁によれば、開閉弁機構の
開閉弁孔の一端を吐出圧領域に他端をクランク室に連通
させ、開閉弁体と第1プランジャとを連結するロッドの
断面積(S1)を開閉弁孔の開口面積(S2)にほぼ等
しくなるようにしたので、開閉弁体の移動方向両側の受
圧面積がほぼ等しくなり、該弁体に対して作用する圧力
をほぼ完全に相殺できる。従って、開閉弁体に作用する
圧力が上昇した場合でも、弁体の移動が円滑になる(詳
しくは発明の実施の形態を参照)。
According to the control valve of the fourth aspect, one end of the on-off valve hole of the on-off valve mechanism is communicated with the discharge pressure region at the other end, and the rod connecting the on-off valve body and the first plunger is cut off. Since the area (S1) is made substantially equal to the opening area (S2) of the on-off valve hole, the pressure receiving areas on both sides in the moving direction of the on-off valve element become almost equal, and the pressure acting on the valve element is almost completely reduced. Can be offset. Therefore, even when the pressure acting on the on-off valve body increases, the movement of the valve body becomes smooth (for details, refer to the embodiment of the invention).

【0011】なお、請求項5は、本発明の制御弁が特に
クラッチ付きの容量可変型圧縮機に適する旨を明確化し
たものである。
[0011] Claim 5 clarifies that the control valve of the present invention is particularly suitable for a variable displacement compressor with a clutch.

【0012】[0012]

【発明の実施の形態】以下に本発明をクラッチ付きの容
量可変型斜板式圧縮機に組み込まれる容量制御弁に具体
化した一実施形態を図1及び図2を参照しつつ説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a displacement control valve incorporated in a variable displacement swash plate type compressor with a clutch will be described below with reference to FIGS.

【0013】(圧縮機本体の概要)図1に示すように、
斜板式圧縮機は、シリンダブロック1と、その前端に接
合されたフロントハウジング2と、シリンダブロック1
の後端に弁形成体3を介して接合されたリヤハウジング
4とを備えている。これら1,2,3及び4は、複数の
通しボルト(図示略)により相互に接合固定され、圧縮
機のハウジングを構成する。シリンダブロック1とフロ
ントハウジング2とに囲まれた領域にはクランク室5が
区画されている。クランク室5内には駆動軸6が、ハウ
ジング内に取り付けられた複数のラジアル軸受けによっ
て回転可能に支持されている。シリンダブロック1の中
央凹部内にはコイルバネ7及び後側スラスト軸受け8が
配設されている。他方、クランク室5において駆動軸6
上には回転支持体11が一体回転可能に固定され、この
回転支持体11とフロントハウジング2の内側面との間
には前側スラスト軸受け9が配設されている。駆動軸6
は、バネ7で前方付勢された後側軸受け8と前側軸受け
9とによってスラスト支持されている。
(Outline of Compressor Body) As shown in FIG.
The swash plate compressor includes a cylinder block 1, a front housing 2 joined to a front end thereof, and a cylinder block 1;
And a rear housing 4 joined to the rear end via a valve body 3. These 1, 2, 3, and 4 are joined and fixed to each other by a plurality of through bolts (not shown), and constitute a compressor housing. A crank chamber 5 is defined in a region surrounded by the cylinder block 1 and the front housing 2. A drive shaft 6 is rotatably supported in the crank chamber 5 by a plurality of radial bearings mounted in the housing. A coil spring 7 and a rear thrust bearing 8 are provided in a central concave portion of the cylinder block 1. On the other hand, the drive shaft 6
A rotary support 11 is fixed thereon so as to be integrally rotatable, and a front thrust bearing 9 is disposed between the rotary support 11 and the inner surface of the front housing 2. Drive shaft 6
Is thrust supported by a rear bearing 8 and a front bearing 9 urged forward by a spring 7.

【0014】駆動軸6の前端部は、電磁クラッチ40を
介して外部駆動源としての車輌エンジンEに作動連結さ
れている。電磁クラッチ40は、フロントハウジング2
の前方筒部上にベアリング41により回動可能に支持さ
れたプーリ42と、環状のソレノイドコイル43と、駆
動軸6の前端域にて板バネ44付勢された状態で前後摺
動可能に設けられたアーマチュア45とを備えている。
図1には、板バネ44の付勢力に抗してアーマチュア4
5がプーリ42の端面に接合された状態が示されてい
る。コイル43への通電により生じた電磁力によってア
ーマチュア45がプーリ42の端面に吸引接合される
と、動力伝達ベルト46、プーリ42及びアーマチュア
45を介してエンジンEの駆動力が駆動軸6に伝達され
る。コイル43への通電停止によって電磁力が消失すれ
ば、アーマチュア45は板バネ44の付勢力によってプ
ーリ42から離間し動力伝達が遮断される。このように
コイル43への通電制御に基づきエンジン動力が駆動軸
6に選択的に伝達される。
The front end of the drive shaft 6 is operatively connected to a vehicle engine E as an external drive source via an electromagnetic clutch 40. The electromagnetic clutch 40 is connected to the front housing 2
A pulley 42 rotatably supported by a bearing 41 on a front cylindrical portion of the drive shaft 6, an annular solenoid coil 43, and a front end region of the drive shaft 6 are slidably moved forward and backward while being urged by a leaf spring 44. Armature 45 provided.
FIG. 1 shows the armature 4 against the urging force of the leaf spring 44.
5 shows a state in which 5 is joined to the end face of the pulley 42. When the armature 45 is attracted and joined to the end face of the pulley 42 by electromagnetic force generated by energizing the coil 43, the driving force of the engine E is transmitted to the drive shaft 6 via the power transmission belt 46, the pulley 42 and the armature 45. You. If the electromagnetic force disappears due to the stoppage of the current supply to the coil 43, the armature 45 is separated from the pulley 42 by the urging force of the leaf spring 44, and the power transmission is cut off. As described above, the engine power is selectively transmitted to the drive shaft 6 based on the control of energizing the coil 43.

【0015】更に、クランク室5内にはカムプレートた
る斜板12が収容されている。斜板12の中央部には挿
通孔が貫設され、この挿通孔に駆動軸6が挿通されてい
る。この斜板12は、連結案内機構としてのヒンジ機構
13を介して回転支持体11及び駆動軸6に作動連結さ
れている。ヒンジ機構13は、回転支持体11のリヤ面
に突設されたガイド孔付きの支持アーム14と、斜板1
2のフロント面に突設された球状頭部付きのガイドピン
15とで構成されている。そして、ヒンジ機構13を構
成する支持アーム14とガイドピン15との連係および
斜板12の中央挿通孔内での駆動軸6との接触により、
斜板12は駆動軸6と同期回転可能であると共に、駆動
軸6の軸線方向へのスライドを伴いながら駆動軸6に対
して傾動可能となっている。
Further, a swash plate 12 serving as a cam plate is accommodated in the crank chamber 5. The swash plate 12 has a through hole formed in the center thereof, and the drive shaft 6 is inserted through the through hole. The swash plate 12 is operatively connected to the rotation support 11 and the drive shaft 6 via a hinge mechanism 13 as a connection guide mechanism. The hinge mechanism 13 includes a support arm 14 having a guide hole protruding from a rear surface of the rotary support 11 and a swash plate 1.
2 and a guide pin 15 with a spherical head protruding from the front surface of the second. Then, by the linkage between the support arm 14 and the guide pin 15 constituting the hinge mechanism 13 and the contact with the drive shaft 6 in the central insertion hole of the swash plate 12,
The swash plate 12 is rotatable in synchronization with the drive shaft 6 and is capable of tilting with respect to the drive shaft 6 while sliding the drive shaft 6 in the axial direction.

【0016】回転支持体11と斜板12との間において
駆動軸6上には、コイル状の傾角減少バネ16が設けら
れている。このバネ16は斜板12をシリンダブロック
1に接近する方向(即ち傾角減少方向)に付勢する。斜
板12よりも後方の駆動軸6上にはサークリップ17が
固着され、該サークリップ17は斜板12のそれ以上の
後退を規制することで斜板12の最小傾角(例えば3〜
5°)を決定する。他方、斜板12の最大傾角は、斜板
12のカウンタウェイト部12aが回転支持体11の規
制部11aに当接することで決定される。
A coil-shaped inclination-reducing spring 16 is provided on the drive shaft 6 between the rotary support 11 and the swash plate 12. The spring 16 urges the swash plate 12 in a direction approaching the cylinder block 1 (that is, a direction in which the inclination angle decreases). A circlip 17 is fixed on the drive shaft 6 behind the swash plate 12, and the circlip 17 restricts the swash plate 12 from retreating further, thereby reducing the minimum inclination angle of the swash plate 12 (for example, 3 to 3).
5 °). On the other hand, the maximum inclination angle of the swash plate 12 is determined when the counterweight portion 12a of the swash plate 12 abuts on the regulating portion 11a of the rotary support 11.

【0017】図1に示すように、シリンダブロック1に
は、駆動軸6を取り囲むように複数のシリンダボア1a
(一つのみ図示)が形成され、各シリンダボア1aには
片頭型のピストン18が往復動可能に収容されている。
各ピストン18の端部は一対のシュー19を介して斜板
12の外周部に係留され、ピストン18と斜板12とは
シュー19を介して作動連結されている。
As shown in FIG. 1, the cylinder block 1 has a plurality of cylinder bores 1a surrounding the drive shaft 6.
A single-headed piston 18 is reciprocally accommodated in each cylinder bore 1a.
The end of each piston 18 is moored to the outer periphery of the swash plate 12 via a pair of shoes 19, and the piston 18 and the swash plate 12 are operatively connected via the shoes 19.

【0018】弁形成体3とリヤハウジング4との間に
は、中心域に位置する吸入室21と、それを取り囲む吐
出室22とが区画されている。弁形成体3には各シリン
ダボア1aに対応して、吸入ポート23及び同ポート2
3を開閉する吸入弁24、並びに、吐出ポート25及び
同ポート25を開閉する吐出弁26が形成されている。
吸入ポート23を介して吸入室21と各シリンダボア1
aとが連通され、吐出ポート25を介して各シリンダボ
ア1aと吐出室22とが連通される。
Between the valve body 3 and the rear housing 4, a suction chamber 21 located in a central area and a discharge chamber 22 surrounding the suction chamber 21 are defined. The valve body 3 has a suction port 23 and a port 2 corresponding to each cylinder bore 1a.
3 is formed, and a discharge port 25 for opening and closing the discharge port 25 and a discharge valve 26 for opening and closing the port 25 are formed.
Through the suction port 23, the suction chamber 21 and each cylinder bore 1
a, and each cylinder bore 1 a is communicated with the discharge chamber 22 through the discharge port 25.

【0019】図1の斜板式圧縮機では、エンジンEから
の動力供給により駆動軸6が回転されると、それに伴い
所定角度に傾斜した斜板12が回転する。すると、各ピ
ストン18が斜板の傾角に対応したストロークで往復動
され、各シリンダボア1aでは、吸入室21(吸入圧P
sの領域)からの冷媒ガスの吸入、圧縮、吐出室22
(吐出圧Pdの領域)への圧縮冷媒ガスの吐出が順次繰
り返される。
In the swash plate type compressor shown in FIG. 1, when the drive shaft 6 is rotated by the power supply from the engine E, the swash plate 12 inclined at a predetermined angle is rotated. Then, each piston 18 is reciprocated at a stroke corresponding to the inclination angle of the swash plate, and in each cylinder bore 1a, the suction chamber 21 (suction pressure P
s area), suction and compression of the refrigerant gas from the
The discharge of the compressed refrigerant gas to the (area of the discharge pressure Pd) is sequentially repeated.

【0020】この圧縮機の斜板12の傾角決定要因とし
て、斜板回転時の遠心力に基づく回転運動のモーメント
と、傾角減少バネ16の付勢作用に基づくバネ力による
モーメントと、ガス圧によるモーメントの三つがある。
斜板12の慣性乗積は、前記回転運動のモーメントが常
に傾角増大方向に作用するように設定されている。他
方、ガス圧によるモーメントとは、圧縮行程にあるシリ
ンダボアのピストンに作用する圧縮反力と、吸入行程に
あるシリンダボアの内圧と、ピストン背圧にあたるクラ
ンク室5の内圧(クランク圧Pc)との相互関係に基づ
いて発生するモーメントであり、傾角減少方向に作用す
る。本実施形態では、クランク圧Pcを高めに維持する
ことで、ガス圧によるモーメントと傾角減少バネ16の
バネ力によるモーメントとの和が前記回転運動による傾
角増大方向のモーメントを凌駕し、斜板12を最小傾角
に設定できるように設計されている。又、クランク圧P
cを調節することでガス圧によるモーメントとバネ力に
よるモーメントとの和を前記回転運動のモーメントとバ
ランスさせ、斜板12の傾角を前記最小傾角と最大傾角
との間の任意の角度に設定することができるようになっ
ている。このように、クランク圧Pcの制御に基づいて
斜板12の傾角が決定され、その傾角に応じて各ピスト
ン18のストローク即ち圧縮機の吐出容量が可変調節さ
れる。
The tilt angle of the swash plate 12 of this compressor is determined by the moment of the rotational motion based on the centrifugal force when the swash plate rotates, the moment by the spring force based on the biasing action of the tilt reducing spring 16, and the gas pressure. There are three moments.
The product of inertia of the swash plate 12 is set such that the moment of the rotational motion always acts in the direction of increasing the tilt angle. On the other hand, the moment due to the gas pressure is the mutual reaction between the compression reaction force acting on the piston of the cylinder bore in the compression stroke, the internal pressure of the cylinder bore in the suction stroke, and the internal pressure of the crank chamber 5 (crank pressure Pc) which corresponds to the piston back pressure. This is a moment generated based on the relationship, and acts in the direction of decreasing the tilt angle. In the present embodiment, by maintaining the crank pressure Pc at a high level, the sum of the moment due to the gas pressure and the moment due to the spring force of the inclination reducing spring 16 exceeds the moment in the inclination increasing direction due to the rotational motion, and the swash plate 12 Is designed to be set to the minimum inclination. Also, the crank pressure P
By adjusting c, the sum of the moment due to the gas pressure and the moment due to the spring force is balanced with the moment of the rotational motion, and the inclination angle of the swash plate 12 is set to an arbitrary angle between the minimum inclination angle and the maximum inclination angle. You can do it. Thus, the inclination of the swash plate 12 is determined based on the control of the crank pressure Pc, and the stroke of each piston 18, that is, the displacement of the compressor is variably adjusted according to the inclination.

【0021】図1及び図2に示すように、クランク圧P
cを制御するための機構は、容量制御弁50及び各種通
路27,28及び29によって構成される。即ち、圧縮
機ハウジングには、クランク室5と吸入室21とを接続
する抽気通路27およびクランク室5と吐出室22とを
接続する給気通路28が設けられている。抽気通路27
及び給気通路28の途中には、両通路27,28の連通
開度を各々独立に制御可能な制御弁50が設けられてい
る。尚、抽気通路27及び給気通路28は制御弁50と
クランク室5との間において共通の通路となっている。
又、抽気通路27のうち制御弁50と吸入室21とを繋
ぐ部分は、制御弁50に吸入圧Psを導くための検圧通
路としても機能する。更に圧縮機ハウジングには、給気
通路28とは別に、クランク室5と吐出室22とを接続
する補助給気通路たる連通路29が設けられている。連
通路29はその途中に固定絞り29aを備えている。
As shown in FIGS. 1 and 2, the crank pressure P
The mechanism for controlling c is constituted by a capacity control valve 50 and various passages 27, 28 and 29. That is, the compressor housing is provided with a bleed passage 27 connecting the crank chamber 5 and the suction chamber 21 and an air supply passage 28 connecting the crank chamber 5 and the discharge chamber 22. Bleed passage 27
In the middle of the air supply passage 28, there is provided a control valve 50 capable of independently controlling the opening degree of communication between the two passages 27, 28. The bleed passage 27 and the supply passage 28 are common passages between the control valve 50 and the crank chamber 5.
The portion of the bleed passage 27 connecting the control valve 50 and the suction chamber 21 also functions as a pressure detection passage for guiding the suction pressure Ps to the control valve 50. Further, a communication passage 29 serving as an auxiliary air supply passage connecting the crank chamber 5 and the discharge chamber 22 is provided separately from the air supply passage 28 in the compressor housing. The communication passage 29 has a fixed throttle 29a in the middle thereof.

【0022】(外部冷媒回路及び圧縮機の電子制御構
成)圧縮機の吐出室22と吸入室21とは外部冷媒回路
30を介して接続されている。この外部冷媒回路30は
該圧縮機とともに車輌用空調装置の冷房回路を構成す
る。外部冷媒回路30には、凝縮器(コンデンサ)3
1、温度式の膨張弁32及び蒸発器(エバポレータ)3
3が設けられている。膨張弁32の開度は、蒸発器33
の出口側に設けられた感温筒の検知温度および蒸発圧力
に基づいてフィードバック制御され、膨張弁32は熱負
荷に見合った液冷媒を蒸発器33に供給して外部冷媒回
路30における冷媒流量を調節する。
(External Refrigerant Circuit and Electronic Control of Compressor) The discharge chamber 22 and the suction chamber 21 of the compressor are connected via an external refrigerant circuit 30. The external refrigerant circuit 30 forms a cooling circuit of the vehicle air conditioner together with the compressor. The external refrigerant circuit 30 includes a condenser (condenser) 3
1. Temperature type expansion valve 32 and evaporator (evaporator) 3
3 are provided. The opening degree of the expansion valve 32 is determined by the evaporator 33.
Feedback control is performed based on the detected temperature and the evaporating pressure of the temperature-sensitive cylinder provided on the outlet side, and the expansion valve 32 supplies the liquid refrigerant corresponding to the heat load to the evaporator 33 to control the refrigerant flow rate in the external refrigerant circuit 30. Adjust.

【0023】更に図2に示すように、蒸発器33の近傍
には温度センサ34が設置されている。この温度センサ
34は蒸発器33の温度を検出し、その蒸発器温度情報
を制御コンピュータCに提供する。この制御コンピュー
タCは、車輌用空調装置の冷暖房に関する一切の制御を
司る。制御コンピュータCの入力側には、温度センサ3
4の他に少なくとも、車輌の室内温度を検出する室温セ
ンサ35、車輌の室内温度を設定するための室温設定器
36、空調装置作動スイッチ37およびエンジン回転数
センサ38が接続されている。他方、制御コンピュータ
Cの出力側には、前述の電磁クラッチ40のソレノイド
コイル43への通電を制御する駆動回路39Aと、後述
する制御弁50のコイル85への通電を制御する駆動回
路39Bが接続されている。制御コンピュータCは、温
度センサ34から得られる蒸発器温度、室温センサ35
から得られる車室内温度、室温設定器36によって設定
された所望室温、空調装置作動スイッチ37からのON
/OFF設定状況、及び、エンジン回転数センサ38か
らのエンジン回転数に関する情報等の外部情報に基づ
き、電磁クラッチ40を制御すると共に、制御弁50の
コイル85への適切な通電量を演算する。そして、その
演算した電流値の電流を駆動回路39Bから制御弁50
に供給して、制御弁の開度や設定吸入圧Psetを外部
制御する。
Further, as shown in FIG. 2, a temperature sensor 34 is provided near the evaporator 33. The temperature sensor 34 detects the temperature of the evaporator 33 and provides the evaporator temperature information to the control computer C. The control computer C manages all controls related to cooling and heating of the vehicle air conditioner. A temperature sensor 3 is provided on the input side of the control computer C.
In addition to 4, a room temperature sensor 35 for detecting the vehicle indoor temperature, a room temperature setting device 36 for setting the vehicle indoor temperature, an air conditioner operation switch 37, and an engine speed sensor 38 are connected. On the other hand, on the output side of the control computer C, a drive circuit 39A for controlling the energization of the solenoid coil 43 of the electromagnetic clutch 40 and a drive circuit 39B for controlling the energization of the coil 85 of the control valve 50 described later are connected. Have been. The control computer C includes an evaporator temperature obtained from the temperature sensor 34 and a room temperature sensor 35.
, The desired room temperature set by the room temperature setting device 36, and the ON from the air conditioner operation switch 37
Based on the / OFF setting status and external information such as information on the engine speed from the engine speed sensor 38, the electromagnetic clutch 40 is controlled, and an appropriate energization amount to the coil 85 of the control valve 50 is calculated. Then, the current of the calculated current value is supplied from the drive circuit 39B to the control valve 50.
To externally control the opening degree of the control valve and the set suction pressure Pset.

【0024】(容量制御弁の構成)図2に示すように、
容量制御弁50は、吐出室22とクランク室5とを繋ぐ
給気通路28を開閉制御するための開閉弁機構60と、
クランク室5と吸入室21とを繋ぐ抽気通路27の開度
(又は絞り量)を任意調整するための調整弁機構70
と、両弁機構60,70と作動連結されたソレノイド機
構80を備えている。これら三つの機構は、制御弁50
の本体外郭を構成するバルブハウジング51内に組み込
まれている。なお、開閉弁機構60と調整弁機構70と
は、後述するようにそれぞれ独立して作動可能である。
(Structure of Capacity Control Valve) As shown in FIG.
The capacity control valve 50 includes an opening / closing valve mechanism 60 for controlling opening / closing of the air supply passage 28 connecting the discharge chamber 22 and the crank chamber 5;
An adjusting valve mechanism 70 for arbitrarily adjusting the opening (or the amount of throttle) of the bleed passage 27 connecting the crank chamber 5 and the suction chamber 21.
And a solenoid mechanism 80 operatively connected to the two valve mechanisms 60 and 70. These three mechanisms are controlled by the control valve 50.
Is incorporated in the valve housing 51 constituting the outer shell of the main body. Note that the opening / closing valve mechanism 60 and the adjustment valve mechanism 70 can be operated independently of each other as described later.

【0025】開閉弁機構60は、バルブハウジング51
内に上下に隣接して区画された開閉弁室61及び連通室
62を備えている。開閉弁室61は給気ポート52及び
給気通路28を介して吐出室22に連通され、この開閉
弁室61内には吐出室22の圧力(吐出圧Pd)が導か
れている。連通室62は、連通ポート53及び抽気給気
共通の通路27,28を介してクランク室5に連通さ
れ、この連通室62内にはクランク圧Pcが導かれてい
る。前記連通室62の下側(開閉弁室61側)には、開
閉弁孔63が形成されている。なお、開閉弁室61、連
通室62及び開閉弁孔63は、制御弁50内において給
気通路28の一部を構成する。開閉弁室61内には開閉
弁体64が垂直方向(制御弁の軸線方向)に移動可能に
配設されている。開閉弁体64の本体部は、その移動に
伴い開閉弁孔63を開閉する。開閉弁体64の下端部は
開閉ロッド65を介して、第1プランジャとしての開閉
プランジャ82と連結されている。開閉プランジャ82
は、開閉弁室61の下側のソレノイド室81内に存在す
る。開放バネ66が開閉弁体64とバルブハウジング5
1との間に介装されている。この開放バネ66は、開閉
弁体64を開閉弁孔63から離間する方向に付勢し、通
常時には開閉弁孔63を開放状態とする。前記開閉弁体
64、開閉ロッド65及び開閉プランジャ82は一体化
されており、その一体物は中心に挿通孔67が貫通した
筒形状をなしている。更に開閉弁体64と開閉プランジ
ャ82とを連結する開閉ロッド65の断面積S1は、開
閉弁孔63の開口面積S2にほぼ等しくなるように設定
されている。
The opening / closing valve mechanism 60 includes a valve housing 51
An opening / closing valve chamber 61 and a communication chamber 62 are vertically partitioned adjacent to each other. The on-off valve chamber 61 communicates with the discharge chamber 22 via the air supply port 52 and the air supply passage 28, and the pressure of the discharge chamber 22 (discharge pressure Pd) is guided into the on-off valve chamber 61. The communication chamber 62 communicates with the crank chamber 5 through a communication port 53 and passages 27 and 28 common to the bleed air supply. A crank pressure Pc is guided into the communication chamber 62. An opening / closing valve hole 63 is formed below the communication chamber 62 (on the opening / closing valve chamber 61 side). The on-off valve chamber 61, the communication chamber 62, and the on-off valve hole 63 form a part of the air supply passage 28 in the control valve 50. An opening / closing valve body 64 is provided in the opening / closing valve chamber 61 so as to be movable in a vertical direction (axial direction of the control valve). The main body of the on-off valve body 64 opens and closes the on-off valve hole 63 with the movement. The lower end of the on-off valve body 64 is connected to an on-off plunger 82 as a first plunger via an on-off rod 65. Opening and closing plunger 82
Exists in a solenoid chamber 81 below the on-off valve chamber 61. The opening spring 66 is provided between the on-off valve body 64 and the valve housing 5.
1 is interposed. The opening spring 66 urges the opening / closing valve body 64 in a direction away from the opening / closing valve hole 63, and normally brings the opening / closing valve hole 63 into an open state. The opening / closing valve body 64, the opening / closing rod 65, and the opening / closing plunger 82 are integrated, and the integrated body has a cylindrical shape with an insertion hole 67 passing through the center. Further, the sectional area S1 of the opening / closing rod 65 connecting the opening / closing valve body 64 and the opening / closing plunger 82 is set to be substantially equal to the opening area S2 of the opening / closing valve hole 63.

【0026】調整弁機構70は、バルブハウジング51
内において前記連通室62の上方に位置するように区画
された調整弁室71を備えている。この調整弁室71は
感圧室でもあり、抽気兼感圧ポート54及び抽気兼検圧
通路27を介して吸入室21に連通され、この調整弁室
(感圧室)71内には吸入室の圧力(吸入圧Ps)が導
かれている。但し、調整弁室71内にはバルブハウジン
グ51の内周壁から軸心に向かって環状のバネ座部55
が突設され、このバネ座部55によって調整弁室71は
見掛け上、上部領域と下部領域とに区分されるが、これ
ら二領域はバネ座部の中心孔により明らかに連通してお
り圧力的には等価な同一領域である。調整弁室71と連
通室62との境界域のハウジング隔壁部(連通室62の
上側)には、環状の弁座を形成する調整弁孔72が設け
られている。なお、連通室62、調整弁室71及び調整
弁孔72は、制御弁50内において抽気通路27の一部
を構成する。
The adjustment valve mechanism 70 includes a valve housing 51
And a regulating valve chamber 71 partitioned above the communication chamber 62. The regulating valve chamber 71 is also a pressure sensing chamber, and is communicated with the suction chamber 21 through the bleed / pressure sensing port 54 and the bleed / detection passage 27. (Suction pressure Ps). However, an annular spring seat 55 is provided in the adjustment valve chamber 71 from the inner peripheral wall of the valve housing 51 toward the axis.
The regulating valve chamber 71 is apparently divided into an upper region and a lower region by the spring seat portion 55. These two regions are clearly communicated with each other by the center hole of the spring seat portion, and the pressure is increased. Are equivalent to each other. An adjustment valve hole 72 that forms an annular valve seat is provided in a housing partition (upper side of the communication chamber 62) in a boundary area between the adjustment valve chamber 71 and the communication chamber 62. The communication chamber 62, the adjustment valve chamber 71, and the adjustment valve hole 72 form a part of the bleed passage 27 in the control valve 50.

【0027】調整弁機構70の調整弁室71内には調整
弁体73が垂直方向に移動可能に配設されており、調整
弁体73はその移動に伴い調整弁孔72の開度を調整す
る。調整弁体73の下端部は調整ロッド74を介して、
第2プランジャとしての調整プランジャ83と連結され
ている。調整プランジャ83はソレノイド室81内に存
在する。調整ロッド74は、連通室62、開閉弁室61
及びソレノイド室81の三室にわたり延びており、開閉
ロッド65の中心の挿通孔67内に相対移動可能に嵌挿
されている。閉止バネ75が調整弁体73とバネ座部5
5との間に介装されている。この閉止バネ75は、調整
弁体73を調整弁孔72に接近する方向に付勢し、通常
時には調整弁孔72を閉塞状態とする。調整弁室(感圧
室)71内には更に、感圧部材としてのベローズ76が
配設されている。ベローズ76の基端部(上端)は弁室
71の天井壁に固定され、先端部(下端)には連結筒7
7が固着されている。そして、調整弁体73上に突設さ
れた感圧ロッド78の先端が前記連結筒77内に相対移
動可能に嵌挿され、べローズ76が調整弁体73に対し
接離可能に作動連結されている。べローズ76は、調整
弁室(感圧室)71内に導かれた吸入圧Psの大きさに
応じて自律的に伸縮し、その伸縮動作に基づいて調整弁
体73による調整弁孔72の開度調節に関与する。
An adjusting valve body 73 is disposed in the adjusting valve chamber 71 of the adjusting valve mechanism 70 so as to be movable in the vertical direction. The adjusting valve body 73 adjusts the opening degree of the adjusting valve hole 72 in accordance with the movement. I do. The lower end of the adjustment valve body 73 is provided via an adjustment rod 74.
It is connected to an adjustment plunger 83 as a second plunger. The adjustment plunger 83 exists in the solenoid chamber 81. The adjusting rod 74 is connected to the communication chamber 62 and the on-off valve chamber 61.
And extends over three of the solenoid chambers 81, and is inserted into the insertion hole 67 at the center of the opening / closing rod 65 so as to be relatively movable. The closing spring 75 includes the adjusting valve body 73 and the spring seat 5.
5 is interposed. The closing spring 75 urges the adjustment valve body 73 in a direction approaching the adjustment valve hole 72, and normally closes the adjustment valve hole 72. A bellows 76 as a pressure-sensitive member is further provided in the adjustment valve chamber (pressure-sensitive chamber) 71. A base end (upper end) of the bellows 76 is fixed to a ceiling wall of the valve chamber 71, and a connecting tube 7 is provided at a front end (lower end).
7 is fixed. The distal end of a pressure-sensitive rod 78 protruding from the adjusting valve body 73 is inserted into the connecting cylinder 77 so as to be relatively movable, and the bellows 76 is operatively connected to the adjusting valve body 73 so as to be able to come and go. ing. The bellows 76 expands and contracts autonomously in accordance with the magnitude of the suction pressure Ps guided into the adjustment valve chamber (pressure sensing chamber) 71, and the adjustment valve body 73 closes the adjustment valve hole 72 based on the expansion and contraction operation. Participates in opening control.

【0028】ソレノイド機構80は、バルブハウジング
51内に区画されたソレノイド室81を備えている。他
方、制御弁50を圧縮機リヤハウジング4に装着したと
き、前記連通室62とほぼ対応する位置においてバルブ
ハウジング51の外周面とリヤハウジング4の内壁面と
の間には環状室56が形成される。バルブハウジング5
1内には、環状室56とソレノイド室81とを繋ぐ圧導
通路57が形成されており、連通ポート53、環状室5
6及び圧導通路57を介してクランク圧Pcがソレノイ
ド室81に波及している。更にソレノイド室81の一側
(上部領域)には固定鉄心84が配設されている。ソレ
ノイド室81内には、固定鉄心84に近接して、開閉弁
機構60の開閉プランジャ82及び調整弁機構70の調
整プランジャ83が収容されている。固定鉄心84に
は、両プランジャ82,83を取り巻くように一つのコ
イル85が装着されている。コイル85への通電は制御
コンピュータCによって制御される。コイル85への通
電によって生ずる電磁付勢力に基づき、プランジャ8
2,83は各々対応するバネ66,75の下向き付勢力
に抗して上方(固定鉄心84への接近方向)に上動され
る。
The solenoid mechanism 80 has a solenoid chamber 81 defined in the valve housing 51. On the other hand, when the control valve 50 is mounted on the compressor rear housing 4, an annular chamber 56 is formed between the outer peripheral surface of the valve housing 51 and the inner wall surface of the rear housing 4 at a position substantially corresponding to the communication chamber 62. You. Valve housing 5
1, a pressure conducting path 57 connecting the annular chamber 56 and the solenoid chamber 81 is formed, and the communication port 53 and the annular chamber 5 are formed.
The crank pressure Pc spreads to the solenoid chamber 81 via the pressure passage 6 and the pressure conducting path 57. Further, on one side (upper region) of the solenoid chamber 81, a fixed iron core 84 is provided. In the solenoid chamber 81, an opening / closing plunger 82 of the opening / closing valve mechanism 60 and an adjusting plunger 83 of the adjusting valve mechanism 70 are accommodated near the fixed iron core 84. One coil 85 is attached to the fixed iron core 84 so as to surround the plungers 82 and 83. The energization of the coil 85 is controlled by the control computer C. The plunger 8 is moved based on an electromagnetic biasing force generated by energizing the coil 85.
2 and 83 are moved upward (in the direction of approaching the fixed iron core 84) upward against the downward biasing force of the corresponding springs 66 and 75, respectively.

【0029】なお、コイル85に対し最小電流値の通電
があれば、開閉プランジャ82の上向き電磁付勢力が開
放バネ66の下向き付勢力を凌駕し、開閉弁機構60を
全閉状態とする。逆にコイル85への通電がないと、開
閉弁機構60は全開状態となる。従って、開閉弁機構6
0は外部制御可能な入れ側ON/OFF弁とみることが
できる。他方、調整弁機構70は、コイル85への通電
量に応じて設定吸入圧Psetを変更可能な設定圧可変
型の抜き側内部制御弁とみることができる。
When the coil 85 is energized with the minimum current value, the upward electromagnetic biasing force of the opening / closing plunger 82 exceeds the downward biasing force of the opening spring 66, and the opening / closing valve mechanism 60 is fully closed. Conversely, if no current is supplied to the coil 85, the on-off valve mechanism 60 is fully opened. Therefore, the on-off valve mechanism 6
0 can be regarded as an input ON / OFF valve that can be controlled externally. On the other hand, the regulating valve mechanism 70 can be regarded as a variable internal pressure control valve of a set pressure variable type that can change the set suction pressure Pset in accordance with the amount of current supplied to the coil 85.

【0030】(作用)前記容量可変型圧縮機の動作につ
いて説明する。空調装置作動スイッチ37がOFFされ
た状態では、電磁クラッチ40は遮断状態にありエンジ
ンEから圧縮機への動力供給はなく圧縮機は運転を停止
している。又、この場合には、制御弁50のコイル85
への通電はなく、両プランジャ82,83に対する電磁
付勢はない。それ故、開閉弁機構60では開放バネ66
の作用により開閉弁孔63が全開状態とされ、調整弁機
構70では閉止バネ75の作用により調整弁孔72が閉
塞状態とされる。この運転停止状態が長時間続いた場
合、圧縮機の各室5,21,22の圧力が均一化し、斜
板12は傾角減少バネ16の付勢作用によって最小傾角
に保持される。
(Operation) The operation of the variable displacement compressor will be described. When the air conditioner operation switch 37 is turned off, the electromagnetic clutch 40 is in the cut-off state, there is no power supply from the engine E to the compressor, and the compressor stops operating. In this case, the coil 85 of the control valve 50
No power is supplied to the plungers 82 and 83, and there is no electromagnetic bias to the plungers 82 and 83. Therefore, in the opening / closing valve mechanism 60, the opening spring 66
, The opening / closing valve hole 63 is fully opened, and the adjustment valve mechanism 72 is closed by the action of the closing spring 75 in the adjustment valve mechanism 70. When this operation stop state continues for a long time, the pressures in the respective chambers 5, 21, 22 of the compressor are equalized, and the swash plate 12 is held at the minimum inclination angle by the urging action of the inclination reduction spring 16.

【0031】空調装置作動スイッチ37のON状態のも
と、室温センサ35の検出室温が室温設定器36による
設定温度を超えるとき、制御コンピュータCは、電磁ク
ラッチのソレノイドコイル43への通電を行いエンジン
Eと圧縮機とを接続して圧縮機を運転させると共に、制
御弁50のコイル85への通電を行う。コイル85への
電力供給により、開閉プランジャ82が固定鉄心84に
電磁吸引され、開放バネ66の下向き付勢力に抗して開
閉弁体64が開閉弁孔63を閉塞して(図2参照)、給
気通路28が完全に閉じられる。
When the room temperature detected by the room temperature sensor 35 exceeds the temperature set by the room temperature setting unit 36 under the ON state of the air conditioner operation switch 37, the control computer C energizes the solenoid coil 43 of the electromagnetic clutch to perform the engine operation. The compressor is operated by connecting E to the compressor, and the coil 85 of the control valve 50 is energized. By supplying power to the coil 85, the open / close plunger 82 is electromagnetically attracted to the fixed core 84, and the open / close valve body 64 closes the open / close valve hole 63 against the downward biasing force of the open spring 66 (see FIG. 2). The air supply passage 28 is completely closed.

【0032】また、コイル85への電力供給により、開
閉プランジャ82と調整プランジャ83との間にも、供
給電流値に応じた電磁吸引力が生じる。この電磁吸引力
は、閉止バネ75の付勢力に抗して弁孔72の開度(以
下「抜き側弁開度」という)を増大させる方向の力とし
て、調整ロッド74を介して調整弁体73に伝達され
る。少なくともコイル85の励磁状況下では、調整プラ
ンジャ83、調整弁体73及びベローズ76間には作動
連結関係が構築される。そして、調整弁室兼感圧室71
に導入される吸入圧Psの変動に応じてベローズ76が
変位し、調整弁体73の位置決めに影響を与える。換言
すれば、調整弁機構70は、少なくとも調整プランジャ
83の受ける電磁付勢力、閉止バネ75の付勢力及び吸
入圧Psを反映したベローズ76の付勢力の三者のバラ
ンスに基づいて抜き側弁開度を決定する。調整プランジ
ャ83の電磁付勢力が外部からの通電制御によって可変
である点を除けば、調整弁機構70は、吸入圧Psに反
応して自律的に開度調節を行う通常の内部制御弁として
機能する。なお、コイル85への通電時においても、開
閉弁機構60の開閉弁体64の位置決め動作と調整弁機
構70の調整弁体73の位置決め動作とは従属関係にな
く、それぞれ独立している。
Further, by supplying power to the coil 85, an electromagnetic attractive force corresponding to the supply current value is generated between the opening / closing plunger 82 and the adjusting plunger 83. This electromagnetic attraction force acts as a force in the direction of increasing the opening degree of the valve hole 72 (hereinafter referred to as “withdrawal valve opening degree”) against the urging force of the closing spring 75, via the adjusting rod 74 via the adjusting rod 74. 73. An operating connection is established between the adjustment plunger 83, the adjustment valve body 73, and the bellows 76 at least under the excitation state of the coil 85. And the regulating valve chamber and pressure sensing chamber 71
The bellows 76 is displaced in accordance with the fluctuation of the suction pressure Ps introduced into the valve, and affects the positioning of the adjustment valve body 73. In other words, the adjusting valve mechanism 70 opens the valve on the extraction side based on at least the balance between the electromagnetic urging force received by the adjusting plunger 83, the urging force of the closing spring 75, and the urging force of the bellows 76 reflecting the suction pressure Ps. Determine the degree. Except for the fact that the electromagnetic biasing force of the adjustment plunger 83 can be varied by externally applied power control, the adjustment valve mechanism 70 functions as a normal internal control valve that autonomously adjusts the opening in response to the suction pressure Ps. I do. Even when the coil 85 is energized, the positioning operation of the on-off valve body 64 of the on-off valve mechanism 60 and the positioning operation of the adjustment valve body 73 of the adjustment valve mechanism 70 do not depend on each other, but are independent of each other.

【0033】冷房負荷が大きい場合:冷房負荷が大きく
なるにつれ、蒸発器33の出口側圧力(即ち吸入圧P
s)が次第に大きくなり、例えば室温センサ35の検出
室温と室温設定器36の設定温度との差が大きくなる。
このとき、増大傾向の冷房負荷に見合う圧縮機の吐出能
力を確保するため、制御コンピュータCは、検出室温と
設定室温とに基づいて設定吸入圧Psetを変更すべく
コイル85への供給電流値を制御する。具体的には、検
出室温が高いほど供給電流値を大きくし、抜き側弁開度
を大きくする方向への調整弁体73の付勢力を増大させ
る。このことは制御弁50の設定吸入圧Psetを低め
誘導(又は再設定)することを意味し、従って、コイル
85への供給電流値の増大により調整弁機構70は現状
よりも低い吸入圧Psを実現すべく動作する。即ち、調
整弁機構70の自律的動作により抜き側弁開度が大きく
なれば、クランク室5から抽気通路27を経由して吸入
室21に抽出される冷媒ガス量が多くなる。他方、吐出
室22から給気通路28を経由してクランク室5内に流
入する冷媒ガスは、前記開閉弁機構60によって遮断さ
れている。このため、クランク圧Pcが低下する。又、
冷房負荷が大きい状態ではシリンダボア1aに吸入され
るガス圧つまり吸入圧Psも相対的に高く、シリンダボ
ア1aの内圧とクランク圧Pcとの差が小さくなる。こ
のため、斜板12の傾角が大きくなる。
When the cooling load is large: As the cooling load increases, the outlet pressure of the evaporator 33 (that is, the suction pressure P
s) gradually increases, for example, the difference between the detected room temperature of the room temperature sensor 35 and the set temperature of the room temperature setting device 36 increases.
At this time, in order to secure the discharge capacity of the compressor corresponding to the increasing cooling load, the control computer C changes the supply current value to the coil 85 to change the set suction pressure Pset based on the detected room temperature and the set room temperature. Control. Specifically, the supply current value is increased as the detected room temperature is higher, and the urging force of the adjustment valve body 73 in a direction to increase the opening degree of the extraction side valve is increased. This means that the set suction pressure Pset of the control valve 50 is reduced and induced (or reset). Therefore, the adjustment valve mechanism 70 reduces the suction pressure Ps lower than the current level by increasing the supply current value to the coil 85. Work to achieve. That is, if the opening degree of the extraction side valve is increased by the autonomous operation of the regulating valve mechanism 70, the amount of refrigerant gas extracted from the crank chamber 5 to the suction chamber 21 via the bleed passage 27 increases. On the other hand, the refrigerant gas flowing from the discharge chamber 22 into the crank chamber 5 via the air supply passage 28 is blocked by the on-off valve mechanism 60. Therefore, the crank pressure Pc decreases. or,
In a state where the cooling load is large, the gas pressure sucked into the cylinder bore 1a, that is, the suction pressure Ps is relatively high, and the difference between the internal pressure of the cylinder bore 1a and the crank pressure Pc becomes small. Therefore, the inclination angle of the swash plate 12 increases.

【0034】調整弁機構70の抜き側弁開度が最大にな
ると抽気通路27の通過断面積が最大化し、クランク室
5から抽気通路27を経由して吸入室21内に最大量の
冷媒ガスが抽出される。そして、クランク圧Pcは吸入
室21の圧力(吸入圧Ps)とほぼ同一になり、斜板2
1の傾角は最大となって吐出容量は最大となる。この最
大吐出容量状態では、外部冷媒回路30の凝縮器31に
おける凝縮能力の変動によって吐出室22の圧力(吐出
圧Pd)が大きく上昇することがある。この状態では、
開閉弁機構60の開閉弁室61に高い吐出圧Pdが導入
され、この高い吐出圧Pdが開閉弁体64に作用するこ
とになる。しかしながら、この制御弁50では、開閉弁
体64と開閉プランジャ82とを連結する開閉ロッド6
5の断面積S1が、開閉弁孔63の開口面積S2とほぼ
等しくなっている。このため、開閉弁体64の可動方向
への投影面積つまり開閉弁体64の受圧面積を考える
と、開閉弁体64が開閉弁孔63を閉塞した状態におい
て、開閉弁体64の可動方向両側の受圧面積がほぼ等し
いものとなる。その結果、開閉弁体64の可動方向にお
いて、その開閉弁体64に作用する圧力がほぼ完全に相
殺され、吐出圧Pd及びクランク圧Pcの影響を受ける
ことなく開閉弁体64の動作が可能となる。
When the opening of the withdrawal valve of the regulating valve mechanism 70 is maximized, the cross-sectional area of the bleed passage 27 is maximized, and the maximum amount of refrigerant gas flows from the crank chamber 5 into the suction chamber 21 via the bleed passage 27. Is extracted. Then, the crank pressure Pc becomes substantially equal to the pressure of the suction chamber 21 (suction pressure Ps), and the swash plate 2
The inclination angle of 1 becomes maximum and the discharge capacity becomes maximum. In this maximum discharge capacity state, the pressure in the discharge chamber 22 (discharge pressure Pd) may increase significantly due to fluctuations in the condensation capacity of the condenser 31 of the external refrigerant circuit 30. In this state,
The high discharge pressure Pd is introduced into the on-off valve chamber 61 of the on-off valve mechanism 60, and this high discharge pressure Pd acts on the on-off valve body 64. However, in this control valve 50, the opening / closing rod 6 connecting the opening / closing valve body 64 and the opening / closing plunger 82 is provided.
5 is substantially equal to the opening area S2 of the on-off valve hole 63. For this reason, considering the projected area of the on-off valve body 64 in the movable direction, that is, the pressure receiving area of the on-off valve body 64, in a state where the on-off valve body 64 closes the on-off valve hole 63, both sides of the on-off valve body 64 in the movable direction are closed. The pressure receiving areas are almost equal. As a result, in the movable direction of the on-off valve body 64, the pressure acting on the on-off valve body 64 is almost completely canceled, and the operation of the on-off valve body 64 can be performed without being affected by the discharge pressure Pd and the crank pressure Pc. Become.

【0035】冷房負荷が小さい場合:冷房負荷が小さく
なるにつれ、蒸発器33の出口側圧力(即ちPs)が次
第に小さくなり、例えば室温センサ35の検出温度と室
温設定器36の設定温度との差が小さくなる。このと
き、圧縮機の吐出能力を減少傾向の冷房負荷に見合った
ものとするため、制御コンピュータCは、設定吸入圧P
setを変更すべくコイル85への供給電流値を制御す
る。具体的には、検出室温が低いほど供給電流値を小さ
くし、抜き側弁開度を大きくする方向への調整弁体73
の付勢力を減少させる。このことは制御弁50の設定吸
入圧Psetを高め誘導(又は再設定)することを意味
する。即ち、調整弁機構70の自律的動作により抜き側
弁開度が小さくなれば、クランク室5から抽気通路27
を経由して吸入室21に抽出される冷媒ガス量が少なく
なり、クランク圧Pcが上昇傾向となる。又、冷房負荷
が小さい状態ではシリンダボア1aに吸入されるガス圧
つまり吸入圧Psも相対的に低く、シリンダボア1aの
内圧とクランク圧Pcとの差が大きくなる。このため、
斜板12の傾角が小さくなる。
When the cooling load is small: As the cooling load decreases, the outlet pressure (ie, Ps) of the evaporator 33 gradually decreases. For example, the difference between the detected temperature of the room temperature sensor 35 and the set temperature of the room temperature setter 36 is set. Becomes smaller. At this time, in order to make the discharge capacity of the compressor appropriate for the cooling load that is decreasing, the control computer C sets the set suction pressure P
The supply current value to the coil 85 is controlled to change the set. Specifically, the lower the detected room temperature, the smaller the supply current value, and the adjustment valve body 73 in a direction to increase the opening degree of the extraction side valve.
Reduce the biasing force of This means that the set suction pressure Pset of the control valve 50 is increased and induced (or reset). That is, if the opening degree of the extraction side valve is reduced by the autonomous operation of the regulating valve mechanism 70, the bleed passage 27
, The amount of the refrigerant gas extracted into the suction chamber 21 via the air passage decreases, and the crank pressure Pc tends to increase. Further, when the cooling load is small, the gas pressure sucked into the cylinder bore 1a, that is, the suction pressure Ps is relatively low, and the difference between the internal pressure of the cylinder bore 1a and the crank pressure Pc increases. For this reason,
The inclination angle of the swash plate 12 becomes small.

【0036】冷房負荷がない状態に近づいてゆくと、蒸
発器33の温度が次第に低下しフロスト発生をもたらす
温度に近づく。温度センサ34の検出温度が設定温度
(蒸発器33においてフロストを発生しそうな状況を反
映した温度)以下になると、制御コンピュータCは、コ
イル85に対する電流の供給を停止する。すると、固定
鉄心84と開閉プランジャ82との間および開閉プラン
ジャ82と調整プランジャ83との間の電磁吸引力が消
失し、開閉弁機構60は開放バネ66の付勢作用により
給気通路28を全開状態とする一方、調整弁機構70は
閉止バネ75の付勢作用により抽気通路27を全閉状態
とする。その結果、吐出室22内の高圧冷媒ガスが給気
通路28を介してクランク室5へ多量に供給されてクラ
ンク圧Pcが高くなり、斜板12が最小傾角状態に移行
し、空調装置の冷房動作が抑制される。尚、空調装置作
動スイッチ37がOFFされた場合も、制御コンピュー
タCはコイル85への通電を停止し、斜板12を最小傾
角状態に移行させる。
When approaching a state where there is no cooling load, the temperature of the evaporator 33 gradually decreases and approaches a temperature at which frost occurs. When the temperature detected by the temperature sensor 34 becomes equal to or lower than the set temperature (a temperature reflecting a situation where frost is likely to occur in the evaporator 33), the control computer C stops supplying current to the coil 85. Then, the electromagnetic attraction force between the fixed iron core 84 and the opening and closing plunger 82 and between the opening and closing plunger 82 and the adjustment plunger 83 disappears, and the opening and closing valve mechanism 60 fully opens the air supply passage 28 by the urging action of the opening spring 66. On the other hand, the adjustment valve mechanism 70 brings the bleed passage 27 into a fully closed state by the urging action of the closing spring 75. As a result, a large amount of high-pressure refrigerant gas in the discharge chamber 22 is supplied to the crank chamber 5 through the air supply passage 28, the crank pressure Pc increases, the swash plate 12 shifts to the minimum tilt state, and the air conditioner cools. Operation is suppressed. Note that, even when the air conditioner operation switch 37 is turned off, the control computer C stops the energization of the coil 85 and shifts the swash plate 12 to the minimum tilt state.

【0037】ソレノイド機構80が消磁された状態で吸
入圧Psが高くなった場合:吸入圧Psは検圧通路とし
ての抽気通路27を介して調整弁室兼感圧室71にも及
んでいるため、吸入圧Psの高さを反映してベローズ7
6は収縮方向(上向き)に変位する。ここで、感圧ロッ
ド78とベローズの連結筒77とは接離可能に構成され
且つ閉止バネ75は調整弁体73を常時下向きに付勢し
ている。このため、ベローズ76の収縮に伴って感圧ロ
ッド78とベローズ76との作動連結が解消され、調整
弁体73に対するベローズ76の変位の伝達が途絶え
る。故に、ソレノイド機構80が消磁された状態で吸入
圧Psが高くなったとしても、吸入圧Psの影響を受け
ることなく、調整弁機構70は調整弁孔72を閉弁状態
に維持することができる。
When the suction pressure Ps rises while the solenoid mechanism 80 is demagnetized: the suction pressure Ps reaches the regulating valve chamber / pressure sensing chamber 71 via the bleed passage 27 as a pressure detection passage. , The bellows 7 reflecting the height of the suction pressure Ps
6 is displaced in the contraction direction (upward). Here, the pressure sensing rod 78 and the bellows connection cylinder 77 are configured to be able to contact and separate from each other, and the closing spring 75 constantly biases the adjustment valve body 73 downward. Therefore, the operative connection between the pressure-sensitive rod 78 and the bellows 76 is canceled with the contraction of the bellows 76, and the transmission of the displacement of the bellows 76 to the adjustment valve body 73 is interrupted. Therefore, even if the suction pressure Ps increases in a state where the solenoid mechanism 80 is demagnetized, the adjustment valve mechanism 70 can maintain the adjustment valve hole 72 in the closed state without being affected by the suction pressure Ps. .

【0038】また、空調装置作動スイッチ37がON状
態の下、斜板12が最小傾角位置にある状態において、
室温が上昇(冷房負荷が増大)すると、室温センサ35
の検出室温が室温設定器36の設定温度を越える。する
と、制御コンピュータCは上記温度変化に基づいてソレ
ノイド機構80の励磁を指令する。ソレノイド機構80
の励磁に伴い、開閉弁機構60により給気通路28が閉
じられるとともに調整弁機構70により抽気通路27が
開かれ、クランク圧Pcが次第に減少し、斜板12が傾
角増大方向に復帰する。
When the swash plate 12 is at the minimum inclination position while the air conditioner operation switch 37 is ON,
When the room temperature rises (the cooling load increases), the room temperature sensor 35
The detected room temperature exceeds the set temperature of the room temperature setting device 36. Then, the control computer C commands the excitation of the solenoid mechanism 80 based on the temperature change. Solenoid mechanism 80
With the excitation, the air supply passage 28 is closed by the opening / closing valve mechanism 60 and the bleed passage 27 is opened by the adjustment valve mechanism 70, the crank pressure Pc gradually decreases, and the swash plate 12 returns to the direction of increasing the tilt angle.

【0039】以上のように、制御弁50の開閉弁機構6
0及び調整弁機構70における動作はソレノイド機構8
0のコイル85に対する電流の供給及び停止によって制
御される。特に、調整弁機構70の弁開度(抜き側弁開
度)制御の目標値となる設定吸入圧Psetは、コイル
85への供給電流値を制御することにより適宜変更する
ことができる。そして、圧縮機は、実際の吸入圧Psが
設定吸入圧Psetに近づきそれを維持すべく斜板12
の傾角を変更してその吐出容量を変更する。
As described above, the opening / closing valve mechanism 6 of the control valve 50
0 and the operation of the regulating valve mechanism 70 are performed by the solenoid mechanism 8.
It is controlled by supplying and stopping the current to the zero coil 85. In particular, the set suction pressure Pset, which is a target value for controlling the valve opening of the adjusting valve mechanism 70 (the opening of the valve on the extraction side), can be changed as appropriate by controlling the value of the current supplied to the coil 85. Then, the compressor adjusts the swash plate 12 so that the actual suction pressure Ps approaches and maintains the set suction pressure Pset.
Is changed to change the discharge capacity.

【0040】(効果)本実施形態によれば、以下の効果
を得ることができる。 ○ 上記容量制御弁50においては、給気通路28を開
閉制御するための開閉弁機構60と抽気通路27の開度
を任意調整するための調整弁機構70とが、同じ一つの
バルブハウジング51内に組み込まれている。このた
め、制御弁50によれば、開閉弁と調整弁とを別部品で
構成しそれらを圧縮機内に各別に組み付けていた従来の
圧縮機とは異なり、2つの弁(開閉弁と調整弁)を別々
に準備する必要がなく、圧縮機の容量制御構成を従来よ
りも簡素化して安価に製作することができる。又、開閉
弁機構60と調整弁機構70とが一体化されているた
め、容量制御弁50のための組み込みスペースが比較的
小さくてすみ、圧縮機への組み付けが容易となり、圧縮
機の小型化に貢献する。
(Effects) According to the present embodiment, the following effects can be obtained. In the capacity control valve 50, an opening / closing valve mechanism 60 for controlling the opening and closing of the air supply passage 28 and an adjusting valve mechanism 70 for arbitrarily adjusting the opening degree of the bleed passage 27 are provided in the same valve housing 51. Built in. For this reason, according to the control valve 50, unlike the conventional compressor in which the on-off valve and the adjustment valve are configured as separate components and assembled separately in the compressor, two valves (on-off valve and adjustment valve) are used. Need not be separately prepared, and the capacity control configuration of the compressor can be simplified and manufactured at a lower cost than before. Further, since the opening / closing valve mechanism 60 and the regulating valve mechanism 70 are integrated, a relatively small installation space for the capacity control valve 50 is required, and the assembling to the compressor is easy, and the compressor is downsized. To contribute.

【0041】○ 制御弁50では開閉弁機構60の開閉
プランジャ82及び調整弁機構70の調整プランジャ8
3の双方に対して1つのコイル85が共用されているた
め、制御弁の構造を簡素化できる。
In the control valve 50, the opening / closing plunger 82 of the opening / closing valve mechanism 60 and the adjusting plunger 8 of the adjusting valve mechanism 70
Since one coil 85 is shared for both of the three, the structure of the control valve can be simplified.

【0042】○ 制御弁50では、開閉弁体64とプラ
ンジャ82、及び、調整弁体73とプランジャ83を開
閉ロッド65及び調整ロッド74によりそれぞれ連結す
ると共に、筒状に形成された一方の開閉ロッド65内に
他方の調整ロッド74を相対移動可能に嵌挿している。
このため、両弁体64,73をそれらのプランジャ8
2,83の一側方において近接配置することができ、2
つの弁機構60,70を備えた制御弁50が軸線方向に
大型化するのを抑制することができる。
In the control valve 50, the opening / closing valve body 64 and the plunger 82, and the adjusting valve body 73 and the plunger 83 are connected by the opening / closing rod 65 and the adjusting rod 74, respectively, and one of the cylindrical opening / closing rods is provided. The other adjustment rod 74 is inserted into the inside 65 so as to be relatively movable.
Therefore, the two valve bodies 64 and 73 are connected to their plungers 8.
2,83 can be placed close to one side
The control valve 50 including the two valve mechanisms 60 and 70 can be prevented from increasing in size in the axial direction.

【0043】○ 本実施形態の制御弁50では、ソレノ
イド機構80はバルブハウジング51の一端に片寄った
状態で設けられているため、図1に示すように圧縮機の
リヤハウジング4に制御弁50を組み込んだ際にソレノ
イド機構80がリヤハウジング4の外に露出される。こ
のため、この露出状態にあるソレノイド機構80のコイ
ル85に対する外部からの配線が容易となる。
In the control valve 50 of the present embodiment, since the solenoid mechanism 80 is provided so as to be offset to one end of the valve housing 51, the control valve 50 is mounted on the rear housing 4 of the compressor as shown in FIG. When assembled, the solenoid mechanism 80 is exposed outside the rear housing 4. Therefore, wiring from the outside to the coil 85 of the solenoid mechanism 80 in the exposed state is facilitated.

【0044】○ 制御弁50の調整弁機構70を構成す
る調整弁体73とベローズ(感圧部材)76とは、連結
筒77と感圧ロッド78との挿嵌関係に基づき接離可能
に構成されている。このため、コイル85への給電停止
時において吸入圧Psが高まりべローズ76が収縮変位
したとしても、調整弁体73は、そのべローズ76の変
位に影響されることなく、閉止バネ75の作用により調
整弁孔72の閉止位置に保持され得る。
The adjustment valve body 73 and the bellows (pressure-sensitive member) 76 constituting the adjustment valve mechanism 70 of the control valve 50 can be connected and separated based on the insertion relationship between the connecting cylinder 77 and the pressure-sensitive rod 78. Have been. For this reason, even when the suction pressure Ps increases and the bellows 76 contracts and displaces when the power supply to the coil 85 is stopped, the adjustment valve body 73 operates the closing spring 75 without being affected by the displacement of the bellows 76. Thus, the adjustment valve hole 72 can be held at the closed position.

【0045】○ 開閉弁体64と開閉プランジャ82と
を連結する開閉ロッド65の断面積S1と、吐出室22
とクランク室5とをつなぐ開閉弁孔63の開口面積S2
とをほぼ等しくしたため、開閉弁体64が開閉弁孔63
を閉塞した状態において開閉弁体64の可動方向両側の
受圧面積がほぼ等しくなる結果、開閉弁体64に作用す
る圧力をほぼ相殺できる。故に、開閉弁体64に作用す
る吐出圧力Pdが大きく上昇した状態においても、吐出
圧Pd及びクランク圧Pcの影響を受けることなく、開
閉弁体64を円滑に移動させることができる。
The sectional area S1 of the opening / closing rod 65 connecting the opening / closing valve body 64 and the opening / closing plunger 82 and the discharge chamber 22
Opening area S2 of the opening / closing valve hole 63 connecting the valve and the crank chamber 5
And the opening / closing valve body 64 is made
When the valve is closed, the pressure receiving areas on both sides in the movable direction of the on-off valve body 64 become substantially equal, so that the pressure acting on the on-off valve body 64 can be almost offset. Therefore, even when the discharge pressure Pd acting on the on-off valve body 64 is greatly increased, the on-off valve body 64 can be smoothly moved without being affected by the discharge pressure Pd and the crank pressure Pc.

【0046】○ 調整弁機構70を構成する調整弁体7
3及び感圧部材76を、吸入圧Psが及ぶ同じ調整弁室
兼感圧室71内に設けたので、制御弁内に区画される部
屋数が従来よりも減り、穴加工やロッドクリアランス管
理の手間が大幅に減じられ、製造コスト面で有利とな
る。
The regulating valve body 7 constituting the regulating valve mechanism 70
Since the pressure sensing member 3 and the pressure sensing member 76 are provided in the same adjustment valve chamber and pressure sensing chamber 71 to which the suction pressure Ps is applied, the number of rooms defined in the control valve is reduced as compared with the related art, and the hole machining and rod clearance management are reduced. The labor is greatly reduced, which is advantageous in terms of manufacturing cost.

【0047】○ クランク室5からのガス放出量を主に
制御することで斜板角度を調節する抜き側制御では、ク
ランク室5に対し高圧冷媒ガスが常に安定供給されるこ
とが斜板角度の制御性(吐出容量の可変制御性)を確保
するための前提となる。この点、図1の容量可変型圧縮
機には、吐出室22とクランク室5とを繋ぐ補助給気通
路としての連通路29が形成され、その連通路29の途
中には固定絞り29aが設けられている。このため、開
閉弁機構60により給気通路28が閉じられると共に調
整弁機構70により抽気通路27の開度(抜き側弁開
度)が調整される状態下でも、絞り29a付き連通路2
9を介して所定量の冷媒ガスが吐出室22からクランク
室5へ常時供給される。このため、圧縮機の作動時には
クランク圧Pcが常に所定圧以上に保持され、それ故、
調整弁機構70による吐出容量の可変制御性が損なわれ
ることはない。
In the extraction side control in which the swash plate angle is adjusted by mainly controlling the amount of gas released from the crank chamber 5, it is necessary to constantly supply the high-pressure refrigerant gas to the crank chamber 5 stably. This is a prerequisite for ensuring controllability (variable control of the discharge capacity). In this regard, in the variable displacement compressor of FIG. 1, a communication path 29 is formed as an auxiliary air supply path connecting the discharge chamber 22 and the crank chamber 5, and a fixed throttle 29 a is provided in the communication path 29. Have been. For this reason, even in a state where the air supply passage 28 is closed by the opening / closing valve mechanism 60 and the opening of the bleeding passage 27 (opening side valve opening) is adjusted by the adjusting valve mechanism 70, the communication passage 2 with the throttle 29 a is also provided.
A predetermined amount of refrigerant gas is constantly supplied from the discharge chamber 22 to the crank chamber 5 through the pipe 9. For this reason, the crank pressure Pc is always maintained at or above the predetermined pressure during the operation of the compressor.
The variable controllability of the discharge capacity by the adjusting valve mechanism 70 is not impaired.

【0048】(別例)本発明の実施形態を以下のように
変更してもよい。 ○ 調整弁室兼感圧室71の内部構造を図3又は図4の
ように変更すること。図3では、感圧ロッド78が図2
の場合よりも短くされると共に、閉止バネ75が弁室7
1の天井壁と調整弁体73の頭部に形成されたバネ座部
73aとの間に配設されている。尚、図2の制御弁と同
様、感圧ロッド78は連結筒77に嵌挿され、接離可能
となっている。他方、図4では、弁室71の天井壁とベ
ローズ76の基端部(上端部)との間に閉止バネ75が
介在され、ベローズ76の先端部(下端部)に調整弁体
73が固着されている。図2の制御弁50における調整
弁室兼感圧室71の内部構造が図3又は図4のように変
更されたとしても、前述と同様の作用及び効果を奏す
る。
(Another Example) The embodiment of the present invention may be modified as follows. The internal structure of the regulating valve chamber / pressure sensing chamber 71 is changed as shown in FIG. 3 or FIG. In FIG. 3, the pressure-sensitive rod 78 is
And the closing spring 75 is connected to the valve chamber 7.
1 is disposed between the ceiling wall 1 and a spring seat 73 a formed at the head of the regulating valve body 73. In addition, similarly to the control valve of FIG. On the other hand, in FIG. 4, a closing spring 75 is interposed between the ceiling wall of the valve chamber 71 and the base end (upper end) of the bellows 76, and the adjustment valve body 73 is fixed to the front end (lower end) of the bellows 76. Have been. Even if the internal structure of the regulating valve chamber / pressure sensing chamber 71 in the control valve 50 of FIG. 2 is changed as shown in FIG. 3 or FIG. 4, the same operation and effect as described above are exerted.

【0049】○ 調整弁機構70の調整ロッド74を筒
状に形成し、その調整ロッド74内に開閉弁機構60の
開閉ロッド65を相対移動可能に嵌挿すること。 ○ 調整弁機構70で用いる感圧部材としてダイアフラ
ムを採用すること。
The adjusting rod 74 of the adjusting valve mechanism 70 is formed in a cylindrical shape, and the opening / closing rod 65 of the opening / closing valve mechanism 60 is inserted into the adjusting rod 74 so as to be relatively movable. ○ A diaphragm is used as a pressure-sensitive member used in the adjustment valve mechanism 70.

【0050】○ 図2及び図3における感圧ロッド78
と連結筒77とを結合すること。 ○ 前記容量制御弁50をクラッチレスタイプの容量可
変型圧縮機(電磁クラッチ等のクラッチ機構を介在させ
ることなく外部駆動源から駆動軸6に直接的に動力を伝
達するタイプの圧縮機)に適用すること。
The pressure-sensitive rod 78 in FIGS. 2 and 3
And the connecting cylinder 77. The displacement control valve 50 is applied to a clutchless variable displacement compressor (compressor of a type that directly transmits power from an external drive source to the drive shaft 6 without interposing a clutch mechanism such as an electromagnetic clutch). To do.

【0051】(付記)請求項1〜5のいずれか一項に記
載の制御弁が組み込まれた容量可変型圧縮機であって、
該圧縮機の吐出圧領域とクランク室との間には、前記制
御弁の開閉弁機構60が途中に介在された給気通路28
の他に、固定絞り29aの付いた補助給気通路29が設
けられている容量可変型圧縮機。この構成によれば、開
閉弁機構により給気通路が閉じられた状態においても、
補助給気通路を介して所定量の冷媒ガスが吐出圧領域か
らクランク室へ供給されるため、吐出容量の可変制御性
が損なわれない。
(Supplementary note) A variable displacement compressor in which the control valve according to any one of claims 1 to 5 is incorporated,
Between the discharge pressure region of the compressor and the crank chamber, an air supply passage 28 having an opening / closing valve mechanism 60 for the control valve interposed therebetween.
In addition, a variable displacement compressor provided with an auxiliary air supply passage 29 having a fixed throttle 29a. According to this configuration, even when the air supply passage is closed by the on-off valve mechanism,
Since a predetermined amount of refrigerant gas is supplied from the discharge pressure region to the crank chamber via the auxiliary air supply passage, the variable controllability of the discharge capacity is not impaired.

【0052】[0052]

【発明の効果】以上詳述したように、本発明の制御弁
は、遮断体を備えない一般的な容量可変型圧縮機に対し
適用可能であると共に、従来の制御弁よりも構造が簡素
で製造し易くコスト的にも有利であるという優れた効果
を奏する。
As described in detail above, the control valve of the present invention is applicable to a general variable displacement compressor having no shut-off body and has a simpler structure than a conventional control valve. It has an excellent effect that it is easy to manufacture and advantageous in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施形態に従う容量可変型圧縮機の断面図。FIG. 1 is a sectional view of a variable displacement compressor according to one embodiment.

【図2】容量制御弁の断面図。FIG. 2 is a sectional view of a displacement control valve.

【図3】容量制御弁の別例を示す部分断面図。FIG. 3 is a partial sectional view showing another example of the capacity control valve.

【図4】容量制御弁の別例を示す部分断面図。FIG. 4 is a partial sectional view showing another example of the capacity control valve.

【符号の説明】[Explanation of symbols]

5…クランク室、12…斜板、21…吸入室(吸入圧領
域)、22…吐出室(吐出圧領域)、27…抽気通路、
28…給気通路、40…電磁クラッチ、50…制御弁、
51…バルブハウジング、60…開閉弁機構、63…開
閉弁孔、64…開閉弁体、65…開閉ロッド、66…開
放バネ、70…調整弁機構、71…調整弁室兼感圧室
(吸入圧が及ぶ同じ室)、72…調整弁孔、73…調整
弁体、74…調整ロッド、75…閉止バネ、76…べロ
ーズ(感圧部材)、80…ソレノイド機構、82…開閉
プランジャ(第1プランジャ)、83…調整プランジャ
(第2プランジャ)、85…コイル、E…車輌エンジン
(外部駆動源)、S1…ロッドの断面積、S2…弁孔の
開口面積。
5: crank chamber, 12: swash plate, 21: suction chamber (suction pressure area), 22: discharge chamber (discharge pressure area), 27: bleed passage
28 ... air supply passage, 40 ... electromagnetic clutch, 50 ... control valve,
51 ... valve housing, 60 ... opening and closing valve mechanism, 63 ... opening and closing valve hole, 64 ... opening and closing valve body, 65 ... opening and closing rod, 66 ... opening spring, 70 ... adjusting valve mechanism, 71 ... adjusting valve chamber and pressure sensing chamber (inhalation) 72 ... adjusting valve hole, 73 ... adjusting valve body, 74 ... adjusting rod, 75 ... closing spring, 76 ... bellows (pressure sensing member), 80 ... solenoid mechanism, 82 ... opening / closing plunger 1 ... plunger; 83 ... adjustment plunger (second plunger); 85 ... coil; E ... vehicle engine (external drive source); S1 ... cross-sectional area of rod; S2 ... opening area of valve hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安谷屋 拓 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 松原 亮 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 3H045 AA04 AA10 AA27 BA19 CA09 CA24 DA25 EA16 EA17 EA26 EA33 3H059 AA06 BB22 BB40 CC06 CD05 CF14 DD07 DD13 EE01 FF12 FF15 3H076 AA06 BB41 CC44 CC84 CC93 CC94 3H106 DA07 DA12 DA23 DA33 DB02 DB12 DB24 DB32 DC02 DD03 DD09 EE34 EE48 GA15 GB08 KK23  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taku Yasutani 2-1-1 Toyota-cho, Kariya-shi, Aichi Pref. Inside Toyota Industries Corporation (72) Inventor Ryo Matsubara 2-1-1 Toyota-cho, Kariya-shi, Aichi Pref. F-term in Toyota Industries Corporation (Reference) 3H045 AA04 AA10 AA27 BA19 CA09 CA24 DA25 EA16 EA17 EA26 EA33 3H059 AA06 BB22 BB40 CC06 CD05 CF14 DD07 DD13 EE01 FF12 FF15 3H076 AA06 BB41 CC94 DB23 CC93 DA93 DB24 DB32 DC02 DD03 DD09 EE34 EE48 GA15 GB08 KK23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 クランク室の内圧制御に基づいて斜板の
傾角を変更し吐出容量を調節可能な容量可変型圧縮機に
用いられる制御弁であって、 制御弁のバルブハウジング内には、圧縮機の吐出圧領域
とクランク室とを連通する給気通路を開閉制御するため
の開閉弁機構と、圧縮機の吸入圧領域とクランク室とを
連通する抽気通路の開度を任意調整するための調整弁機
構とが、それぞれ独立して作動可能に組み込まれ、 前記開閉弁機構は、前記給気通路の一部を構成する開閉
弁孔と、その弁孔を開閉する開閉弁体と、その弁体を前
記開閉弁孔から離間する方向に付勢する開放バネと、前
記開閉弁体に連結されて該弁体を前記開放バネの付勢作
用にかかわらず前記開閉弁孔を閉塞する方向に電磁付勢
するための第1プランジャとを備え、 前記調整弁機構は、前記抽気通路の一部を構成する調整
弁孔と、その弁孔の開度を調節する調整弁体と、その弁
体を前記調整弁孔に接近する方向に付勢する閉止バネ
と、吸入圧に応じて前記調整弁体を前記調整弁孔に接近
する方向に押圧可能な感圧部材と、前記調整弁体に連結
されて該弁体を前記調整弁孔から離間する方向に電磁付
勢するための第2プランジャとを備え、 前記調整弁機構を構成する調整弁体及び感圧部材は吸入
圧が及ぶ同じ室内に配設されており、前記第1及び第2
プランジャに対して1つのコイルが配設され、そのコイ
ルへの通電によって前記開閉弁体及び調整弁体が同時に
電磁付勢されることを特徴とする容量可変型圧縮機の制
御弁。
1. A control valve for use in a variable displacement compressor capable of changing a tilt angle of a swash plate based on control of an internal pressure of a crank chamber and adjusting a discharge capacity, wherein a compression valve is provided in a valve housing of the control valve. An on-off valve mechanism for controlling the opening and closing of an air supply passage communicating the discharge pressure region of the compressor with the crank chamber, and an arbitrarily adjusting an opening degree of a bleed passage connecting the suction pressure region of the compressor and the crank chamber. An adjusting valve mechanism, which is incorporated so as to be independently operable, wherein the on-off valve mechanism includes an on-off valve hole forming a part of the air supply passage, an on-off valve body for opening and closing the valve hole, and the valve. An opening spring for urging the body in a direction away from the on-off valve hole, and an electromagnetic force coupled to the on-off valve body for closing the on-off valve hole regardless of the urging action of the opening spring. A first plunger for biasing, said regulating valve The mechanism includes an adjustment valve hole that constitutes a part of the bleed passage, an adjustment valve body that adjusts an opening degree of the valve hole, and a closing spring that urges the valve body in a direction approaching the adjustment valve hole. A pressure-sensitive member capable of pressing the adjustment valve body in a direction approaching the adjustment valve hole in accordance with a suction pressure; and an electromagnetic valve connected to the adjustment valve body and separating the valve body from the adjustment valve hole. A second plunger for biasing, wherein the adjusting valve body and the pressure-sensitive member constituting the adjusting valve mechanism are disposed in the same chamber to which suction pressure is applied, and the first and second plungers are provided.
A control valve for a variable displacement compressor, wherein one coil is provided for a plunger, and the on-off valve body and the adjustment valve body are simultaneously electromagnetically energized by energizing the coil.
【請求項2】 前記開閉弁機構の開閉弁体と第1プラン
ジャとをロッドで連結すると共に、前記調整弁機構の調
整弁体と第2プランジャとを別のロッドで連結し、前記
二つのロッドのうちの一方を筒状に形成するとともに、
その一方のロッド内に他方のロッドを相対移動可能に嵌
挿したことを特徴とする請求項1に記載の容量可変型圧
縮機の制御弁。
2. An on-off valve body of the on-off valve mechanism and a first plunger are connected by a rod, and an adjustment valve body of the adjustment valve mechanism and a second plunger are connected by another rod. While one of them is formed in a cylindrical shape,
2. The control valve for a variable displacement compressor according to claim 1, wherein the other rod is inserted into the one rod so as to be relatively movable.
【請求項3】 前記調整弁機構の調整弁体と感圧部材と
を接離可能に連結したことを特徴とする請求項1又は2
に記載の容量可変型圧縮機の制御弁。
3. The adjustment valve body of the adjustment valve mechanism and a pressure-sensitive member are connected so as to be able to contact and separate from each other.
The control valve for a variable displacement compressor according to item 1.
【請求項4】 前記開閉弁機構の開閉弁孔の一端を吐出
圧領域に他端をクランク室に連通させ、前記開閉弁体と
第1プランジャとを連結するロッドの断面積を前記開閉
弁孔の開口面積にほぼ等しくなるようにしたことを特徴
とする請求項1〜3のいずれか一項に記載の容量可変型
圧縮機の制御弁。
4. An on-off valve hole of the on-off valve mechanism has one end communicating with a discharge pressure region and the other end communicating with a crank chamber, and a cross-sectional area of a rod connecting the on-off valve body and a first plunger is determined by the on-off valve hole. The control valve of the variable displacement compressor according to any one of claims 1 to 3, wherein the opening area is substantially equal to the opening area of the compressor.
【請求項5】 前記容量可変型圧縮機は、外部駆動源の
動力を該圧縮機に選択的に伝達するためのクラッチを備
えたものであることを特徴とする請求項1〜4のいずれ
か一項に記載の容量可変型圧縮機の制御弁。
5. The variable displacement compressor according to claim 1, further comprising a clutch for selectively transmitting power of an external drive source to the compressor. A control valve for the variable displacement compressor according to claim 1.
JP02144099A 1999-01-29 1999-01-29 Control valve for variable capacity compressor Expired - Fee Related JP3899719B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02144099A JP3899719B2 (en) 1999-01-29 1999-01-29 Control valve for variable capacity compressor
EP00101797A EP1024286A3 (en) 1999-01-29 2000-01-28 Control valve for variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02144099A JP3899719B2 (en) 1999-01-29 1999-01-29 Control valve for variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2000220576A true JP2000220576A (en) 2000-08-08
JP3899719B2 JP3899719B2 (en) 2007-03-28

Family

ID=12055036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02144099A Expired - Fee Related JP3899719B2 (en) 1999-01-29 1999-01-29 Control valve for variable capacity compressor

Country Status (2)

Country Link
EP (1) EP1024286A3 (en)
JP (1) JP3899719B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141086A (en) * 1999-11-08 2001-05-25 Nok Corp Control valve
JP2004003468A (en) * 2002-04-25 2004-01-08 Sanden Corp Variable displacement compressor having displacement control valve
US7076425B2 (en) 2001-03-19 2006-07-11 Nissam Motor Co., Ltd. Voice recognition device with larger weights assigned to displayed words of recognition vocabulary
CN100396916C (en) * 2003-01-22 2008-06-25 株式会社杰克赛尔法雷奥空调 Control valve of variable displacement compressor
KR101139062B1 (en) 2004-10-22 2012-04-30 가부시키가이샤 테지케 Control valve for variable displacement compressor
CN103890391A (en) * 2011-10-20 2014-06-25 学校法人斗源学院 Control valve for compressor
WO2018074113A1 (en) * 2016-10-18 2018-04-26 サンデン・オートモーティブコンポーネント株式会社 Control valve for variable displacement compressor
RU205108U1 (en) * 2020-10-30 2021-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Керченский государственный морской технологический университет" (ФГБОУ ВО "КГМТУ") SAFETY VALVE FOR CANDLES OF MARINE AUTO FILTERS

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054561A (en) * 2000-08-08 2002-02-20 Toyota Industries Corp Control valve of variable displacement compressor, and variable displacement compressor
JP2002155858A (en) * 2000-09-08 2002-05-31 Toyota Industries Corp Control valve for variable displacement compressor
JP4501112B2 (en) * 2002-12-27 2010-07-14 株式会社ヴァレオサーマルシステムズ Control unit for variable capacity compressor
JP2006029150A (en) * 2004-07-13 2006-02-02 Sanden Corp Displacement control valve of clutchless variable displacement swash plate type compressor
JP2007077863A (en) * 2005-09-14 2007-03-29 Toyota Industries Corp Control valve for clutch type variable displacement compressor
CN104074722B (en) * 2014-07-03 2016-03-09 太原太航科技有限公司 A kind of motor-operated control valve combining control
JP6872800B2 (en) * 2018-01-29 2021-05-19 株式会社不二工機 Control valve for variable displacement compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69200356T2 (en) * 1991-01-28 1995-02-16 Sanden Corp Swash plate compressor with a device for changing the stroke.
JPH0599136A (en) 1991-10-23 1993-04-20 Sanden Corp Variable capacity type swash plate type compressor
DE4481042T1 (en) * 1994-07-13 1996-08-22 Toyoda Automatic Loom Works Swash plate compressor with variable displacement
US6010312A (en) * 1996-07-31 2000-01-04 Kabushiki Kaisha Toyoda Jidoshokki Seiksakusho Control valve unit with independently operable valve mechanisms for variable displacement compressor
JPH10103249A (en) 1996-07-31 1998-04-21 Toyota Autom Loom Works Ltd Control valve

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141086A (en) * 1999-11-08 2001-05-25 Nok Corp Control valve
JP4586221B2 (en) * 1999-11-08 2010-11-24 Nok株式会社 Control valve
US7076425B2 (en) 2001-03-19 2006-07-11 Nissam Motor Co., Ltd. Voice recognition device with larger weights assigned to displayed words of recognition vocabulary
JP2004003468A (en) * 2002-04-25 2004-01-08 Sanden Corp Variable displacement compressor having displacement control valve
CN100396916C (en) * 2003-01-22 2008-06-25 株式会社杰克赛尔法雷奥空调 Control valve of variable displacement compressor
KR101139062B1 (en) 2004-10-22 2012-04-30 가부시키가이샤 테지케 Control valve for variable displacement compressor
CN103890391A (en) * 2011-10-20 2014-06-25 学校法人斗源学院 Control valve for compressor
CN103890391B (en) * 2011-10-20 2016-05-04 学校法人斗源学院 For the control valve of compressor
WO2018074113A1 (en) * 2016-10-18 2018-04-26 サンデン・オートモーティブコンポーネント株式会社 Control valve for variable displacement compressor
CN109844312A (en) * 2016-10-18 2019-06-04 三电汽车部件株式会社 The control valve of variable displacement compressor
RU205108U1 (en) * 2020-10-30 2021-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Керченский государственный морской технологический университет" (ФГБОУ ВО "КГМТУ") SAFETY VALVE FOR CANDLES OF MARINE AUTO FILTERS

Also Published As

Publication number Publication date
EP1024286A3 (en) 2001-02-07
JP3899719B2 (en) 2007-03-28
EP1024286A2 (en) 2000-08-02

Similar Documents

Publication Publication Date Title
JP3783434B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
JP3583951B2 (en) Capacity control valve
JP4081965B2 (en) Capacity control mechanism of variable capacity compressor
JP3585148B2 (en) Control valve for variable displacement compressor
JP3984724B2 (en) Control valve for variable capacity swash plate compressor and swash plate compressor
JP3432995B2 (en) Control valve for variable displacement compressor
US8292596B2 (en) Variable displacement type compressor with displacement control mechanism
JP2001132632A (en) Control valve of variable displacement compressor
JP3585150B2 (en) Control valve for variable displacement compressor
JP2000220576A (en) Control valve for variable displacement compressor
US6234763B1 (en) Variable displacement compressor
JP2005307817A (en) Capacity controller for variable displacement compressor
JP2000009045A (en) Control valve for variable displacement type compressor, variable displacement type compressor, and variable setting method for set suction pressure
JP2002054561A (en) Control valve of variable displacement compressor, and variable displacement compressor
US6783332B2 (en) Control valve of variable displacement compressor with pressure sensing member
JP2000291542A (en) Control valve for variable displacement type compressor
JP4333047B2 (en) Control valve for variable capacity compressor
JP2000230481A (en) Crank pressure control mechanism of variable capacity comperssor
JP4647471B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
JPH10103249A (en) Control valve
JP2011027115A (en) Variable displacement swash plate type compressor and cooling circuit for air conditioning
JP4031128B2 (en) Swash plate type variable capacity compressor
JP2002039059A (en) Electromagnetic actuator, valve and flow control valve
JP3255018B2 (en) Clutchless variable displacement compressor and method of assembling the same
JP2000274351A (en) Variable capacity type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

LAPS Cancellation because of no payment of annual fees