JP2000230481A - Crank pressure control mechanism of variable capacity comperssor - Google Patents

Crank pressure control mechanism of variable capacity comperssor

Info

Publication number
JP2000230481A
JP2000230481A JP11032895A JP3289599A JP2000230481A JP 2000230481 A JP2000230481 A JP 2000230481A JP 11032895 A JP11032895 A JP 11032895A JP 3289599 A JP3289599 A JP 3289599A JP 2000230481 A JP2000230481 A JP 2000230481A
Authority
JP
Japan
Prior art keywords
valve
pressure
chamber
crank
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11032895A
Other languages
Japanese (ja)
Inventor
Takeshi Mizufuji
健 水藤
Masaki Ota
太田  雅樹
Hiroshi Ataya
拓 安谷屋
Akira Matsubara
亮 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP11032895A priority Critical patent/JP2000230481A/en
Priority to PCT/JP2000/000650 priority patent/WO2000047896A1/en
Priority to EP00902118A priority patent/EP1070845A1/en
Publication of JP2000230481A publication Critical patent/JP2000230481A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1836Valve-controlled fluid connection between crankcase and working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1877External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/15By-passing over the pump
    • F04B2205/151Opening width of a bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/17Opening width of a throttling device
    • F04B2205/173Opening width of a throttling device in a circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent crank pressure from increasing more than necessary in advance and to eliminate wasting of high-pressure coolant gas generated by the compressor even when letting a compressor of swash plane type rapidly shift to the minimum capacity operation by increasing the crank pressure in a short period. SOLUTION: In the middle of an intake passage 28 coupling a discharge chamber 22 of a variable capacity compressor of swash plane type and a crank chamber 5, a valve portion 51 in the intake side of an electromagnetic switch valve and gas flow adjusting mechanism 80 are provided in series. The valve portion 51 in the intake side opens and closes the intake passage 28 by external control. The gas flow adjusting mechanism 80 chronologically changes the quantity of passing gas in response to gas supplied from the discharge chamber 22 by an opening operation of the valve 51 in the intake side to adjust the quantity of gas flowing into the crank chamber 5 as time goes by.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クランク室の内圧
制御に基づいて斜板の傾角を変更し吐出容量を調節可能
な容量可変型圧縮機におけるクランク圧制御機構に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crank pressure control mechanism for a variable displacement compressor capable of changing a tilt angle of a swash plate based on control of an internal pressure of a crank chamber to adjust a displacement.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】一般
に容量可変型斜板式圧縮機の吐出容量は、クランク室の
内圧制御に基づき斜板の傾角を変更することにより調節
される。クランク室内圧(クランク圧Pc)の制御方式
の一つに入れ側制御がある。これは、圧縮機の吐出室に
吐出された高圧冷媒ガスの一部を入れ側制御弁を介して
クランク室に適宜導入し、クランク圧Pcを高めること
で斜板の傾角を小さくし吐出容量を低下させるという制
御方式である。従来の入れ側制御では、例えば圧縮機の
吐出容量を最大容量(傾角最大)から最小容量(傾角最
小)に即座に下げその後も最小容量運転を維持するため
には、閉弁状態の入れ側制御弁を全開としその後もその
全開状態を保持しなければならなかった。
2. Description of the Related Art Generally, the discharge capacity of a variable displacement type swash plate type compressor is adjusted by changing the inclination angle of a swash plate based on the internal pressure control of a crank chamber. One of the control methods of the crank chamber pressure (crank pressure Pc) is an inlet control. This is because a part of the high-pressure refrigerant gas discharged into the discharge chamber of the compressor is appropriately introduced into the crank chamber through the inlet-side control valve, and the crank pressure Pc is increased to reduce the inclination angle of the swash plate and reduce the discharge capacity. This is a control method of lowering. In the conventional inlet-side control, for example, in order to immediately reduce the discharge capacity of the compressor from the maximum capacity (maximum tilt angle) to the minimum capacity (minimum tilt angle), and to maintain the minimum capacity operation thereafter, the input-side control in the valve-closed state is required. The valve had to be fully opened and then kept fully open.

【0003】ところが、入れ側制御弁の全開状態が保持
されると、クランク圧Pcが必要以上に高まり圧縮機の
内部機構に悪影響を及ぼす。例えば、クランク圧Pcの
過度な高まりによって、上死点位置にきたピストンの圧
縮端面がシリンダボアの一端面を区画するバルブプレー
トに衝突するという不具合(いわゆるピストントップ当
り)が生じることがある。かかる不具合を未然に防止す
るために、入れ側制御弁の開弁時でもクランク圧Pcが
必要以上に高まることがないように、クランク室のガス
を吸入室に放出する抽気通路に口径のやや大きめの固定
絞りを配設し、クランク室から吸入室への放圧を常時確
保する等の安全設計がしばしば採用されている。しかし
ながら、かかる設計では、最小容量運転を維持するため
に、抽気通路を経由してのクランク室からのガス放出量
を上回る量の高圧冷媒ガスを吐出室からクランク室に供
給し続ける必要があり、吐出室→クランク室→吸入室と
いう経路での高圧冷媒ガスの垂れ流しを黙認することに
なる。これでは、圧縮機が圧縮した冷媒ガスの無駄使い
になり、圧縮機の効率低下は避けられない。
However, if the fully open state of the inlet control valve is maintained, the crank pressure Pc increases more than necessary and adversely affects the internal mechanism of the compressor. For example, an excessive increase in the crank pressure Pc may cause a problem (a so-called piston top contact) in which the compression end face of the piston that has reached the top dead center position collides with a valve plate that defines one end face of the cylinder bore. In order to prevent such a problem beforehand, even when the inlet control valve is opened, the diameter of the bleed passage for discharging the gas in the crank chamber to the suction chamber is set to be slightly larger so that the crank pressure Pc does not increase more than necessary. A safety design is often adopted in which a fixed throttle is disposed and pressure is constantly released from the crank chamber to the suction chamber. However, in such a design, in order to maintain the minimum capacity operation, it is necessary to continue to supply the high pressure refrigerant gas from the discharge chamber to the crank chamber from the discharge chamber in an amount exceeding the amount of gas released from the crank chamber via the bleed passage, This implies that the high-pressure refrigerant gas flows down the discharge chamber → the crank chamber → the suction chamber. In this case, the refrigerant gas compressed by the compressor is wasted, and a decrease in the efficiency of the compressor is inevitable.

【0004】その一方で、圧縮機の吐出容量を最大容量
から最小容量に切り換える(即ち斜板を最大傾角から最
小傾角に変化させる)際の応答性、即ち変化の迅速性に
ついては良好に保ちたいという要求が存在する。従っ
て、クランク圧Pcが、最大傾角状態に対応した低圧状
態から斜板を最小傾角状態に移行させるのに必要最小限
度の高圧状態に達するまでの間は少なくとも、入れ側制
御弁を全開状態としておくことが好ましい。
On the other hand, it is desirable to maintain good responsiveness when switching the discharge capacity of the compressor from the maximum capacity to the minimum capacity (that is, changing the swash plate from the maximum tilt angle to the minimum tilt angle), that is, the rapidity of the change. There is a demand that. Therefore, at least until the crank pressure Pc reaches the minimum high pressure state necessary for shifting the swash plate from the low pressure state corresponding to the maximum tilt state to the minimum tilt state, the inlet control valve is kept fully open. Is preferred.

【0005】本発明の目的は、クランク圧Pcを短時間
に上昇させて圧縮機を迅速に最小容量運転に移行させる
ことができると共に、その場合でもクランク圧Pcが必
要以上に上昇するのを未然に回避でき、且つ、圧縮機が
作り出した高圧ガスを無駄使いすることなく圧縮機に本
来の効率での運転を行わせることが可能な容量可変型圧
縮機のクランク圧制御機構を提供することにある。
It is an object of the present invention to increase the crank pressure Pc in a short time so that the compressor can be quickly shifted to the minimum capacity operation, and even in such a case, the crank pressure Pc is prevented from rising more than necessary. To provide a crank pressure control mechanism for a variable displacement compressor capable of causing the compressor to operate at its original efficiency without wasting high pressure gas produced by the compressor. is there.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、クラ
ンク室の内圧制御に基づいて斜板の傾角を変更し吐出容
量を調節可能な容量可変型圧縮機におけるクランク圧制
御機構であって、圧縮機の吐出圧領域とクランク室とを
つなぐ給気通路に設けられ、外部からの制御によって前
記給気通路を開閉可能な入れ側開閉弁と、前記入れ側開
閉弁とクランク室との間に介在するように前記給気通路
に設けられ、前記入れ側開閉弁の開弁動作による吐出圧
領域からのガス供給に応答して経時的にガス通過量を変
化させ、クランク室へのガス流入量を時間と共に調節す
るガス流入調節機構とを備えた容量可変型圧縮機のクラ
ンク圧制御機構である。
A first aspect of the present invention is a crank pressure control mechanism in a variable displacement compressor capable of adjusting a discharge angle by changing a tilt angle of a swash plate based on control of an internal pressure of a crank chamber. An inlet side opening / closing valve which is provided in an air supply passage connecting the discharge pressure region of the compressor to the crank chamber, and which can open and close the air supply passage by external control; and The gas supply amount is provided in the air supply passage so as to intervene, and the gas passage amount changes with time in response to gas supply from the discharge pressure region due to the opening operation of the inlet-side on-off valve, and gas flows into the crank chamber. This is a crank pressure control mechanism of a variable displacement compressor including a gas inflow adjusting mechanism for adjusting the amount with time.

【0007】この構成によれば、外部からの制御によっ
て入れ側開閉弁が開弁されると、圧縮機の吐出圧領域か
らガス流入調節機構に吐出圧相当の高圧ガスが供給され
る。すると、このガス供給に応答してガス流入調節機構
が経時的にガス通過量を変化させクランク室へのガス流
入量を時間と共に調節する。このような機能を有するガ
ス流入調節機構を入れ側開閉弁とクランク室との間に介
在させることで、クランク圧Pcを目標圧まで上昇させ
るのに必要最小量の高圧ガスを自動的に計量し、それを
短時間内にクランク室に流入させることが可能となる。
従って、請求項1のクランク圧制御機構を用いれば、ク
ランク圧Pcを短時間に上昇させて圧縮機を迅速に最小
容量運転に移行させることができるのみならず、その場
合でもクランク圧Pcが必要以上に上昇するのを未然に
回避できると共に、圧縮機が作り出した高圧ガスを無駄
使いすることなく圧縮機に本来の効率での運転を行わせ
ることが可能となる。
According to this configuration, when the inlet-side on-off valve is opened by external control, high-pressure gas corresponding to the discharge pressure is supplied from the discharge pressure region of the compressor to the gas inflow adjusting mechanism. Then, in response to the gas supply, the gas inflow adjusting mechanism changes the gas passage amount with time to adjust the gas inflow amount to the crank chamber with time. By interposing a gas inflow adjusting mechanism having such a function between the inlet-side on-off valve and the crank chamber, the minimum amount of high-pressure gas necessary for raising the crank pressure Pc to the target pressure is automatically measured. , Can flow into the crankcase in a short time.
Therefore, if the crank pressure control mechanism of the first aspect is used, not only can the crank pressure Pc be increased in a short time to quickly shift the compressor to the minimum displacement operation, but also in that case, the crank pressure Pc is required. It is possible to prevent the above-mentioned rise from occurring beforehand, and to make the compressor operate at the original efficiency without wasting the high-pressure gas produced by the compressor.

【0008】請求項2の発明は、請求項1に記載の容量
可変型圧縮機のクランク圧制御機構において、前記ガス
流入調節機構は、前記入れ側開閉弁の開弁直後の所定時
間だけガス通過量を大きく確保する一方で前記所定時間
経過後はガス通過量を小さく絞り込むように構成されて
いることを特徴とする。
According to a second aspect of the present invention, in the crank pressure control mechanism for the variable displacement compressor according to the first aspect, the gas inflow adjusting mechanism allows the gas to pass for a predetermined time immediately after the inlet-side on-off valve is opened. It is characterized in that the gas passage amount is narrowed down after the predetermined time elapses while the amount is kept large.

【0009】この構成によれば、入れ側開閉弁の開弁直
後の所定時間内にクランク圧Pcを目標圧まで上昇させ
るのに必要な(最小)量の高圧ガスをクランク室に送り
込み、クランク圧Pcが目標圧に達した後はその目標圧
を維持するのに必要最小量の高圧ガスのみをクランク室
に引き続き供給することが可能となる。従って、請求項
2のクランク圧制御機構を用いれば、クランク圧の迅速
な昇圧、クランク圧過大化の未然回避および高圧ガスの
無駄使い防止を同時に達成することができる。
According to this configuration, a (minimum) amount of high-pressure gas required to raise the crank pressure Pc to the target pressure is sent into the crank chamber within a predetermined time immediately after the opening of the inlet-side on-off valve, and the crank pressure is increased. After Pc reaches the target pressure, only the minimum amount of high-pressure gas required to maintain the target pressure can be continuously supplied to the crank chamber. Therefore, by using the crank pressure control mechanism according to the second aspect, it is possible to simultaneously increase the crank pressure quickly, avoid excessive crank pressure, and prevent waste of high-pressure gas.

【0010】請求項3の発明は、請求項1又は2に記載
の容量可変型圧縮機のクランク圧制御機構において、前
記ガス流入調節機構は、部屋内に往復動可能に設けられ
た可動壁としてのスプール弁体と、前記スプール弁体に
よって前記部屋内に区画された導入室及び調圧室と、前
記導入室と前記クランク室とをつなぐと共に前記スプー
ル弁体の往復動に伴って開閉される導出通路と、前記導
入室と前記調圧室とを連通させる絞りとを備え、前記入
れ側開閉弁の開弁動作による前記吐出圧領域から前記導
入室へのガス供給に伴い前記スプール弁体が原位置より
往動して前記導出通路を開放すると共に、その後の所定
時間を経て前記絞りを介し導入室と調圧室とが均圧化す
ると前記スプール弁体が原位置に復動して前記導出通路
を閉塞することを特徴とする。
According to a third aspect of the present invention, in the crank pressure control mechanism for a variable displacement compressor according to the first or second aspect, the gas inflow adjusting mechanism is a movable wall provided reciprocally in the room. A spool valve element, an introduction chamber and a pressure regulation chamber partitioned in the room by the spool valve element, and a connection between the introduction chamber and the crank chamber and opening / closing as the spool valve element reciprocates. An outlet passage, a throttle that communicates the introduction chamber with the pressure regulation chamber, and the spool valve element is supplied with gas from the discharge pressure region to the introduction chamber by the opening operation of the inlet-side on-off valve. While moving forward from the original position to open the lead-out passage, and after a predetermined period of time, when the pressure in the introduction chamber and the pressure regulating chamber is equalized via the throttle, the spool valve body returns to the original position and returns to the original position. To block the exit passage And butterflies.

【0011】この構成によれば、スプール弁体の往復動
作に要する所定時間だけ導入室とクランク室とをつなぐ
導出通路を開放状態とすることができ、その往復動作時
間だけ、入れ側開閉弁、導入室及び導出通路を介して吐
出室とクランク室とを直通状態とすることができる。こ
の導出通路の開放時間は、絞りを介し導入室と調圧室と
が均圧化するのに必要な時間に対応する。このため、前
記絞りのサイズや調圧室の容積を適宜変更することで、
導出通路の開放時間を最適設定することが可能となる。
According to this structure, the lead-out passage connecting the introduction chamber and the crank chamber can be opened for a predetermined time required for the reciprocating operation of the spool valve body. The discharge chamber and the crank chamber can be directly connected via the introduction chamber and the outlet passage. The opening time of the outlet passage corresponds to the time required for equalizing the pressure in the introduction chamber and the pressure regulating chamber via the throttle. Therefore, by appropriately changing the size of the throttle and the volume of the pressure regulation chamber,
It is possible to optimally set the opening time of the lead-out passage.

【0012】請求項4の発明は、請求項1又は2に記載
の容量可変型圧縮機のクランク圧制御機構において、前
記ガス流入調節機構は、部屋内に前進位置と後退位置と
の二位置間で往復動可能に設けられた可動壁としてのス
プール弁体と、前記スプール弁体を前進位置に向けて付
勢する付勢バネと、前記スプール弁体によって前記部屋
内に区画されると共に前記入れ側開閉弁と接続された導
入室と、前記スプール弁体によって前記部屋内に区画さ
れると共に導圧通路を介して前記クランク室に連通する
調圧室と、前記導入室と前記クランク室とを接続すると
共に前記スプール弁体が前進位置にあるときに閉塞され
前記スプール弁体が後退位置にあるときに開放される導
出通路と、前記スプール弁体の内部又はその周辺に形成
されて前記導入室と前記調圧室とを連通する第1の絞り
と、前記調圧室と前記クランク室とを連通させる前記導
圧通路に設けられた第2の絞りとを備えてなり、前記第
2の絞りのガス通過量は前記第1の絞りのガス通過量よ
りも小さくなっていることを特徴とする。
According to a fourth aspect of the present invention, in the crank pressure control mechanism for a variable displacement compressor according to the first or second aspect, the gas inflow adjusting mechanism is provided between the forward position and the backward position in the room. A spool valve body as a movable wall provided so as to be able to reciprocate, a biasing spring for biasing the spool valve body toward a forward position, and a partition defined in the room by the spool valve body and An introduction chamber connected to a side opening / closing valve, a pressure regulation chamber partitioned into the room by the spool valve body and communicating with the crank chamber via a pressure guiding passage, and the introduction chamber and the crank chamber. An outlet passage that is connected and closed when the spool valve element is at a forward position and opened when the spool valve element is at a retracted position; and the introduction chamber formed inside or around the spool valve element. A first throttle that communicates with the pressure regulating chamber; and a second throttle that is provided in the pressure guiding passage that communicates the pressure regulating chamber with the crank chamber. The gas passage amount is smaller than the gas passage amount of the first throttle.

【0013】この請求項4はガス流入調節機構の最も好
ましい構成を特定するものである。この構成に基づく作
用及び効果は、後述する発明の実施の形態において明ら
かとなるので重複説明はしない。
[0013] Claim 4 specifies the most preferable configuration of the gas inflow adjusting mechanism. The operation and effect based on this configuration will be clarified in an embodiment of the invention described later, and thus will not be described repeatedly.

【0014】請求項5の発明は、請求項1〜4のいずれ
か一項に記載の容量可変型圧縮機のクランク圧制御機構
において、前記入れ側開閉弁と前記ガス流入調節機構と
は一体化されて一つの弁機構を構成していることを特徴
とする(図6及び図7参照)。この構成によれば、クラ
ンク圧制御機構がコンパクトなものとなり、実機(圧縮
機)への組み込みに好都合となる。
According to a fifth aspect of the present invention, in the crank pressure control mechanism for a variable displacement compressor according to any one of the first to fourth aspects, the inlet opening / closing valve and the gas inflow adjusting mechanism are integrated. This constitutes a single valve mechanism (see FIGS. 6 and 7). According to this configuration, the crank pressure control mechanism becomes compact, which is convenient for incorporation into an actual machine (compressor).

【0015】請求項6の発明は、請求項1〜5のいずれ
か一項に記載の容量可変型圧縮機のクランク圧制御機構
において、前記圧縮機のクランク室と吸入圧領域とをつ
なぐ抽気通路に設けられると共に外部からの制御によっ
て前記抽気通路を開閉可能な抜き側開閉弁を更に備えて
おり、当該抜き側開閉弁と前記入れ側開閉弁とは、一方
が開弁状態にあるとき他方が閉弁状態となるように連動
制御されることを特徴とする。
According to a sixth aspect of the present invention, in the crank pressure control mechanism for a variable displacement compressor according to any one of the first to fifth aspects, a bleed passage that connects a crank chamber of the compressor to a suction pressure region. And a withdrawal opening / closing valve capable of opening and closing the bleed passage by external control, wherein one of the withdrawal opening / closing valve and the input-side opening / closing valve is open when one is in a valve-open state. The interlocking control is performed so that the valve is closed.

【0016】この構成によれば、外部からの制御によっ
てクランク圧Pcを上昇させるべく入れ側開閉弁を開弁
状態としたときには、抜き側開閉弁が閉弁状態となる。
従って、クランク圧の昇圧動作時にクランク室と吸入圧
領域とが連通状態に陥ることがなく、従来技術の欠点と
して問題視したような高圧ガスの垂れ流しが全く起きな
い。従って、高圧ガスの無駄使いが防止され、圧縮機の
運転効率を向上させることができる。
According to this configuration, when the inlet-side on-off valve is opened to increase the crank pressure Pc by external control, the drain-side on-off valve is closed.
Therefore, the communication between the crank chamber and the suction pressure region does not occur during the operation of increasing the crank pressure, and the high-pressure gas does not drool at all as a disadvantage of the prior art. Therefore, wasteful use of the high-pressure gas is prevented, and the operating efficiency of the compressor can be improved.

【0017】請求項7の発明は、請求項6に記載の容量
可変型圧縮機のクランク圧制御機構において、前記入れ
側開閉弁と、前記抜き側開閉弁と、前記ガス流入調節機
構とは一体化されて一つの弁機構を構成していることを
特徴とする(図6及び図7参照)。この構成によれば、
クランク圧制御機構がコンパクトなものとなり、実機
(圧縮機)への組み込みに好都合となる。
According to a seventh aspect of the present invention, in the crank pressure control mechanism for a variable displacement compressor according to the sixth aspect, the inlet-side on-off valve, the discharge-side on-off valve, and the gas inflow adjusting mechanism are integrated. (See FIGS. 6 and 7). According to this configuration,
The crank pressure control mechanism becomes compact, which is convenient for incorporation into an actual machine (compressor).

【0018】[0018]

【発明の実施の形態】以下に本発明をクラッチ付きの容
量可変型斜板式圧縮機に具体化した一実施形態を図1〜
図5を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a variable displacement swash plate type compressor with a clutch will be described below with reference to FIGS.
This will be described with reference to FIG.

【0019】(圧縮機本体の概要)図1に示すように斜
板式圧縮機は、シリンダブロック1と、その前端に接合
されたフロントハウジング2と、シリンダブロック1の
後端に弁形成体3を介して接合されたリヤハウジング4
とを備えている。これら1,2,3及び4は複数の通し
ボルト(図示略)により相互に接合固定され、圧縮機の
ハウジングを構成する。シリンダブロック1とフロント
ハウジング2とに囲まれた領域にはクランク室5が区画
されている。クランク室5内には駆動軸6が、ハウジン
グ内に設けられた複数のラジアル軸受けによって回転可
能に支持されている。シリンダブロック1の中央凹部内
には、コイルバネ7及び後側スラスト軸受け8が配設さ
れている。他方、クランク室5において駆動軸6上には
回転支持体11が一体回転可能に固定され、この回転支
持体11とフロントハウジング2の内側面との間には前
側スラスト軸受け9が配設されている。駆動軸6は、バ
ネ7で前方付勢された後側軸受け8と前側軸受け9とに
よってスラスト支持されている。
(Outline of Compressor Body) As shown in FIG. 1, the swash plate type compressor has a cylinder block 1, a front housing 2 joined to a front end thereof, and a valve forming body 3 at a rear end of the cylinder block 1. Rear housing 4 joined via
And These 1, 2, 3, and 4 are joined and fixed to each other by a plurality of through bolts (not shown) to form a compressor housing. A crank chamber 5 is defined in a region surrounded by the cylinder block 1 and the front housing 2. A drive shaft 6 is rotatably supported in the crank chamber 5 by a plurality of radial bearings provided in the housing. A coil spring 7 and a rear thrust bearing 8 are provided in a central concave portion of the cylinder block 1. On the other hand, a rotary support 11 is fixed on the drive shaft 6 in the crank chamber 5 so as to be integrally rotatable, and a front thrust bearing 9 is disposed between the rotary support 11 and the inner surface of the front housing 2. I have. The drive shaft 6 is thrust supported by a rear bearing 8 and a front bearing 9 urged forward by a spring 7.

【0020】駆動軸6の前端部は、電磁クラッチ40を
介して外部駆動源としての車輌エンジンEに作動連結さ
れている。電磁クラッチ40は、フロントハウジング2
の前方筒部上にベアリング41により回動可能に支持さ
れたプーリ42と、環状のソレノイドコイル43と、駆
動軸6の前端域にて板バネ44付勢された状態で前後摺
動可能に設けられたアーマチュア45とを備えている。
図1には、板バネ44の付勢力に抗してアーマチュア4
5がプーリ42の端面に接合された状態が示されてい
る。コイル43への通電により生じた電磁力によってア
ーマチュア45がプーリ42の端面に吸引接合される
と、動力伝達ベルト46、プーリ42及びアーマチュア
45を介してエンジンEの駆動力が駆動軸6に伝達され
る。コイル43への通電停止によって電磁力が消失すれ
ば、アーマチュア45は板バネ44の付勢力によってプ
ーリ42から離間し動力伝達が遮断される。このように
コイル43への通電制御に基づきエンジン動力が駆動軸
6に選択的に伝達される。
The front end of the drive shaft 6 is operatively connected to a vehicle engine E as an external drive source via an electromagnetic clutch 40. The electromagnetic clutch 40 is connected to the front housing 2
A pulley 42 rotatably supported by a bearing 41 on a front cylindrical portion of the drive shaft 6, an annular solenoid coil 43, and a front end region of the drive shaft 6 are slidably moved forward and backward while being urged by a leaf spring 44. Armature 45 provided.
FIG. 1 shows the armature 4 against the urging force of the leaf spring 44.
5 shows a state in which 5 is joined to the end face of the pulley 42. When the armature 45 is attracted and joined to the end face of the pulley 42 by electromagnetic force generated by energizing the coil 43, the driving force of the engine E is transmitted to the drive shaft 6 via the power transmission belt 46, the pulley 42 and the armature 45. You. If the electromagnetic force disappears due to the stoppage of the current supply to the coil 43, the armature 45 is separated from the pulley 42 by the urging force of the leaf spring 44, and the power transmission is cut off. As described above, the engine power is selectively transmitted to the drive shaft 6 based on the control of energizing the coil 43.

【0021】更に、クランク室5内にはカムプレートた
る斜板12が収容されている。斜板12の中央部には挿
通孔が貫設され、この挿通孔に駆動軸6が挿通されてい
る。この斜板12は、連結案内機構としてのヒンジ機構
13を介して回転支持体11及び駆動軸6に作動連結さ
れている。ヒンジ機構13は、回転支持体11のリヤ面
に突設されたガイド孔付きの支持アーム14と、斜板1
2のフロント面に突設された球状頭部付きのガイドピン
15とで構成されている。そして、ヒンジ機構13を構
成する支持アーム14とガイドピン15との連係および
斜板12の中央挿通孔内での駆動軸6との接触により、
斜板12は駆動軸6と同期回転可能であると共に、駆動
軸6の軸線方向へのスライドを伴いながら駆動軸6に対
して傾動可能となっている。
Further, a swash plate 12 serving as a cam plate is accommodated in the crank chamber 5. The swash plate 12 has a through hole formed in the center thereof, and the drive shaft 6 is inserted through the through hole. The swash plate 12 is operatively connected to the rotation support 11 and the drive shaft 6 via a hinge mechanism 13 as a connection guide mechanism. The hinge mechanism 13 includes a support arm 14 having a guide hole protruding from a rear surface of the rotary support 11 and a swash plate 1.
2 and a guide pin 15 with a spherical head protruding from the front surface of the second. Then, by the linkage between the support arm 14 and the guide pin 15 constituting the hinge mechanism 13 and the contact with the drive shaft 6 in the central insertion hole of the swash plate 12,
The swash plate 12 is rotatable in synchronization with the drive shaft 6 and is capable of tilting with respect to the drive shaft 6 while sliding the drive shaft 6 in the axial direction.

【0022】回転支持体11と斜板12との間において
駆動軸6上には、コイル状の傾角減少バネ16が設けら
れている。このバネ16は斜板12をシリンダブロック
1に接近する方向(即ち傾角減少方向)に付勢する。斜
板12よりも後方の駆動軸6上にはサークリップ17が
固着され、該サークリップ17は斜板12のそれ以上の
後退を規制することで斜板12の最小傾角(例えば3〜
5°)を決定する。他方、斜板12の最大傾角は、斜板
12のカウンタウェイト部12aが回転支持体11の規
制部11aに当接することで決定される(図1参照)。
A coil-shaped inclination-reducing spring 16 is provided on the drive shaft 6 between the rotary support 11 and the swash plate 12. The spring 16 urges the swash plate 12 in a direction approaching the cylinder block 1 (that is, a direction in which the inclination angle decreases). A circlip 17 is fixed on the drive shaft 6 behind the swash plate 12, and the circlip 17 restricts the swash plate 12 from retreating further, thereby reducing the minimum inclination angle of the swash plate 12 (for example, 3 to 3).
5 °). On the other hand, the maximum inclination angle of the swash plate 12 is determined when the counterweight portion 12a of the swash plate 12 abuts on the regulating portion 11a of the rotary support 11 (see FIG. 1).

【0023】図1に示すように、シリンダブロック1に
は、駆動軸6を取り囲むように複数のシリンダボア1a
(一つのみ図示)が形成され、各シリンダボア1aには
片頭型のピストン18が往復動可能に収容されている。
各ピストン18の端部は一対のシュー19を介して斜板
12の外周部に係留され、ピストン18と斜板12とは
シュー19を介して作動連結されている。又、弁形成体
3とリヤハウジング4との間には、中心域に位置する吸
入室21と、それを取り囲む吐出室22とが区画されて
いる。弁形成体3には各シリンダボア1aに対応して、
吸入ポート23及び同ポート23を開閉する吸入弁2
4、並びに、吐出ポート25及び同ポート25を開閉す
る吐出弁26が形成されている。吸入ポート23を介し
て吸入室21と各シリンダボア1aとが連通され、吐出
ポート25を介して各シリンダボア1aと吐出室22と
が連通される。
As shown in FIG. 1, the cylinder block 1 has a plurality of cylinder bores 1a surrounding the drive shaft 6.
A single-headed piston 18 is reciprocally accommodated in each cylinder bore 1a.
The end of each piston 18 is moored to the outer periphery of the swash plate 12 via a pair of shoes 19, and the piston 18 and the swash plate 12 are operatively connected via the shoes 19. Further, between the valve forming body 3 and the rear housing 4, a suction chamber 21 located in a central region and a discharge chamber 22 surrounding the suction chamber 21 are defined. In the valve forming body 3, corresponding to each cylinder bore 1a,
Suction port 23 and suction valve 2 for opening and closing the port 23
4, and a discharge port 25 and a discharge valve 26 for opening and closing the port 25 are formed. The suction chamber 21 communicates with each cylinder bore 1 a via the suction port 23, and the cylinder bore 1 a communicates with the discharge chamber 22 via the discharge port 25.

【0024】図1の斜板式圧縮機では、エンジンEから
の動力供給により駆動軸6が回転されると、それに伴い
所定角度に傾斜した斜板12が回転する。すると、各ピ
ストン18が斜板の傾角に対応したストロークで往復動
され、各シリンダボア1aでは、吸入室21(吸入圧P
sの領域)からの冷媒ガスの吸入、圧縮、吐出室22
(吐出圧Pdの領域)への圧縮冷媒ガスの吐出が順次繰
り返される。
In the swash plate type compressor shown in FIG. 1, when the drive shaft 6 is rotated by the power supply from the engine E, the swash plate 12 inclined at a predetermined angle is rotated. Then, each piston 18 is reciprocated at a stroke corresponding to the inclination angle of the swash plate, and in each cylinder bore 1a, the suction chamber 21 (suction pressure P
s area), suction and compression of the refrigerant gas from the
The discharge of the compressed refrigerant gas to the (area of the discharge pressure Pd) is sequentially repeated.

【0025】この圧縮機の斜板12の傾角決定要因とし
て、斜板回転時の遠心力に基づく回転運動のモーメント
と、傾角減少バネ16の付勢作用に基づくバネ力による
モーメントと、ガス圧によるモーメントの三つがある。
斜板12の慣性乗積は、前記回転運動のモーメントが常
に傾角増大方向に作用するように設定されている。他
方、ガス圧によるモーメントとは、圧縮行程にあるシリ
ンダボアのピストンに作用する圧縮反力と、吸入行程に
あるシリンダボアの内圧と、ピストン背圧にあたるクラ
ンク室5の内圧(クランク圧Pc)との相互関係に基づ
いて発生するモーメントであり、傾角減少方向に作用す
る。本実施形態では、クランク圧Pcを高めに維持する
ことで、ガス圧によるモーメントと傾角減少バネ16の
バネ力によるモーメントとの和が前記回転運動による傾
角増大方向のモーメントを凌駕し、斜板12を最小傾角
に設定できるように設計されている。又、クランク圧P
cを調節することでガス圧によるモーメントとバネ力に
よるモーメントとの和を前記回転運動のモーメントとバ
ランスさせ、斜板12の傾角を前記最小傾角と最大傾角
との間の任意の角度に設定することもできる。このよう
に、クランク圧Pcの制御に基づいて斜板12の傾角が
決定され、その傾角に応じて各ピストン18のストロー
ク即ち圧縮機の吐出容量が可変調節される。
The tilt angle of the swash plate 12 of the compressor is determined by the moment of the rotational motion based on the centrifugal force at the time of rotation of the swash plate, the moment by the spring force based on the biasing action of the tilt reducing spring 16, and the gas pressure. There are three moments.
The product of inertia of the swash plate 12 is set such that the moment of the rotational motion always acts in the direction of increasing the tilt angle. On the other hand, the moment due to the gas pressure is the mutual reaction between the compression reaction force acting on the piston of the cylinder bore in the compression stroke, the internal pressure of the cylinder bore in the suction stroke, and the internal pressure of the crank chamber 5 (crank pressure Pc) which corresponds to the piston back pressure. This is a moment generated based on the relationship, and acts in the direction of decreasing the tilt angle. In the present embodiment, by maintaining the crank pressure Pc at a high level, the sum of the moment due to the gas pressure and the moment due to the spring force of the inclination reducing spring 16 exceeds the moment in the inclination increasing direction due to the rotational motion, and the swash plate 12 Is designed to be set to the minimum inclination. Also, the crank pressure P
By adjusting c, the sum of the moment due to the gas pressure and the moment due to the spring force is balanced with the moment of the rotational motion, and the inclination angle of the swash plate 12 is set to an arbitrary angle between the minimum inclination angle and the maximum inclination angle. You can also. Thus, the inclination of the swash plate 12 is determined based on the control of the crank pressure Pc, and the stroke of each piston 18, that is, the displacement of the compressor is variably adjusted according to the inclination.

【0026】図1〜図5に示すように、クランク圧Pc
を制御するためのクランク圧制御機構は、入れ側/抜き
側連動型の電磁開閉弁50(図2及び3参照)、ガス流
入調節機構80(図5参照)並びに圧縮機ハウジング内
に設けられた給気通路28及び抽気通路29により構成
される。給気通路28は吐出室22とクランク室5とを
接続しており、該給気通路28の途中には連動型電磁開
閉弁50の入れ側弁部(即ち入れ側開閉弁)51及びガ
ス流入調節機構80が設けられている。抽気通路29は
クランク室5と吸入室21とを接続しており、該抽気通
路29の途中には連動型電磁開閉弁50の抜き側弁部
(即ち抜き側開閉弁)52が設けられている。クランク
圧制御機構の構成要素については後述する。
As shown in FIGS. 1 to 5, the crank pressure Pc
The crank pressure control mechanism for controlling the pressure is provided in the inlet / outlet side interlocking electromagnetic on-off valve 50 (see FIGS. 2 and 3), the gas inflow adjusting mechanism 80 (see FIG. 5), and the compressor housing. It is constituted by an air supply passage 28 and a bleed passage 29. The air supply passage 28 connects the discharge chamber 22 and the crank chamber 5. In the middle of the air supply passage 28, an inlet-side valve portion (that is, an inlet-side on-off valve) 51 of an interlocking electromagnetic on-off valve 50 and a gas inflow An adjustment mechanism 80 is provided. The bleed passage 29 connects the crank chamber 5 and the suction chamber 21, and in the middle of the bleed passage 29, a removal valve portion (ie, a removal opening / closing valve) 52 of the interlocking electromagnetic on-off valve 50 is provided. . The components of the crank pressure control mechanism will be described later.

【0027】(外部冷媒回路及び圧縮機の電子制御構
成)図1に示すように、圧縮機の吐出室22と吸入室2
1とは外部冷媒回路30を介して接続されている。この
外部冷媒回路30は該圧縮機とともに車輌用空調装置の
冷房回路を構成する。外部冷媒回路30には、凝縮器
(コンデンサ)31、温度式の膨張弁32及び蒸発器
(エバポレータ)33が設けられている。膨張弁32の
開度は、蒸発器33の出口側に設けられた感温筒の検知
温度および蒸発圧力に基づいてフィードバック制御さ
れ、膨張弁32は熱負荷に見合った液冷媒を蒸発器33
に供給して外部冷媒回路30における冷媒流量を調節す
る。
(Electronic Control Structure of External Refrigerant Circuit and Compressor) As shown in FIG.
1 is connected via an external refrigerant circuit 30. The external refrigerant circuit 30 forms a cooling circuit of the vehicle air conditioner together with the compressor. The external refrigerant circuit 30 includes a condenser (condenser) 31, a temperature-type expansion valve 32, and an evaporator (evaporator) 33. The opening degree of the expansion valve 32 is feedback-controlled based on the detected temperature and the evaporation pressure of a temperature-sensitive cylinder provided on the outlet side of the evaporator 33, and the expansion valve 32 supplies the liquid refrigerant corresponding to the heat load to the evaporator 33.
To adjust the refrigerant flow rate in the external refrigerant circuit 30.

【0028】更に図2に示すように、蒸発器33の近傍
には温度センサ34が設置されている。この温度センサ
34は蒸発器33の温度を検出し、その蒸発器温度情報
を制御コンピュータCに提供する。この制御コンピュー
タCは、車輌用空調装置の冷暖房に関する一切の制御を
司る。制御コンピュータCの入力側には、温度センサ3
4の他に少なくとも、車輌の室内温度を検出する室温セ
ンサ35、車輌の室内温度を設定するための室温設定器
36、空調装置作動スイッチ37およびエンジンEの電
子制御装置ECUが接続されている。他方、制御コンピ
ュータCの出力側には、前述の電磁クラッチ40のソレ
ノイドコイル43への通電を制御する駆動回路38と、
電磁開閉弁50のコイル74への通電を制御する駆動回
路39が接続されている。制御コンピュータCは、温度
センサ34から得られる蒸発器温度、室温センサ35か
ら得られる車室内温度、室温設定器36によって設定さ
れた所望室温、空調装置作動スイッチ37からのON/
OFF設定状況、及び、ECUからのエンジンEの起動
・停止やエンジン回転数に関する情報等の外部情報に基
づき、電磁クラッチ40及び電磁開閉弁50の制御を行
う。
Further, as shown in FIG. 2, a temperature sensor 34 is provided near the evaporator 33. The temperature sensor 34 detects the temperature of the evaporator 33 and provides the evaporator temperature information to the control computer C. The control computer C manages all controls related to cooling and heating of the vehicle air conditioner. A temperature sensor 3 is provided on the input side of the control computer C.
4, a room temperature sensor 35 for detecting a vehicle indoor temperature, a room temperature setting device 36 for setting the vehicle indoor temperature, an air conditioner operation switch 37, and an electronic control unit ECU of the engine E are connected. On the other hand, on the output side of the control computer C, a drive circuit 38 that controls the energization of the solenoid coil 43 of the electromagnetic clutch 40 described above,
The drive circuit 39 for controlling the energization of the coil 74 of the electromagnetic on-off valve 50 is connected. The control computer C controls the evaporator temperature obtained from the temperature sensor 34, the vehicle interior temperature obtained from the room temperature sensor 35, the desired room temperature set by the room temperature setting device 36, and the ON / OFF state of the air conditioner operation switch 37.
The electromagnetic clutch 40 and the electromagnetic on-off valve 50 are controlled on the basis of the OFF setting status and external information such as information on starting / stopping of the engine E and the engine speed from the ECU.

【0029】(電磁開閉弁50の構成及び基本動作)図
2に示すように、入れ側/抜き側連動型の電磁開閉弁5
0は、吐出室22とクランク室5とを繋ぐ給気通路28
を開閉制御する入れ側開閉弁としての入れ側弁部51
と、クランク室5と吸入室21とを繋ぐ抽気通路29を
開閉制御する抜き側開閉弁としての抜き側弁部52と、
両弁部51,52を駆動するためのソレノイド部53と
を備えている。これら51,52,53は、電磁開閉弁
50の本体外郭を構成するバルブハウジング54内に組
み込まれている。
(Structure and Basic Operation of Electromagnetic On / Off Valve 50) As shown in FIG.
0 is an air supply passage 28 connecting the discharge chamber 22 and the crank chamber 5.
-Side valve section 51 as an inlet-side on-off valve for controlling the opening and closing of the valve
A withdrawal-side valve portion 52 as a withdrawal-side on-off valve for controlling the opening and closing of the bleed passage 29 connecting the crank chamber 5 and the suction chamber 21;
A solenoid unit 53 for driving the two valve units 51 and 52 is provided. These 51, 52, and 53 are incorporated in a valve housing 54 that forms the outer shell of the main body of the electromagnetic on-off valve 50.

【0030】入れ側弁部51は、バルブハウジング54
内に区画された入れ側弁室55と、その弁室の天井域に
垂直に設けられた弁孔たる入れ側連通路56とを備え
る。入れ側弁室55は第1ポート57及び給気通路28
の上流部を介して吐出室22に連通し、弁室55には吐
出室22の圧力(吐出圧Pd)が導かれている。入れ側
連通路56は、第2ポート58及び給気通路28の下流
部を介してガス流入調節機構80及びクランク室5に連
通する。なお、第1ポート57、入れ側弁室55、入れ
側連通路56及び第2ポート58は、電磁開閉弁50内
において給気通路28の一部を構成する。
The inlet valve portion 51 includes a valve housing 54.
An inlet-side valve chamber 55 is defined therein, and an inlet-side communication passage 56 which is a valve hole and is provided vertically in a ceiling area of the valve chamber. The inlet valve chamber 55 is connected to the first port 57 and the air supply passage 28.
The pressure (discharge pressure Pd) of the discharge chamber 22 is guided to the valve chamber 55 through the upstream portion of the discharge chamber 22. The inlet communication passage 56 communicates with the gas inflow adjusting mechanism 80 and the crank chamber 5 via the second port 58 and a downstream portion of the air supply passage 28. The first port 57, the inlet valve chamber 55, the inlet communication passage 56, and the second port 58 form a part of the air supply passage 28 in the electromagnetic on-off valve 50.

【0031】入れ側弁室55内には入れ側弁体60が垂
直方向(弁50の軸線方向)に移動可能に配設されてい
る。入れ側弁体60の本体部はその移動に伴って弁孔5
6を開閉する。弁体60の下端部からは第1のロッド6
1が、又、弁体60の上端部からは第2のロッド62が
それぞれ垂直方向に延び、各ロッドの先端はバルブハウ
ジング54の隔壁部を貫通して入れ側弁室55の外に達
している。一体化された入れ側弁体60並びに第1及び
第2ロッド61,62は、弁体60が弁孔56を閉塞す
る上限位置(図2参照)と弁体60が弁孔56を開放す
る下限位置(図3参照)との二位置間で上下動可能とな
っている。
An inlet valve body 60 is provided in the inlet valve chamber 55 so as to be movable in a vertical direction (axial direction of the valve 50). The main body of the inlet valve body 60 moves with the valve hole 5
Open and close 6. From the lower end of the valve body 60, the first rod 6
A second rod 62 extends vertically from the upper end of the valve body 60, and the tip of each rod penetrates the partition wall of the valve housing 54 to reach the outside of the inlet valve chamber 55. I have. The integrated entry-side valve body 60 and the first and second rods 61 and 62 have an upper limit position at which the valve body 60 closes the valve hole 56 (see FIG. 2) and a lower limit at which the valve body 60 opens the valve hole 56. It can move up and down between two positions (see FIG. 3).

【0032】抜き側弁部52は、バルブハウジング54
内に区画された抜き側弁室63と、その弁室の底域に垂
直に設けられた弁孔たる抜き側連通路64とを備える。
抜き側連通路64は、第3ポート65及び抽気通路29
の上流部を介してクランク室5に連通する。抜き側弁室
63は第4ポート66及び抽気通路29の下流部を介し
て吸入室21に連通し、弁室63には吸入室21の圧力
(吸入圧Ps)が導かれている。なお、第3ポート6
5、抜き側連通路64、抜き側弁室63及び第4ポート
66は、電磁開閉弁50内において抽気通路29の一部
を構成する。
The extraction valve portion 52 includes a valve housing 54.
The valve-side valve chamber 63 is defined therein, and a valve-side communication passage 64 which is a valve hole and is provided vertically in a bottom region of the valve chamber.
The extraction side communication passage 64 is connected to the third port 65 and the bleed passage 29.
Communicates with the crankcase 5 through the upstream portion of the crankcase. The extraction side valve chamber 63 communicates with the suction chamber 21 via the fourth port 66 and a downstream portion of the bleed passage 29, and the pressure (suction pressure Ps) of the suction chamber 21 is guided to the valve chamber 63. Note that the third port 6
The extraction side communication passage 64, the extraction side valve chamber 63, and the fourth port 66 form a part of the bleed passage 29 in the electromagnetic on-off valve 50.

【0033】抜き側弁室63内には抜き側弁体67が垂
直方向(弁50の軸線方向)に移動可能に配設され、そ
の移動に伴って弁孔64を開閉する。即ち、弁体67は
それが弁孔64を開放する開放位置(図2参照)と弁孔
64を閉塞する閉塞位置(図3参照)との二位置間で切
替え配置可能となっている。抜き側弁室63内には閉止
バネ68が配設され、この閉止バネ68は抜き側弁体6
7を弁孔64の閉塞方向に付勢する。更に、抜き側弁体
67の下端面に対しては、二つの連通路56,64内に
配置された前記第2ロッド62の上端(先端部)が当接
可能となっている。入れ側弁体60及び第2ロッド62
が上限位置に配置されるとき(図2参照)、第2ロッド
62は閉止バネ68の下向き付勢力に抗して抜き側弁体
67を弁孔64から離間させ弁孔64を開放状態とす
る。他方、入れ側弁体60及び第2ロッド62が下限位
置に配置されるとき(図3参照)、第2ロッド62は抜
き側弁体67を上方に押圧せず、弁体67は原則として
閉止バネ68の下向き付勢力によって弁孔64を閉塞状
態とする。
A pull-out valve body 67 is provided in the pull-out valve chamber 63 so as to be movable in the vertical direction (axial direction of the valve 50), and opens and closes the valve hole 64 with the movement. That is, the valve body 67 can be switched and arranged between an open position (see FIG. 2) where the valve body 64 opens the valve hole 64 and a closed position (see FIG. 3) where the valve hole 64 is closed. A closing spring 68 is provided in the pull-out valve chamber 63, and the closing spring 68 is
7 is urged in the closing direction of the valve hole 64. Further, the upper end (tip) of the second rod 62 disposed in the two communication passages 56 and 64 can be in contact with the lower end surface of the extraction valve body 67. Inlet valve body 60 and second rod 62
Is disposed at the upper limit position (see FIG. 2), the second rod 62 separates the extraction side valve body 67 from the valve hole 64 against the downward urging force of the closing spring 68 to open the valve hole 64. . On the other hand, when the inlet side valve body 60 and the second rod 62 are arranged at the lower limit position (see FIG. 3), the second rod 62 does not press the pull-out side valve body 67 upward, and the valve body 67 is closed in principle. The valve hole 64 is closed by the downward biasing force of the spring 68.

【0034】ソレノイド部53は、バルブハウジング5
4内に区画されたソレノイド室71を備えている。ソレ
ノイド室71と入れ側弁室55との境界域には固定鉄心
72が配設されている。ソレノイド室71内には前記第
1ロッド61の下端(先端部)が進入し、そのロッド6
1の先端部にはプランジャとしての可動鉄心73が固定
されている。ソレノイド室71の天井にあたる固定鉄心
72と可動鉄心73との間には開放バネ69が介装さ
れ、この開放バネ69は、一体化された可動鉄心73,
入れ側弁体60並びに第1及び第2ロッド61,62を
下向きに付勢する。バルブハウジング54には両鉄心7
2,73を取り巻くようにコイル74が装着されてい
る。このコイル74への通電はコンピュータCによって
制御され、コイル74への通電によって両鉄心72,7
3間には電磁吸引力(即ち上向き電磁付勢力)が作用す
る。コイル74に対し最小電流値の通電があれば、前記
上向き電磁付勢力はバネ68,69による下向き付勢力
を凌駕し、両弁体60,67を図2に示す位置に配置す
る。
The solenoid 53 is provided with the valve housing 5
4 is provided with a solenoid chamber 71 partitioned therein. A fixed iron core 72 is provided in a boundary area between the solenoid chamber 71 and the inlet valve chamber 55. The lower end (tip) of the first rod 61 enters the solenoid chamber 71 and the rod 6
A movable iron core 73 as a plunger is fixed to the distal end of the armature 1. An open spring 69 is interposed between the fixed iron core 72 corresponding to the ceiling of the solenoid chamber 71 and the movable iron core 73, and the open spring 69 is integrated with the movable iron core 73,
The inlet valve body 60 and the first and second rods 61 and 62 are urged downward. The valve housing 54 has two iron cores 7.
A coil 74 is mounted so as to surround the coils 2 and 73. The energization of the coil 74 is controlled by the computer C.
Electromagnetic attraction (ie, upward electromagnetic biasing force) acts between the three. When the coil 74 is energized with the minimum current value, the upward electromagnetic urging force exceeds the downward urging force of the springs 68 and 69, and the valve bodies 60 and 67 are arranged at the positions shown in FIG.

【0035】このように、入れ側弁部51、抜き側弁部
52及びソレノイド部53の三者は互いに連動関係にあ
り、コイル74への通電の有無によって各弁部51,5
2の開閉状態が二者択一的に制御される。即ち、コイル
74への通電時には、図2に示すように入れ側弁部51
が閉弁状態になると共に抜き側弁部52が開弁状態とな
る。逆にコイル74への通電停止時には、図3に示すよ
うに入れ側弁部51が開弁状態になると共に抜き側弁部
52が閉弁状態となる。従って、この電磁開閉弁50
は、外部制御によって入れ側弁部51及び抜き側弁部5
2の一方のみを選択的に開弁する入れ側/抜き側連動型
のON/OFF弁とみることができる。
As described above, the inlet-side valve portion 51, the withdrawal-side valve portion 52, and the solenoid portion 53 are in an interlocking relationship with each other, and each of the valve portions 51, 5 depends on whether or not the coil 74 is energized.
2 is controlled alternatively. That is, when the coil 74 is energized, as shown in FIG.
Is closed, and the withdrawal valve portion 52 is opened. Conversely, when the energization of the coil 74 is stopped, as shown in FIG. 3, the inlet valve portion 51 is in the open state and the extraction valve portion 52 is in the closed state. Therefore, this solenoid on-off valve 50
Are controlled by the external control to the inlet valve portion 51 and the withdraw valve portion 5.
It can be considered as an ON / OFF valve of an interlocking type on / off side that selectively opens only one of the two.

【0036】なお、図3のように抜き側弁体67が弁孔
64を閉塞している状態にあって、弁孔64側の圧力
(即ちクランク圧Pc)が過大になり、弁体67の上下
(前後)に作用する圧力差(Pc−Ps)が閉止バネ6
8のバネ力を上回ることがある。すると、図4に示すよ
うに、弁体67がバネ68の付勢力に抗して瞬間的に上
動し、抜き側連通路64及び弁室63を介してクランク
室5から吸入室21にガス抜きが行われる。このよう
に、弁体67と第2ロッド62とが切り離されている
(即ち接離可能な)ことで、抜き側弁部52はクランク
圧Pcを自律的に調整する差圧弁としても機能する。
As shown in FIG. 3, the pressure on the valve hole 64 side (that is, the crank pressure Pc) becomes excessive when the withdrawing valve 67 closes the valve hole 64, and the valve 67 is closed. The pressure difference (Pc-Ps) acting up and down (front and back) is determined by the closing spring 6.
8 may exceed the spring force. Then, as shown in FIG. 4, the valve body 67 momentarily moves upward against the urging force of the spring 68, and the gas flows from the crank chamber 5 to the suction chamber 21 via the extraction side communication passage 64 and the valve chamber 63. Drilling is performed. As described above, the valve body 67 and the second rod 62 are separated (that is, can be separated from and separated from each other), so that the extraction side valve portion 52 also functions as a differential pressure valve that autonomously adjusts the crank pressure Pc.

【0037】(ガス流入調節機構80の構成)図2及び
図3に示すように、給気通路28の下流部の途中、即ち
電磁開閉弁50の第2ポート58とクランク室5との間
には、図5(A)及び(B)に示すようなガス流入調節
機構80が介在されている。この調節機構80は、装置
ハウジング81によって形成された部屋82内に収容さ
れたスプール弁体83を備えている。スプール弁体83
は、部屋82の内壁に設けられた第1ストッパ部91と
第2ストッパ部92との間で往復動可能な可動壁として
提供されている。即ち、スプール弁体83は、第1スト
ッパ部91によって該弁体の前進が規制される前進位置
又は原位置(図5(A)参照)と、第2ストッパ部92
によって該弁体の後退が規制される後退位置(図5
(B)参照)との二位置間で移動可能となっている。こ
のスプール弁体83によって部屋82は導入室84と調
圧室85とに二分される。
(Structure of Gas Inflow Control Mechanism 80) As shown in FIGS. 2 and 3, in the middle of the downstream portion of the air supply passage 28, that is, between the second port 58 of the electromagnetic on-off valve 50 and the crank chamber 5. Has a gas inflow adjusting mechanism 80 as shown in FIGS. 5 (A) and 5 (B). The adjusting mechanism 80 includes a spool valve element 83 housed in a room 82 formed by an apparatus housing 81. Spool valve element 83
Is provided as a movable wall capable of reciprocating between a first stopper portion 91 and a second stopper portion 92 provided on the inner wall of the room 82. That is, the spool valve element 83 is moved to the forward position or the original position (see FIG. 5A) where the advance of the valve element is regulated by the first stopper 91, and the second stopper 92.
(FIG. 5)
(See (B)). The room 82 is divided into an introduction chamber 84 and a pressure regulation chamber 85 by the spool valve element 83.

【0038】導入室84は、導入ポート86を介して電
磁開閉弁50の入れ側弁部51の第2ポート58に接続
されると共に、導出ポート87及び導出通路88を介し
てクランク室5に連通可能となっている。導入室84と
調圧室85とはスプール弁体83内に形成された絞り
(第1の絞り)83aを介して互いに連通している。ま
た、調圧室85は、ポート89及び絞り(第2の絞り)
90a付き導圧通路90を介してクランク室5に接続さ
れている。但し、導圧通路の絞り90aの口径はスプー
ル弁体の絞り83aの口径よりも小さくなっており、絞
り90aのガス通過量が絞り83aのガス通過量よりも
小さくなるように設定されている。又、調圧室85内に
は付勢バネ93が配設され、スプール弁体83を後退位
置から前進位置(原位置)に向けて付勢している。導入
室84と調圧室85とがほぼ均圧する場合には、図5
(A)に示すように、付勢バネ93の作用によりスプー
ル弁体83は前進位置に配置され、このスプール弁体8
3によって導出ポート87が閉塞される。
The introduction chamber 84 is connected to the second port 58 of the inlet side valve portion 51 of the electromagnetic on-off valve 50 via an introduction port 86, and communicates with the crank chamber 5 via an outlet port 87 and an outlet passage 88. It is possible. The introduction chamber 84 and the pressure regulating chamber 85 communicate with each other via a throttle (first throttle) 83 a formed in the spool valve element 83. The pressure regulating chamber 85 has a port 89 and a throttle (second throttle).
It is connected to the crank chamber 5 through a pressure guiding passage 90 with 90a. However, the diameter of the throttle 90a of the pressure guide passage is smaller than the diameter of the throttle 83a of the spool valve body, and the gas passage amount of the throttle 90a is set to be smaller than the gas passage amount of the throttle 83a. Further, an urging spring 93 is provided in the pressure adjusting chamber 85, and urges the spool valve element 83 from the retracted position toward the advanced position (original position). When the pressure in the introduction chamber 84 and the pressure adjustment chamber 85 is substantially equalized, FIG.
As shown in (A), the spool valve element 83 is arranged at the forward position by the action of the biasing spring 93, and the spool valve element 8
3, the outlet port 87 is closed.

【0039】(作用)前記電磁開閉弁50及びガス流入
調節機構80を備えた容量可変型斜板式圧縮機の作用を
説明する。空調装置作動スイッチ37がOFFされた状
態では、電磁クラッチ40は遮断状態にありエンジンE
から圧縮機への動力供給はなく圧縮機は運転を停止して
いる。この場合には電磁開閉弁50のコイル74への通
電はなく、それ故、バネ68,69の作用により入れ側
弁部51は開弁状態とされ、抜き側弁部52は閉弁状態
とされる。この運転停止状態が長時間続くと、圧縮機の
各室5,21,22が均圧化し、斜板12は傾角減少バ
ネ16の付勢作用によって最小傾角に保持される。他
方、空調装置作動スイッチ37がONされると、制御コ
ンピュータCは電磁クラッチ40のソレノイドコイル4
3への通電を行い、エンジンEと圧縮機とを接続して圧
縮機を運転させる。
(Operation) The operation of the variable displacement swash plate type compressor provided with the electromagnetic on-off valve 50 and the gas inflow adjusting mechanism 80 will be described. When the air conditioner operation switch 37 is turned off, the electromagnetic clutch 40 is in a disconnected state and the engine E
No power is supplied to the compressor from the compressor, and the compressor has stopped operating. In this case, the coil 74 of the solenoid on-off valve 50 is not energized, and therefore, the action of the springs 68 and 69 causes the inlet side valve part 51 to be in the open state and the extraction side valve part 52 to be in the closed state. You. If this operation stop state continues for a long time, the pressures in the respective chambers 5, 21, 22 of the compressor are equalized, and the swash plate 12 is maintained at the minimum inclination by the urging action of the inclination reducing spring 16. On the other hand, when the air conditioner operation switch 37 is turned on, the control computer C sends the solenoid coil 4 of the electromagnetic clutch 40
3 is energized, the engine E and the compressor are connected, and the compressor is operated.

【0040】冷房負荷が大きい場合には、蒸発器33の
出口側圧力(即ち吸入圧Ps)が大きく、室温センサ3
5の検出室温と室温設定器36の設定温度との差も大き
くなる。このとき、冷房負荷の大きさに打ち勝つだけの
圧縮機の吐出能力を確保するため、制御コンピュータC
は電磁開閉弁50のコイル74への通電を行い、入れ側
弁部51を閉弁状態とすると共に抜き側弁部52を開弁
状態とする(図2参照)。すると、吐出室22からクラ
ンク室5へのガス供給が遮断される一方で抜き側弁部5
2を介してクランク室5と吸入室21とが直通するた
め、クランク圧Pcが吸入圧Ps近くまで低下する。
又、入れ側弁部51が閉じた状態では、クランク圧Pc
がガス流入調節機構80の二つの絞り90a,83aを
介して調圧室85及び導入室84にも及ぶため、クラン
ク室5、調圧室85及び導入室84の三室はクランク圧
Pcでほぼ均圧化し、スプール弁体83は前進位置に配
置されて導出ポート87は閉塞状態にある。この状況下
では、クランク圧Pcが吸入圧Ps近くにまで低下する
ことから前記ガス圧によるモーメントが極小化し、斜板
12の傾角が最大となって圧縮機の吐出容量が最大とな
る。
When the cooling load is large, the outlet pressure of the evaporator 33 (that is, the suction pressure Ps) is large, and the room temperature sensor 3
The difference between the detected room temperature of No. 5 and the set temperature of the room temperature setting device 36 also increases. At this time, in order to secure the discharge capacity of the compressor enough to overcome the magnitude of the cooling load, the control computer C
Energizes the coil 74 of the solenoid on-off valve 50 to close the inlet valve portion 51 and open the withdraw valve portion 52 (see FIG. 2). Then, the supply of gas from the discharge chamber 22 to the crank chamber 5 is shut off, while the discharge valve portion 5
2, the crank chamber 5 and the suction chamber 21 communicate directly with each other, so that the crank pressure Pc decreases to near the suction pressure Ps.
In addition, when the inlet valve portion 51 is closed, the crank pressure Pc
Reaches the pressure adjustment chamber 85 and the introduction chamber 84 via the two throttles 90a and 83a of the gas inflow adjustment mechanism 80, and the three chambers of the crank chamber 5, the pressure adjustment chamber 85, and the introduction chamber 84 are almost equalized by the crank pressure Pc. The spool valve 83 is located at the forward position and the outlet port 87 is closed. In this situation, the crank pressure Pc decreases to near the suction pressure Ps, so that the moment due to the gas pressure is minimized, the inclination angle of the swash plate 12 is maximized, and the discharge capacity of the compressor is maximized.

【0041】圧縮機吐出容量の増大によって、冷房負荷
が小さくなる(即ち蒸発器33の出口側圧力Psが小さ
くなる)と、室温センサ35の検出温度と室温設定器3
6の設定温度との差も小さくなる。このとき、圧縮機の
吐出能力を冷房負荷の小ささに見合ったものとするた
め、制御コンピュータCは電磁開閉弁50のコイル74
への通電を停止し、入れ側弁部51を開弁状態とすると
共に抜き側弁部52を閉弁状態とする(図3参照)。
When the cooling load decreases (ie, the outlet pressure Ps of the evaporator 33 decreases) due to an increase in the compressor discharge capacity, the detected temperature of the room temperature sensor 35 and the room temperature setting device 3
The difference from the set temperature of No. 6 also becomes small. At this time, in order to make the discharge capacity of the compressor appropriate for the small cooling load, the control computer C operates the coil 74 of the electromagnetic on-off valve 50.
The energization to the valve is stopped, the inlet valve portion 51 is opened, and the extraction valve portion 52 is closed (see FIG. 3).

【0042】入れ側弁部51が開かれた直後、吐出圧P
d相当の高圧冷媒ガスがガス流入調節機構80の導入室
84に導入される。このガス導入直前には導出ポート8
7はスプール弁体83によって閉塞されており(図5
(A)参照)、又、ガス導入直後も導入室84と調圧室
85とを繋ぐ通路は絞り83aであることから、導入室
84と調圧室85との間に瞬間的に(Pd−Pc)の差
圧が発生する。この差圧により、付勢バネ93の付勢力
に抗してスプール弁体83が前進位置から後退位置まで
一挙に後退(往動)し、導出ポート87が開放される
(図5(B)参照)。その結果、導入室84が導出ポー
ト87及び導出通路88を介してクランク室5に連通
し、吐出室22からクランク室5への高圧冷媒ガスの直
接導入が図られる。
Immediately after the inlet valve portion 51 is opened, the discharge pressure P
The high pressure refrigerant gas corresponding to d is introduced into the introduction chamber 84 of the gas inflow adjustment mechanism 80. Immediately before this gas introduction, outlet port 8
7 is closed by a spool valve element 83 (FIG. 5).
(Refer to (A)). Also, immediately after the gas introduction, the passage connecting the introduction chamber 84 and the pressure regulation chamber 85 is the throttle 83a. A differential pressure of Pc) occurs. Due to this differential pressure, the spool valve element 83 retreats at once from the forward position to the retreat position against the urging force of the urging spring 93, and the outlet port 87 is opened (see FIG. 5B). ). As a result, the introduction chamber 84 communicates with the crank chamber 5 via the outlet port 87 and the outlet passage 88, and direct introduction of the high-pressure refrigerant gas from the discharge chamber 22 to the crank chamber 5 is achieved.

【0043】ただし、この直接導入は一時的なものに過
ぎない。即ち、スプール弁体83が後退位置に達してか
ら所定の短時間経過後には、絞り83aを介して導入室
84と調圧室85とが吐出圧Pdに均圧化する。これ
は、調圧室85が導入室84からのガス流入超過状態に
陥り易いように調圧室85の出口側にある絞り90aの
口径が入口側の絞り83aの口径よりも小さくされてい
るためである。絞り83aを介して調圧室85に高圧ガ
スが次第に流入し両室84,85間の差圧が小さくなる
につれ、スプール弁体83は付勢バネ93の作用により
後退位置から前進位置に向けて移動(復動)する。そし
て、図5(A)に示す前進位置(原位置)に復帰して導
出ポート87を閉塞する。このようにスプール弁体83
が前進位置→後退位置→前進位置と一往復する間だけ導
出ポート87は開放状態にある。換言すれば、スプール
弁体83の一往復動の時間間隔に対応する流量の高圧冷
媒ガスがガス流入調節機構80によって自動計量され、
スプール弁体83が一往復動する短時間のうちに計量さ
れた高圧冷媒ガスのみがクランク室5に供給される。な
お、スプール弁体83が一往復動する時間、即ち導出ポ
ート87及び導出通路88の開放時間は、主として調圧
室85の体積と、二つの絞り83a,90aによる単位
時間当りの流量差によって決定される。
However, this direct introduction is only temporary. That is, after a predetermined short time has elapsed after the spool valve element 83 has reached the retreat position, the pressure in the introduction chamber 84 and the pressure adjustment chamber 85 is equalized to the discharge pressure Pd via the throttle 83a. This is because the diameter of the throttle 90a on the outlet side of the pressure regulating chamber 85 is smaller than the diameter of the throttle 83a on the inlet side so that the pressure regulating chamber 85 easily falls into a state where the gas inflow from the introduction chamber 84 is excessive. It is. As the high-pressure gas gradually flows into the pressure regulating chamber 85 via the throttle 83a and the pressure difference between the two chambers 84, 85 decreases, the spool valve element 83 moves from the retracted position to the advanced position by the action of the biasing spring 93. Move (return). Then, it returns to the forward position (original position) shown in FIG. Thus, the spool valve element 83
The outlet port 87 is in the open state only while the actuator reciprocates once from the forward position to the backward position to the forward position. In other words, the high-pressure refrigerant gas having a flow rate corresponding to the time interval of one reciprocation of the spool valve element 83 is automatically measured by the gas inflow adjusting mechanism 80,
Only the high-pressure refrigerant gas measured in a short time during which the spool valve element 83 makes one reciprocation is supplied to the crank chamber 5. The time during which the spool valve element 83 reciprocates one time, that is, the opening time of the outlet port 87 and the outlet passage 88, is determined mainly by the volume of the pressure regulating chamber 85 and the flow rate difference per unit time by the two throttles 83a and 90a. Is done.

【0044】電磁開閉弁50が図3の状態では、クラン
ク室5から吸入室21へのガス放出が遮断される一方
で、入れ側弁部51及び調節機構80を介して前述のよ
うに自動計量された最低必要量の高圧冷媒ガスがクラン
ク室5に短時間のうちに導入されるため、クランク圧P
cが吐出圧Pd近くにまで素早く上昇する。その結果、
前記ガス圧によるモーメントが極大化し、斜板12の傾
角が最小となって圧縮機の吐出容量が最小となる。
When the solenoid on-off valve 50 is in the state shown in FIG. 3, the discharge of gas from the crank chamber 5 to the suction chamber 21 is shut off, while the automatic metering is performed via the inlet valve 51 and the adjusting mechanism 80 as described above. The required minimum amount of the high-pressure refrigerant gas is introduced into the crank chamber 5 in a short time.
c quickly rises to near the discharge pressure Pd. as a result,
The moment due to the gas pressure is maximized, the inclination angle of the swash plate 12 is minimized, and the discharge capacity of the compressor is minimized.

【0045】その後も抜き側弁部52が閉弁状態に維持
される限り、斜板12は最小傾角に維持される。なお、
調節機構80のスプール弁体83が一往復動し導出ポー
ト87が再閉塞された後も、吐出圧Pdに均圧化した調
圧室85から導圧通路の絞り90aを介してクランク室
5に吐出圧Pd相当の高圧ガスが僅かずつ供給される
が、これはクランク圧Pcの不可避的な低下分を補う程
度のものであり、クランク圧Pcを現状の高圧状態に維
持するためのものに過ぎない。仮にクランク圧Pcが過
大化した場合には、前述の図4のように抜き側弁部52
が差圧弁(又は安全弁)として機能し、クランク室5か
ら一時的にガスを放出してクランク圧Pcの過大化を防
止する。
Thereafter, the swash plate 12 is maintained at the minimum inclination angle as long as the extraction side valve portion 52 is maintained in the closed state. In addition,
Even after the spool valve element 83 of the adjusting mechanism 80 reciprocates and the outlet port 87 is reclosed, the pressure from the pressure regulating chamber 85 equalized to the discharge pressure Pd to the crank chamber 5 via the throttle 90a of the pressure guiding passage. The high-pressure gas equivalent to the discharge pressure Pd is supplied little by little, but this is to compensate for the unavoidable decrease in the crank pressure Pc, and is merely for maintaining the crank pressure Pc at the current high pressure state. Absent. If the crank pressure Pc becomes excessive, as shown in FIG.
Functions as a differential pressure valve (or a safety valve) to temporarily release gas from the crank chamber 5 to prevent the crank pressure Pc from becoming excessive.

【0046】再び冷房負荷が大きくなると、制御コンピ
ュータCは電磁開閉弁50のコイル74への通電を再開
し、入れ側弁部51を閉弁状態とすると共に抜き側弁部
52を開弁状態とし(図2参照)、斜板12の傾角を増
大させる。この場合には、ガス流入調節機構80の導入
室84及び調圧室85からは絞り83a,90aを介し
てガスがクランク室5に逃げる一方となるため、両室8
4,85の内圧は吐出圧Pdからクランク圧Pcに次第
に減圧される。但し、絞り90aの口径よりも絞り83
aの口径の方が大きいことから、両室84,85が次第
に減圧する過程においても両室84,85間には差圧が
生じない。このため、その間もスプール弁体83は図5
(A)の前進位置に保持され、導出ポート87は閉塞状
態に維持される。
When the cooling load increases again, the control computer C resumes the energization of the coil 74 of the solenoid on-off valve 50 to close the inlet valve portion 51 and open the outlet valve portion 52. (See FIG. 2), the inclination angle of the swash plate 12 is increased. In this case, since the gas escapes from the introduction chamber 84 and the pressure adjustment chamber 85 of the gas inflow adjustment mechanism 80 to the crank chamber 5 through the throttles 83a and 90a, the two chambers 8
The internal pressure of 4, 85 is gradually reduced from the discharge pressure Pd to the crank pressure Pc. However, the aperture 83 is smaller than the aperture of the aperture 90a.
Since the diameter of “a” is larger, no pressure difference is generated between the two chambers 84 and 85 even in the process of gradually reducing the pressure of the two chambers 84 and 85. For this reason, the spool valve element 83 is kept in the
(A) is held at the forward position, and the outlet port 87 is maintained in the closed state.

【0047】なお、冷房負荷がほとんどない状態に近づ
き、温度センサ34の検出温度が設定温度(蒸発器33
においてフロストを発生しそうな状況を反映した温度)
以下になると、制御コンピュータCは電磁クラッチ40
のソレノイドコイル43への通電を停止し、エンジンE
から圧縮機への動力伝達を遮断して圧縮機の運転を停止
する。
It should be noted that the state where the cooling load is almost negligible and the temperature detected by the temperature sensor 34 becomes equal to the set temperature (evaporator 33)
Temperature that reflects the situation where frost is likely to occur)
In the following cases, the control computer C
Power supply to the solenoid coil 43 is stopped, and the engine E
The power transmission from the compressor to the compressor is stopped to stop the operation of the compressor.

【0048】(効果)本実施形態によれば、以下の効果
を得ることができる。 ○ 最大吐出容量(最大斜板傾角)での運転時には、電
磁開閉弁の入れ側弁部51を全閉状態として吐出室22
からクランク室5への高圧冷媒ガスの垂れ流しを回避で
きる。このため、吐出室22に吐出された高圧冷媒ガス
のほぼ全てを外部冷媒回路30に供給でき、圧縮機の性
能を最大限に発揮することができる。
(Effects) According to the present embodiment, the following effects can be obtained. ○ During operation at the maximum discharge capacity (maximum swash plate inclination angle), the inlet side valve portion 51 of the solenoid on-off valve is set to the fully closed state to set the discharge chamber 22
Of the high-pressure refrigerant gas from the pump to the crank chamber 5 can be avoided. For this reason, almost all of the high-pressure refrigerant gas discharged into the discharge chamber 22 can be supplied to the external refrigerant circuit 30, and the performance of the compressor can be maximized.

【0049】○ 最小吐出容量(最小斜板傾角)での運
転に移行するために、電磁開閉弁の入れ側弁部51を全
開に切り換えるや否や、ガス流入調節機構80のスプー
ル弁体83が即座に後退位置に移動し導出ポート87及
び導出通路88が開放状態となる。このため、吐出室2
2からクランク室5への高圧冷媒ガスの供給が迅速化
し、クランク圧Pcが素早く上昇する。このように、最
小吐出容量での運転への移行が素早く行われる点で、容
量可変の応答性に優れている。
In order to shift to the operation with the minimum discharge capacity (minimum swash plate inclination angle), the spool valve element 83 of the gas inflow adjusting mechanism 80 is immediately turned on as soon as the inlet side valve portion 51 of the electromagnetic on-off valve is switched to the fully open state. The outlet port 87 and the outlet passage 88 are opened. For this reason, the discharge chamber 2
The supply of the high-pressure refrigerant gas from 2 to the crank chamber 5 is speeded up, and the crank pressure Pc is quickly increased. As described above, the transition to the operation with the minimum discharge capacity is performed quickly, and the response to variable capacity is excellent.

【0050】○ ガス流入調節機構80の導出ポート8
7及び導出通路88はスプール弁体83が一往復動する
間だけ開放され、この一時的な開放動作により、クラン
ク圧Pcを十分に昇圧するのに必要な最低量の高圧冷媒
ガスだけをクランク室5に送り込むことができる。つま
り、余分な高圧ガスの導入が回避され、吐出室22から
の高圧ガスの搾取量が必要最小に抑えられる。従って、
従来よりも圧縮機の運転効率が改善される。
Outgoing port 8 of gas inflow adjusting mechanism 80
7 and the outlet passage 88 are opened only while the spool valve element 83 makes one reciprocating movement. By this temporary opening operation, only the minimum amount of high-pressure refrigerant gas necessary to sufficiently increase the crank pressure Pc is released from the crank chamber. 5 can be sent. That is, the introduction of the extra high-pressure gas is avoided, and the amount of the high-pressure gas extracted from the discharge chamber 22 is suppressed to a necessary minimum. Therefore,
The operation efficiency of the compressor is improved as compared with the conventional case.

【0051】○ 本実施形態のガス流入調節機構80に
よれば、入れ側弁部51の開閉動作が短周期で繰り返さ
れた場合でも、スプール弁体83をその都度往復動させ
て、高圧冷媒ガスの自動計量を何度も繰り返すことがで
きる。このため、冷房負荷が急激な変化を繰り返した場
合でも、吐出容量制御の追従性が損なわれることがな
く、あらゆる状況に対応することができる。
According to the gas inflow adjusting mechanism 80 of this embodiment, even when the opening / closing operation of the inlet valve section 51 is repeated in a short cycle, the spool valve element 83 is reciprocated each time, and the high-pressure refrigerant gas Automatic weighing can be repeated many times. For this reason, even when the cooling load repeatedly changes suddenly, it is possible to cope with any situation without impairing the followability of the discharge capacity control.

【0052】○ 抜き側弁部52の抜き側弁体67と第
2ロッド62とを接離可能とし、クランク圧Pcが過大
化傾向にある場合には、抜き側弁部52が図4のよう
に、入れ側弁部51の動作から独立した差圧弁(又は安
全弁)として機能し得る。それ故、万一の場合にもクラ
ンク圧Pcの過大な昇圧を阻止することができる。
In the case where the pull-out valve body 67 of the pull-side valve portion 52 and the second rod 62 can be brought into contact with and separated from each other, and the crank pressure Pc tends to be excessive, the pull-out valve portion 52 is connected as shown in FIG. In addition, it can function as a differential pressure valve (or a safety valve) independent of the operation of the inlet valve section 51. Therefore, even in the event of an emergency, an excessive increase in the crank pressure Pc can be prevented.

【0053】(別例)本発明の実施形態を以下のように
変更してもよい。 ○ 前記実施形態では、電磁開閉弁50とガス流入調節
機構80とを別々の装置として構成したが、図6及び図
7に示すように、電磁開閉弁のバルブハウジング54内
にガス流入調節機構80を組み込んで両者を一体化して
もよい。即ち、図6及び図7に示すように、入れ側弁部
51の上方に調節機構80用の部屋を区画し、その中に
スプール弁体83を垂直方向に移動可能に収容する。こ
の場合、スプール弁体83の中央を第2ロッド62が相
対摺動可能に貫通する。そして、スプール弁体83の下
側に導入室84を区画し、これを弁孔56を介して入れ
側弁室55に連通させると共にバルブハウジング壁に設
けられた導出ポート87(第2ポートでもある)を介し
てクランク室5と連通可能とする。又、スプール弁体8
3の上側に調圧室85を区画し、これをその天井部分の
隔壁に形成された絞り90a及び第3ポート65を介し
てクランク室5に連通させる。なお、調圧室85内に付
勢バネ93が配設される点、両室84,85がスプール
弁体83に形成された絞り83a(絞り90aよりも口
径が大)により連通される点、スプール弁体83が第1
ストッパ91に当接する前進位置又は原位置(図6参
照)に配置される場合には導出ポート87が閉塞され、
スプール弁体83が第2ストッパ92に当接する後退位
置(図7参照)に配置される場合には導出ポート87が
開放される点等は、図5のガス流入調節機構の場合と全
く同じである。なお、この場合には、給気通路28の下
流部が前記導出通路88を兼ねる。この図6及び図7に
示すようなガス流入調節機構付き電磁開閉弁を図1の圧
縮機に組み込んだ場合も、前記と同様の作用及び効果を
奏する。この構成によれば、クランク圧制御機構がより
コンパクトになり、圧縮機への組み込みに好都合とな
る。
(Another Example) The embodiment of the present invention may be modified as follows. In the above embodiment, the electromagnetic on-off valve 50 and the gas inflow adjusting mechanism 80 are configured as separate devices. However, as shown in FIGS. 6 and 7, the gas inflow adjusting mechanism 80 is provided in the valve housing 54 of the electromagnetic on-off valve. May be integrated to integrate them. That is, as shown in FIGS. 6 and 7, a room for the adjusting mechanism 80 is defined above the entry-side valve portion 51, and the spool valve element 83 is accommodated therein so as to be movable in the vertical direction. In this case, the second rod 62 passes through the center of the spool valve element 83 so as to be relatively slidable. An inlet chamber 84 is defined below the spool valve element 83, communicates the inlet chamber 84 with the inlet valve chamber 55 through the valve hole 56, and an outlet port 87 (also a second port) provided on the valve housing wall. ) Can be communicated with the crank chamber 5. Also, the spool valve element 8
A pressure regulating chamber 85 is defined on the upper side of 3, and communicates with the crank chamber 5 via a throttle 90a and a third port 65 formed in a partition wall on the ceiling. In addition, a point where the urging spring 93 is disposed in the pressure regulating chamber 85, a point where both chambers 84 and 85 are communicated by a throttle 83a (having a larger diameter than the throttle 90a) formed in the spool valve element 83, The spool valve element 83 is the first
When it is located at the forward position or the original position (see FIG. 6) in contact with the stopper 91, the outlet port 87 is closed,
When the spool valve element 83 is disposed at the retracted position (see FIG. 7) in contact with the second stopper 92, the point at which the outlet port 87 is opened is exactly the same as that of the gas inflow adjusting mechanism of FIG. is there. In this case, the downstream portion of the air supply passage 28 also serves as the outlet passage 88. When the electromagnetic on-off valve with the gas inflow adjusting mechanism as shown in FIGS. 6 and 7 is incorporated in the compressor of FIG. According to this configuration, the crank pressure control mechanism becomes more compact, which is convenient for incorporation into a compressor.

【0054】○ 図6及び図7の構成で、バルブハウジ
ング54内に調圧室85の容積を十分確保できない場合
には、調圧室85を区画するハウジング壁に連通口を穿
設し、この連通口を介して圧縮機内部に追加容積確保の
ための別室を設けてもよい。
In the configuration shown in FIGS. 6 and 7, when the volume of the pressure regulating chamber 85 cannot be sufficiently secured in the valve housing 54, a communication port is formed in a housing wall which defines the pressure regulating chamber 85. A separate chamber for securing an additional volume may be provided inside the compressor via the communication port.

【0055】○ 図5ではスプール弁体83内に絞り8
3aを貫通形成したが、部屋82の内壁面とスプール弁
体83の外側摺接面との間にあえてサイドクリアランス
を確保し、このサイドクリアランスを絞り(第1の絞
り)83aとして機能させてもよい。
In FIG. 5, a throttle 8 is provided in the spool valve element 83.
3a, the side clearance is intentionally secured between the inner wall surface of the room 82 and the outer sliding surface of the spool valve element 83, and this side clearance may be made to function as a throttle (first throttle) 83a. Good.

【0056】○ 図2,3,6及び7では、入れ側弁体
60、ロッド61,62及びプランジャ73の一体物を
下方に付勢する開放バネ69をソレノイド室71に配設
したが、図8に示すように開放バネ69を入れ側弁室5
5内に配設してもよい。
In FIGS. 2, 3, 6 and 7, an open spring 69 for urging the integrated body of the inlet valve body 60, the rods 61, 62 and the plunger 73 downward is disposed in the solenoid chamber 71. As shown in FIG.
5 may be provided.

【0057】○ 前記実施形態(図1〜図5)及び前記
別例(図6〜図8)では、電磁開閉弁として、入れ側弁
部51と抜き側弁部52とを備えた連動弁を用いたが、
その連動弁を前記抜き側弁部52を備えず入れ側弁部5
1及びソレノイド部53からなる単独型の電磁開閉弁で
置換してもよい(図9参照)。この場合、クランク室5
と吸入室21とを繋ぐ抽気通路29には固定絞り100
を設けることが好ましい。そして、圧縮行程にあるシリ
ンダボア1aからクランク室5に漏洩するブローバイガ
スの流量をfA、入れ側弁部51及びガス流入調節機構
80を経由して吐出室22からクランク室5に供給され
るガスの流量をfB、抽気通路29を経由してクランク
室5から吸入室21に放出されるガスの流量をfCとす
ると、入れ側弁部51の開弁時にはfC<fA+fBと
なり、入れ側弁部51の閉弁時にはfC>fAとなるよ
うに固定絞り100の口径等を設定すればよい。
In the embodiment (FIGS. 1 to 5) and the other examples (FIGS. 6 to 8), an interlocking valve having an inlet valve portion 51 and a withdrawal valve portion 52 is used as an electromagnetic on-off valve. Used
The interlocking valve is not provided with the withdrawal-side valve portion 52, and the input-side valve portion 5 is not provided.
The solenoid valve may be replaced by a single-type solenoid on-off valve including the solenoid valve 1 and the solenoid 53 (see FIG. 9). In this case, the crankcase 5
A fixed throttle 100 is provided in a bleed passage 29 connecting the
Is preferably provided. The flow rate of the blow-by gas leaking from the cylinder bore 1a into the crank chamber 5 during the compression stroke is represented by fA, and the flow rate of the gas supplied from the discharge chamber 22 to the crank chamber 5 via the inlet valve portion 51 and the gas inflow adjusting mechanism 80. Assuming that the flow rate is fB and the flow rate of the gas discharged from the crank chamber 5 to the suction chamber 21 via the bleed passage 29 is fC, when the inlet valve section 51 is opened, fC <fA + fB. When the valve is closed, the aperture of the fixed throttle 100 may be set so that fC> fA.

【0058】○ 本発明をクラッチレスタイプの容量可
変型圧縮機(電磁クラッチ等のクラッチ機構を介在させ
ることなく外部駆動源Eから駆動軸6に直接的に動力を
伝達するタイプの圧縮機)に適用してもよい。
The present invention is applied to a clutchless type variable displacement compressor (compressor of the type that directly transmits power from the external drive source E to the drive shaft 6 without interposing a clutch mechanism such as an electromagnetic clutch). May be applied.

【0059】(前記請求項に記載した以外のその他の技
術的思想)前記請求項6に記載のクランク圧制御機構に
おいて、前記抜き側開閉弁は、前記抽気通路の一部を構
成する弁孔(64)と、吸入圧領域側に配置されて前記
弁孔を開閉可能な抜き側弁体(67)と、その弁体を前
記弁孔を閉塞する方向に付勢する閉止バネ(68)とを
備えており、当該抜き側開閉弁は、前記入れ側開閉弁の
動作から独立して、前記弁体に作用するクランク圧と吸
入圧との差圧に基づき前記閉止バネの付勢作用に抗して
開弁可能であること。この構成によれば、抜き側開閉弁
が一種の差圧弁として機能することができ、万一のクラ
ンク圧の過大な上昇を効果的に防止できる。
(Other technical ideas other than those set forth in the claims) In the crank pressure control mechanism according to the sixth aspect, the extraction side on-off valve has a valve hole (a part of the bleed passage). 64), a withdrawal-side valve element (67) arranged on the suction pressure region side for opening and closing the valve hole, and a closing spring (68) for urging the valve element in a direction to close the valve hole. The release-side on-off valve is provided independently of the operation of the inlet-side on-off valve and resists the urging action of the closing spring based on the differential pressure between the crank pressure and the suction pressure acting on the valve element. That the valve can be opened. According to this configuration, the withdrawal-side on-off valve can function as a type of differential pressure valve, and an excessive rise in crank pressure can be effectively prevented.

【0060】[0060]

【発明の効果】前記各請求項に記載の容量可変型圧縮機
のクランク圧制御機構によれば、クランク圧を短時間に
上昇させて圧縮機を迅速に最小容量運転に移行させるこ
とができるのみならず、その場合でもクランク圧が必要
以上に上昇するのを未然に回避でき、且つ、圧縮機が作
り出した高圧ガスを無駄使いすることなく圧縮機に本来
の効率での運転を行わせることが可能となる。
According to the crank pressure control mechanism of the variable displacement compressor described in each of the above claims, it is only possible to increase the crank pressure in a short time and quickly shift the compressor to the minimum displacement operation. In this case, the crank pressure can be prevented from rising more than necessary, and the compressor can be operated at the original efficiency without wasting the high-pressure gas produced by the compressor. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施形態に従う容量可変型斜板式圧縮機の断
面図。
FIG. 1 is a sectional view of a variable displacement swash plate type compressor according to an embodiment.

【図2】入れ側/抜き側連動型の電磁開閉弁の断面図。FIG. 2 is a cross-sectional view of a solenoid-operated on-off / off-side electromagnetic on-off valve.

【図3】入れ側/抜き側連動型の電磁開閉弁の断面図。FIG. 3 is a cross-sectional view of a solenoid-operated on-off / off-side electromagnetic on-off valve.

【図4】電磁開閉弁の一部が差圧弁として作用する場合
の部分断面図。
FIG. 4 is a partial cross-sectional view when a part of an electromagnetic on-off valve functions as a differential pressure valve.

【図5】(A)及び(B)はガス流入調節機構を示す断
面図。
FIGS. 5A and 5B are cross-sectional views showing a gas inflow adjusting mechanism.

【図6】ガス流入調節機構付き電磁開閉弁の一例を示す
断面図。
FIG. 6 is a sectional view showing an example of an electromagnetic on-off valve with a gas inflow adjusting mechanism.

【図7】ガス流入調節機構付き電磁開閉弁の一例を示す
断面図。
FIG. 7 is a sectional view showing an example of an electromagnetic on-off valve with a gas inflow adjusting mechanism.

【図8】電磁開閉弁の別例を示す部分断面図。FIG. 8 is a partial cross-sectional view showing another example of the electromagnetic on-off valve.

【図9】抜き側弁部を設けない別例のブロック図。FIG. 9 is a block diagram of another example in which a pull-out valve is not provided.

【符号の説明】[Explanation of symbols]

5…クランク室、12…斜板、21…吸入室(吸入圧領
域)、22…吐出室(吐出圧領域)、28…給気通路、
29…抽気通路、40…電磁クラッチ、50…電磁開閉
弁、51…入れ側弁部(入れ側開閉弁)、52…抜き側
弁部(抜き側開閉弁)、80…ガス流入調節機構、82
…部屋、83…スプール弁体(可動壁)、83a…絞り
(第1の絞り)、84…導入室、85…調圧室、87…
導出ポート、88…導出通路、90…導圧通路、90a
…絞り(第2の絞り)、93…付勢バネ、E…車輌エン
ジン(外部駆動源)。
5: crank chamber, 12: swash plate, 21: suction chamber (suction pressure area), 22: discharge chamber (discharge pressure area), 28: air supply passage,
29: bleed passage, 40: electromagnetic clutch, 50: electromagnetic on / off valve, 51: inlet side valve part (entrance side on / off valve), 52: extraction side valve part (extraction side on / off valve), 80: gas inflow adjusting mechanism, 82
... room, 83 ... spool valve element (movable wall), 83a ... restrictor (first restrictor), 84 ... introduction chamber, 85 ... pressure regulation chamber, 87 ...
Outgoing port, 88 ... Outgoing passage, 90 ... Pressure guiding passage, 90a
... throttle (second throttle), 93 ... biasing spring, E ... vehicle engine (external drive source).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安谷屋 拓 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 松原 亮 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 3H045 AA04 AA10 AA13 AA27 BA19 BA32 CA02 CA03 DA25 EA33 3H076 AA06 BB21 BB33 CC12 CC16 CC17 CC20 CC27 CC41 CC84 CC92 CC93  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taku Yasutani 2-1-1 Toyota-cho, Kariya-shi, Aichi Pref. Inside Toyota Industries Corporation (72) Inventor Ryo Matsubara 2-1-1 Toyota-cho, Kariya-shi, Aichi Pref. F term in Toyota Industries Corporation (reference) 3H045 AA04 AA10 AA13 AA27 BA19 BA32 CA02 CA03 DA25 EA33 3H076 AA06 BB21 BB33 CC12 CC16 CC17 CC20 CC27 CC41 CC84 CC92 CC93

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 クランク室の内圧制御に基づいて斜板の
傾角を変更し吐出容量を調節可能な容量可変型圧縮機に
おけるクランク圧制御機構であって、 圧縮機の吐出圧領域とクランク室とをつなぐ給気通路に
設けられ、外部からの制御によって前記給気通路を開閉
可能な入れ側開閉弁と、 前記入れ側開閉弁とクランク室との間に介在するように
前記給気通路に設けられ、前記入れ側開閉弁の開弁動作
による吐出圧領域からのガス供給に応答して経時的にガ
ス通過量を変化させ、クランク室へのガス流入量を時間
と共に調節するガス流入調節機構とを備えた容量可変型
圧縮機のクランク圧制御機構。
1. A crank pressure control mechanism in a variable displacement compressor capable of adjusting a tilt angle of a swash plate and adjusting a discharge capacity based on control of an internal pressure of a crank chamber. An inlet-side open / close valve that is provided in an air supply passage that connects the air supply passage and that can open and close the air supply passage by external control; and is provided in the air supply passage so as to be interposed between the inlet-side open / close valve and the crank chamber. A gas inflow adjustment mechanism that changes the gas passage amount over time in response to gas supply from the discharge pressure region by the opening operation of the inlet side on-off valve, and adjusts the gas inflow amount to the crank chamber with time. Pressure control mechanism for a variable displacement compressor equipped with
【請求項2】 前記ガス流入調節機構は、前記入れ側開
閉弁の開弁直後の所定時間だけガス通過量を大きく確保
する一方で前記所定時間経過後はガス通過量を小さく絞
り込むように構成されていることを特徴とする請求項1
に記載の容量可変型圧縮機のクランク圧制御機構。
2. The gas inflow adjusting mechanism is configured to secure a large gas passage amount only for a predetermined time immediately after the opening of the inlet-side on-off valve, and to narrow the gas passage amount after the predetermined time has elapsed. 2. The method according to claim 1, wherein
5. A crank pressure control mechanism for a variable displacement compressor according to claim 1.
【請求項3】 前記ガス流入調節機構は、 部屋内に往復動可能に設けられた可動壁としてのスプー
ル弁体と、 前記スプール弁体によって前記部屋内に区画された導入
室及び調圧室と、 前記導入室と前記クランク室とをつなぐと共に前記スプ
ール弁体の往復動に伴って開閉される導出通路と、 前記導入室と前記調圧室とを連通させる絞りとを備え、 前記入れ側開閉弁の開弁動作による前記吐出圧領域から
前記導入室へのガス供給に伴い前記スプール弁体が原位
置より往動して前記導出通路を開放すると共に、その後
の所定時間を経て前記絞りを介し導入室と調圧室とが均
圧化すると前記スプール弁体が原位置に復動して前記導
出通路を閉塞することを特徴とする請求項1又は2に記
載の容量可変型圧縮機のクランク圧制御機構。
3. The gas inflow adjusting mechanism includes: a spool valve body as a movable wall provided reciprocally in a room; an introduction chamber and a pressure regulation chamber partitioned in the room by the spool valve body. An outlet passage that connects the introduction chamber and the crank chamber and that opens and closes in accordance with the reciprocation of the spool valve body; and a throttle that communicates the introduction chamber and the pressure regulation chamber; With the supply of gas from the discharge pressure region to the introduction chamber by the valve opening operation, the spool valve body moves forward from the original position to open the lead-out passage, and passes through the throttle after a predetermined time thereafter. The crank of the variable displacement compressor according to claim 1, wherein when the pressure of the introduction chamber and the pressure adjustment chamber is equalized, the spool valve element returns to the original position and closes the outlet passage. 4. Pressure control mechanism.
【請求項4】 前記ガス流入調節機構は、 部屋内に前進位置と後退位置との二位置間で往復動可能
に設けられた可動壁としてのスプール弁体と、 前記スプール弁体を前進位置に向けて付勢する付勢バネ
と、 前記スプール弁体によって前記部屋内に区画されると共
に前記入れ側開閉弁と接続された導入室と、 前記スプール弁体によって前記部屋内に区画されると共
に導圧通路を介して前記クランク室に連通する調圧室
と、 前記導入室と前記クランク室とを接続すると共に前記ス
プール弁体が前進位置にあるときに閉塞され前記スプー
ル弁体が後退位置にあるときに開放される導出通路と、 前記スプール弁体の内部又はその周辺に形成されて前記
導入室と前記調圧室とを連通する第1の絞りと、 前記調圧室と前記クランク室とを連通させる前記導圧通
路に設けられた第2の絞りとを備えてなり、 前記第2の絞りのガス通過量は前記第1の絞りのガス通
過量よりも小さくなっていることを特徴とする請求項1
又は2に記載の容量可変型圧縮機のクランク圧制御機
構。
4. A spool valve element as a movable wall provided reciprocally between a forward position and a retreat position in a room, wherein the gas inflow adjusting mechanism moves the spool valve element to a forward position. A biasing spring biased toward the inlet, an introduction chamber partitioned in the room by the spool valve body and connected to the inlet-side on-off valve, and guided and partitioned in the room by the spool valve body. A pressure regulating chamber communicating with the crank chamber through a pressure passage, connecting the introduction chamber and the crank chamber, and closing the spool valve element when the spool valve element is at a forward position; An outlet passage that is sometimes opened, a first throttle formed inside or around the spool valve body and communicating the introduction chamber and the pressure regulation chamber, and the pressure regulation chamber and the crank chamber. Before communicating And a second aperture provided in the pressure introducing passage, claim 1 in which the gas passage of the second diaphragm is characterized in that is smaller than the gas throughput of the first aperture
Or a crank pressure control mechanism of the variable displacement compressor according to 2.
【請求項5】 前記入れ側開閉弁と前記ガス流入調節機
構とは一体化されて一つの弁機構を構成していることを
特徴とする請求項1〜4のいずれか一項に記載の容量可
変型圧縮機のクランク圧制御機構。
5. The capacity according to claim 1, wherein the inlet-side on-off valve and the gas inflow adjusting mechanism are integrated to constitute one valve mechanism. Crank pressure control mechanism for variable compressor.
【請求項6】 前記圧縮機のクランク室と吸入圧領域と
をつなぐ抽気通路に設けられると共に外部からの制御に
よって前記抽気通路を開閉可能な抜き側開閉弁を更に備
えており、当該抜き側開閉弁と前記入れ側開閉弁とは、
一方が開弁状態にあるとき他方が閉弁状態となるように
連動制御されることを特徴とする請求項1〜5のいずれ
か一項に記載の容量可変型圧縮機のクランク圧制御機
構。
6. A vent opening / closing valve provided in a bleed passage connecting the crank chamber of the compressor and a suction pressure region and capable of opening / closing the bleed passage by external control. The valve and the inlet-side on-off valve,
The crank pressure control mechanism for a variable displacement compressor according to any one of claims 1 to 5, wherein the control is interlocked so that one of the valves is in an open state and the other is in a closed state.
【請求項7】 前記入れ側開閉弁と、前記抜き側開閉弁
と、前記ガス流入調節機構とは一体化されて一つの弁機
構を構成していることを特徴とする請求項6に記載の容
量可変型圧縮機のクランク圧制御機構。
7. The valve according to claim 6, wherein the inlet-side on-off valve, the withdrawal-side on-off valve, and the gas inflow adjusting mechanism are integrated to constitute one valve mechanism. Crank pressure control mechanism for variable displacement compressor.
JP11032895A 1999-02-10 1999-02-10 Crank pressure control mechanism of variable capacity comperssor Pending JP2000230481A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11032895A JP2000230481A (en) 1999-02-10 1999-02-10 Crank pressure control mechanism of variable capacity comperssor
PCT/JP2000/000650 WO2000047896A1 (en) 1999-02-10 2000-02-07 Crank pressure control mechanism of variable displacement compressor
EP00902118A EP1070845A1 (en) 1999-02-10 2000-02-07 Crank pressure control mechanism of variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11032895A JP2000230481A (en) 1999-02-10 1999-02-10 Crank pressure control mechanism of variable capacity comperssor

Publications (1)

Publication Number Publication Date
JP2000230481A true JP2000230481A (en) 2000-08-22

Family

ID=12371638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11032895A Pending JP2000230481A (en) 1999-02-10 1999-02-10 Crank pressure control mechanism of variable capacity comperssor

Country Status (3)

Country Link
EP (1) EP1070845A1 (en)
JP (1) JP2000230481A (en)
WO (1) WO2000047896A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003468A (en) * 2002-04-25 2004-01-08 Sanden Corp Variable displacement compressor having displacement control valve
JP2004116349A (en) * 2002-09-25 2004-04-15 Tgk Co Ltd Capacity control valve for variable capacity compressor
JP2018178791A (en) * 2017-04-06 2018-11-15 サンデン・オートモーティブコンポーネント株式会社 Variable displacement compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083243A (en) 2001-09-05 2003-03-19 Toyota Industries Corp Displacement control device for variable displacement compressor
JP3726759B2 (en) 2002-02-18 2005-12-14 株式会社豊田自動織機 Control device for variable capacity compressor
JP4446026B2 (en) * 2002-05-13 2010-04-07 株式会社テージーケー Capacity control valve for variable capacity compressor
JP4152674B2 (en) * 2002-06-04 2008-09-17 株式会社テージーケー Capacity control valve for variable capacity compressor
DE102005007849A1 (en) * 2005-01-25 2006-08-17 Valeco Compressor Europe Gmbh axial piston

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508082B2 (en) * 1987-05-16 1996-06-19 株式会社豊田自動織機製作所 Variable capacity compressor
JP2765057B2 (en) * 1989-06-05 1998-06-11 株式会社豊田自動織機製作所 Variable capacity compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003468A (en) * 2002-04-25 2004-01-08 Sanden Corp Variable displacement compressor having displacement control valve
JP2004116349A (en) * 2002-09-25 2004-04-15 Tgk Co Ltd Capacity control valve for variable capacity compressor
JP2018178791A (en) * 2017-04-06 2018-11-15 サンデン・オートモーティブコンポーネント株式会社 Variable displacement compressor

Also Published As

Publication number Publication date
EP1070845A1 (en) 2001-01-24
WO2000047896A1 (en) 2000-08-17

Similar Documents

Publication Publication Date Title
JP3783434B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
EP3339643B1 (en) Control valve for variable displacement compressor
JP3583951B2 (en) Capacity control valve
KR100340607B1 (en) Air conditioning apparatus, method for controlling variable displacement type compressor, and control valve thereof
JP2001132632A (en) Control valve of variable displacement compressor
EP0854288B1 (en) Control valve in variable displacement compressor and method of manufacture
KR100325789B1 (en) Variable displacement compressors and control valves for variable displacement compressors
EP1650435A1 (en) Control valve for variable displacement compressor
JP2001165055A (en) Control valve and displacement variable compressor
US6234763B1 (en) Variable displacement compressor
KR20010050068A (en) Air conditioning apparatus and control valve for capacity-variable compressor
JP2001073939A (en) Control valve for variable displacement compressor and variable displacement compressor
JP2007247512A (en) Capacity control valve in variable capacity type compressor
JP2005307817A (en) Capacity controller for variable displacement compressor
EP1126169B1 (en) Swashplate type variable-displacement compressor
JP3899719B2 (en) Control valve for variable capacity compressor
JP2005009422A (en) Capacity control mechanism for variable displacement compressor
JP2003083244A (en) Swash plate type variable displacement compressor
JP2003239857A (en) Control device for variable displacement compressor
JP2000230481A (en) Crank pressure control mechanism of variable capacity comperssor
JP2003035274A (en) Control valve for variable displacement compressor
JP4647471B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
JP2011027115A (en) Variable displacement swash plate type compressor and cooling circuit for air conditioning
JP2007107532A (en) Control valve for variable displacement compressor
JP2002039059A (en) Electromagnetic actuator, valve and flow control valve

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040114

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees