JP2000219926A - Hydrogen or hydrogen isotope occluding material - Google Patents

Hydrogen or hydrogen isotope occluding material

Info

Publication number
JP2000219926A
JP2000219926A JP11021632A JP2163299A JP2000219926A JP 2000219926 A JP2000219926 A JP 2000219926A JP 11021632 A JP11021632 A JP 11021632A JP 2163299 A JP2163299 A JP 2163299A JP 2000219926 A JP2000219926 A JP 2000219926A
Authority
JP
Japan
Prior art keywords
hydrogen
cooling
absorbing
discharging
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021632A
Other languages
Japanese (ja)
Other versions
JP3670506B2 (en
Inventor
Katsuhiro Terao
勝廣 寺尾
Toshiki Kabutomori
俊樹 兜森
Toshimitsu Goto
敏満 後藤
Masamitsu Murai
正光 村井
Kunihiko Tsuchiya
邦彦 土谷
Hiroshi Kawamura
河村  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Japan Steel Works Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP02163299A priority Critical patent/JP3670506B2/en
Publication of JP2000219926A publication Critical patent/JP2000219926A/en
Application granted granted Critical
Publication of JP3670506B2 publication Critical patent/JP3670506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the reversibly repeated absorbing and discharging of hydrogen or hydrogen isotopes at high density under sufficiently low equilibrium pressure by specifying the compsn. composed of Zr, Ni and Co, moreover executing cooling at a low cooling rate in the heat treating stage and forming its crystal structure into the prescribed one. SOLUTION: A ZrNi alloy is used as a base, in which a part of Ni is substituted by a suitable amt. of Co to form a compsn. shown by Zr1(Ni1-xCox)y (where 0.2<=x<=0.8, preferably, 0.4<=x<0.8, and 0.8<=y<=1.2), and also, the structure is formed of the mixed phases of a cubic system B2 structure and a rhombic system Bf structure to obtain a hydrogen occluding material capable of absorbing and discharging hydrogen or hydrogen isotopes such as heavy hydrogen and tritium at high density under sufficiently low equilibrium pressure and moreover excellent in durability in repeated absorbing and discharging. The mixed phases of this crystal structure can be formed, in a heat treating stage at the time of material production, e.g. in homogenizing treatment at about 950 to 1,100 deg.C, after heating, by executing cooling at a sufficiently slow rate to a degree equal to or below that in furnace cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素(H)また
は水素同位体すなわち重水素(D)、三重水素
(T)を高密度でしかも可逆的に吸蔵・放出すること
ができる水素または水素同位体吸蔵合金に関する。
[0001] The present invention relates to hydrogen capable of storing and releasing hydrogen (H 2 ) or hydrogen isotopes, ie, deuterium (D 2 ) and tritium (T 2 ) at high density and reversibly. Or, it relates to a hydrogen isotope storage alloy.

【0002】[0002]

【従来の技術】これまで、水素吸蔵材料の用途として
は、水素や原子力関係等で発生する水素同位体の分離・
回収・貯蔵に用いられたり、吸蔵・放出に伴う反応熱を
利用したヒートポンプ・熱輸送等の熱利用、二次電池材
料などへの応用が行われてきた。これらの用途におい
て、水素吸蔵材料に求められる最も基本的な特性として
は、水素貯蔵密度が大きいこと、材料と水素あるいは水
素同位体との反応が早く可逆的なこと、材料コストが安
価なこと、また安全に使用できることにある。
2. Description of the Related Art Until now, hydrogen storage materials have been used for the separation and separation of hydrogen isotopes generated in hydrogen and nuclear power.
It has been used for recovery and storage, heat utilization such as heat pump and heat transport utilizing reaction heat accompanying occlusion and release, and application to secondary battery materials and the like. In these applications, the most basic properties required of the hydrogen storage material are that the hydrogen storage density is high, the reaction between the material and hydrogen or hydrogen isotope is fast and reversible, the material cost is low, It is also safe to use.

【0003】従来、上記の観点から水素貯蔵用の材料と
しては、TiFe系、MmNi系、熱利用の材料とし
ては、TiMn1.5系、TiCr系、二次電池水素
吸蔵材料としてはMmNi系、あるいは水素同位体取
り扱い用吸蔵材料としてはウラン(U)、ZrNi合
金、ZrCo合金等の水素吸蔵材料が用いられており、
さらに特性を改良するために、これらの基本的合金から
派生した多元系合金も提唱されている。
Conventionally, from the above viewpoints, TiFe-based and MmNi 5- based materials have been used as hydrogen storage materials, TiMn 1.5- based, TiCr 2- based materials have been used as heat utilizing materials, and MmNi has been used as a secondary battery hydrogen storage material. Uranium (U), a ZrNi alloy, a ZrCo alloy, or other hydrogen storage material is used as the storage material for handling system 5 or hydrogen isotopes.
To further improve the properties, multi-component alloys derived from these basic alloys have also been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、ウラン、Zr
Ni、ZrCo合金を除き、いずれの合金も水素貯蔵密
度としては、水素/金属原子比(H/M)で1程度であ
り、水素貯蔵能力としては十分とはいえない。一方、ウ
ランに関しては、貯蔵密度がH/M=3と大きいもの
の、材料コストが高く、また核燃料物資として法律で厳
しく規制されているため、その使用は著しく困難であ
る。しかも、ウランは水素同位体と反応して著しい微粉
化を生じ、その後大気に触れさせた場合激しく燃焼する
という性質を有しているため、安全性の点からも問題が
ある。また、ZrNi合金は、その水素貯蔵密度がH/
M=1.4程度と高いものの、水素同位体取り扱い材料
としては、平衡解離圧が高い等の欠点を有していた。
However, uranium, Zr
Except for the Ni and ZrCo alloys, all of the alloys have a hydrogen storage density of about 1 in terms of a hydrogen / metal atomic ratio (H / M), and cannot be said to have a sufficient hydrogen storage capacity. On the other hand, uranium has a high storage density of H / M = 3, but its use is extremely difficult because of its high material costs and strictly regulated nuclear fuel supplies. In addition, uranium has the property of reacting with hydrogen isotopes to cause significant pulverization and then burning violently when exposed to the atmosphere, which poses a problem in terms of safety. The ZrNi alloy has a hydrogen storage density of H /
Although M is as high as about 1.4, the material for handling hydrogen isotopes has disadvantages such as high equilibrium dissociation pressure.

【0005】本願発明者らは、上記ZrNi合金の欠点
を解消するべく、ZrNi合金を改良した新規の合金を
提案している(特開平9−227974号)。この新規
の合金は、水素貯蔵能力が高く、ZrNi合金に比較し
て水素の吸収・放出の繰り返しによって劣化(不均化)
しやすいという性質が改良され、(ある程度)水素やト
リチウムを吸収させ、放出後のガスを再利用するよう
な、吸収・放出サイクルをともなう使用方法には適して
いる。ただし、プラトー圧力はウランより高いという改
良点を残していた。また、ZrCo合金はプラトー圧力
はZrNi合金より低いものの、耐久性が悪く繰返し使
用には耐えられなかった。本発明は、上記事情を背景と
してなされたものであり、水素または水素同位体を十分
に低い平衡圧において高密度で吸収・放出でき、しかも
繰り返し吸放出における耐久性に優れた水素吸蔵材料を
提供することを目的とする。
[0005] The present inventors have proposed a new alloy obtained by improving the ZrNi alloy in order to solve the above-mentioned disadvantages of the ZrNi alloy (Japanese Patent Application Laid-Open No. Hei 9-227974). This new alloy has a high hydrogen storage capacity, and is deteriorated (disproportionated) by repeated absorption and release of hydrogen compared to ZrNi alloy.
The improved ease of use makes it suitable for use with absorption and release cycles, such as absorbing hydrogen and tritium and reusing the released gas. However, the plateau pressure remained higher than that of uranium. Further, although the ZrCo alloy had a lower plateau pressure than the ZrNi alloy, the ZrCo alloy had poor durability and could not withstand repeated use. The present invention has been made in view of the above circumstances, and provides a hydrogen storage material capable of absorbing and releasing hydrogen or hydrogen isotopes at a sufficiently low equilibrium pressure at a high density and having excellent durability in repeated absorption and release. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
本発明の水素または水素同位体吸蔵材料のうち第1の発
明は、組成が下記一般式からなり、かつ立方晶系B2構
造と斜方晶系Bf構造の混合相からなることを特徴とす
る。 一般式 Zr(Ni1−xCo ただし、0.2<x≦0.8、0.8≦y≦1.2 第2の発明の水素または水素同位体吸蔵材料は、第1の
発明において、量比xが、0.4≦x<0.8であるこ
とを特徴とする。
Means for Solving the Problems In order to solve the above problems, the first invention of the hydrogen or hydrogen isotope storage material of the present invention has a composition represented by the following general formula, and has a cubic B2 structure and an orthorhombic structure. It is characterized by being composed of a mixed phase having a crystalline Bf structure. General formula Zr 1 (Ni 1-x Co x ) y However, 0.2 <x ≦ 0.8, 0.8 ≦ y ≦ 1.2 The hydrogen or hydrogen isotope storage material of the second invention is the first compound. Is characterized in that the quantity ratio x satisfies 0.4 ≦ x <0.8.

【0007】本発明の材料は、上記するようにZrNi
合金をベースとして、Niの一部を適切な量比において
Coで置換した3元系の組成からなるとともに、立方晶
系B2構造と斜方晶系Bf構造の混合相からなるもので
ある。本発明の材料によれば、適切な量でのCo置換に
より水素平衡解離圧が下がり、水素または水素同位体を
良好に吸収することができる。また、立方晶系B2構造
と斜方晶系Bf構造の混合相となることから、繰り返し
水素吸放出における耐久性が向上する。
[0007] As described above, the material of the present invention is made of ZrNi.
Based on the alloy, it has a ternary composition in which a part of Ni is replaced by Co at an appropriate quantitative ratio, and has a mixed phase of a cubic B2 structure and an orthorhombic Bf structure. According to the material of the present invention, the hydrogen equilibrium dissociation pressure is lowered by the substitution of Co in an appropriate amount, and hydrogen or a hydrogen isotope can be favorably absorbed. In addition, since it is a mixed phase of the cubic B2 structure and the orthorhombic Bf structure, the durability in repeated hydrogen absorption and desorption is improved.

【0008】[0008]

【発明の実施の形態】本発明の合金は、ZrNi合金を
ベースとしてNiの一部を適量のCoで置換した3元系
の組成からなり、成分調整をした合金として常法により
調製することができる。ここで、Co添加は、水素吸蔵
量を減少させることなしに、水素化特性における平衡解
離圧を低下させることが可能となる。また、圧力−組成
−等温線図(P−C−T線図)上にあらわれるプラトー
性を向上させる。ここで、プラトー性の向上とは、プラ
トー部の傾斜が小さくなって平坦性が増すことと、多段
なプラトー部での段差が小さくなることを指している。
また、適量のCo添加範囲内においては、得られる材料
を立方晶系B2構造と斜方晶系Bf構造の混合相にする
ことができる。ただし、Coの添加量を調整するだけで
は上記混合相を得ることは難しく、材料製造時の熱処理
過程(例えば均質化処理)において、加熱後、十分に遅
い冷却速度で冷却することにより所望の混合相を得るこ
とができる。例えば、適切なCo添加量に調整された材
料を炉冷することにより、立方晶系B2構造と斜方晶系
Bf構造の混合相材料が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy of the present invention has a ternary composition in which a part of Ni is replaced with an appropriate amount of Co based on a ZrNi alloy, and can be prepared by an ordinary method as an alloy with adjusted components. it can. Here, the addition of Co makes it possible to lower the equilibrium dissociation pressure in the hydrogenation characteristics without reducing the hydrogen storage capacity. In addition, the plateau property which appears on the pressure-composition-isothermal diagram (PCT diagram) is improved. Here, the improvement of the plateau property means that the inclination of the plateau portion is reduced and the flatness is increased, and that the step in the multi-stage plateau portion is reduced.
In addition, within the appropriate range of Co addition, the resulting material can be a mixed phase having a cubic B2 structure and an orthorhombic Bf structure. However, it is difficult to obtain the above-mentioned mixed phase only by adjusting the amount of Co added. In the heat treatment process (for example, homogenization treatment) during material production, the desired mixed phase is obtained by cooling at a sufficiently low cooling rate after heating. Phase can be obtained. For example, by cooling a material adjusted to an appropriate Co addition amount in a furnace, a mixed phase material having a cubic B2 structure and an orthorhombic Bf structure can be obtained.

【0009】平均解離圧の変化はNi置換量に対して直
線的な変化をせず、xが0.7を越える付近で極小値を
もつ様に変化するが、Niを少しでもCoで置換すれば
Zr Co合金より低いプラトー圧力を得ることがで
きる。ただし、水素平衡解離圧を十分に低くし、またプ
ラトー性を向上させるという観点から0.2を越える置
換量が必要になる。このxが0.2以下であると、水素
平衡解離圧を十分に低くすることができず、プラトー性
も満足できるものではない。一方、置換量が0.8を越
えると、繰り返し吸放出における耐久性が損なわれるの
で、Coの置換量を0.2<x≦0.8の範囲内とす
る。なお、上記のそれぞれの理由でxは、0.4以上と
するのが望ましく、さらに、0.5以上とするのが一層
望ましい。一方、上記と同様の理由で、0.8未満とす
るのが望ましく、さらに0.7以下とするのが一層望ま
しい。また、Zrに対する(Ni+Co)の量比yは、
0.8から1.2の範囲に定める。これはyがこの範囲
を外れると、B2、Bf構造以外の相が析出し、安定し
た特性が得られなくなるためである。
The change in the average dissociation pressure is not directly related to the Ni substitution amount.
Without a linear change, the local minimum value is reached when x exceeds 0.7.
However, if Ni is replaced by Co even a little,
Zr 1Co1Lower plateau pressure than alloy
Wear. However, make sure that the hydrogen equilibrium dissociation pressure is
Placement exceeding 0.2 from the viewpoint of improving the rattling property
A replacement amount is required. If x is 0.2 or less, hydrogen
Equilibrium dissociation pressure cannot be lowered sufficiently and plateau
Is also not satisfactory. On the other hand, the replacement amount exceeds 0.8
The durability in repeated absorption and release is impaired
And the substitution amount of Co is set in the range of 0.2 <x ≦ 0.8.
You. In addition, x is 0.4 or more for each of the above reasons.
It is more desirable to further make it 0.5 or more.
desirable. On the other hand, for the same reason as above,
It is more desirable that the value be 0.7 or less.
New The amount ratio y of (Ni + Co) to Zr is:
It is set in the range of 0.8 to 1.2. This is where y is in this range
Out of phase, a phase other than the B2 and Bf structures precipitates and becomes stable.
This is because the characteristics cannot be obtained.

【0010】上記量比に調整された材料には、通常は均
質化処理がなされる。この均質化処理は、不活性ガス雰
囲気、真空雰囲気等の所望の雰囲気において材料を高温
(例えば950〜1100℃)に加熱して、所定時間
(例えば24〜60時間)保持した後、冷却する。この
際の冷却速度は、立方晶系B2構造と斜方晶系Bf構造
との混相を得るためには、十分に遅い速度が望ましく、
例えば炉冷以下の冷却速度で冷却する。
The material adjusted to the above-mentioned quantitative ratio is usually subjected to a homogenization treatment. In this homogenization treatment, the material is heated to a high temperature (for example, 950 to 1100 ° C.) in a desired atmosphere such as an inert gas atmosphere or a vacuum atmosphere, and is kept for a predetermined time (for example, 24 to 60 hours), and then cooled. The cooling rate at this time is desirably sufficiently low in order to obtain a mixed phase of the cubic B2 structure and the orthorhombic Bf structure.
For example, cooling is performed at a cooling rate equal to or lower than furnace cooling.

【0011】得られた材料は、固形、粒状、成形体等の
形態に限定されることなく、所望の用途に使用すること
ができる。該用途としては、水素あるいは水素同位体の
分離・回収・貯蔵、反応熱を利用したヒートポンプ・熱
輸送等の熱利用、二次電池材料などが挙げられる。特に
は、本発明材料は水素平衡圧が低いので、原子力関係で
発生する、ごく低い分圧しか有さない水素同位体の回収
に好適である。
The obtained material can be used for desired applications without being limited to forms such as solid, granular, and molded products. Such uses include separation, recovery and storage of hydrogen or hydrogen isotopes, heat utilization such as heat pump and heat transport utilizing reaction heat, and secondary battery materials. In particular, the material of the present invention has a low hydrogen equilibrium pressure, and thus is suitable for recovering hydrogen isotopes having only a low partial pressure, which are generated in nuclear power.

【0012】[0012]

【実施例】以下に、この発明の実施例(発明材)を、本
発明の範囲外の比較材と比較しつつ説明する。成分原料
をそれぞれ秤量して、ZrNi1−xCo(x=
0、0.2、0.4、0.6、0.7、0.8、1.
0)の7種類の組成になるように配合した。これら配合
物を、アーク式真空溶解装置の銅製ルツボ内に収納し、
高純度Arガス雰囲気下でアーク溶解し、溶解装置内で
室温まで冷却して凝固させた。さらに溶解後、合金の組
成を均質化させるため、Arガス気流中において約10
00℃の温度にて約50時間程度の熱処理を施し、その
後、炉冷した。得られた合金は50〜200メッシュに
粉砕後、X線回折測定により結晶構造の画定を行い、ま
た、水素の吸放出(20℃)によりP−C−T特性およ
び耐久性を評価した。
EXAMPLES Examples (inventive materials) of the present invention will be described below in comparison with comparative materials outside the scope of the present invention. The component raw materials are weighed, and Zr 1 Ni 1-x Co x (x =
0, 0.2, 0.4, 0.6, 0.7, 0.8, 1.
0) were blended so as to be seven kinds of compositions. These compounds are stored in a copper crucible of an arc vacuum melting apparatus,
Arc melting was performed in a high-purity Ar gas atmosphere, and the solidified material was cooled to room temperature in a melting device. After further melting, in order to homogenize the alloy composition, about 10
Heat treatment was performed at a temperature of 00 ° C. for about 50 hours, and then the furnace was cooled. After the obtained alloy was pulverized to 50 to 200 mesh, the crystal structure was defined by X-ray diffraction measurement, and the PCT characteristics and durability were evaluated by hydrogen absorption and desorption (20 ° C.).

【0013】図1は、各試料に関するPCT線図であ
り、図2は、図1の部分拡大図である。なお、各試料の
プラトー部は、2段からなっており、1段目のプラトー
圧で水素平衡圧を評価し、表1に示した。また、プラト
ー性を評価する上で、プラトー部での斜度だけでなく段
部の圧力差を考慮して、2段目のプラトー圧との圧力比
を算出し、同じく表1に示した。さらに、耐久性を評価
するため、繰り返し水素の吸放出を繰り返し、水素移動
量が初期から80%減少するまでに繰り返した回数を耐
久性(繰り返し数が大きいものほど耐久性に優れてい
る)として表1に示した。
FIG. 1 is a PCT diagram for each sample, and FIG. 2 is a partially enlarged view of FIG. The plateau portion of each sample was composed of two stages, and the hydrogen equilibrium pressure was evaluated using the plateau pressure of the first stage. In evaluating the plateau property, the pressure ratio with the plateau pressure of the second stage was calculated in consideration of not only the gradient at the plateau portion but also the pressure difference at the step portion. Furthermore, in order to evaluate the durability, the number of repetitions of hydrogen absorption and desorption repeatedly until the hydrogen transfer amount is reduced by 80% from the initial stage is defined as durability (the larger the number of repetitions, the better the durability). The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1および各図から明らかなように、本発
明の範囲内にある材料では、水素平衡圧、プラトー性、
耐久性の全てにおいて良好な結果が得られた。一方、比
較例であるNo.1のZrNiは水素平衡圧が高く、N
o.7のZrCoは、耐久性に劣っていた。
As is clear from Table 1 and the figures, the materials within the scope of the present invention have a hydrogen equilibrium pressure, a plateau property,
Good results were obtained in all durability. On the other hand, in Comparative Example No. No. 1 ZrNi has a high hydrogen equilibrium pressure and N
o. ZrCo of No. 7 was inferior in durability.

【0016】[0016]

【発明の効果】以上説明したように、本発明の水素また
は水素同位体吸蔵材料によれば、組成が、 一般式
Zr(Ni1−xCo (ただし、0.2<x
≦0.8、0.8≦y≦1.2)からなり、かつ立方晶
系B2構造と斜方晶系Bf構造の混合相からなるので、
低い水素平衡解離圧が得られるとともに、繰り返し吸放
出において優れた耐久性を発揮する効果がある。
As described above, according to the hydrogen or hydrogen isotope storage material of the present invention, the composition is represented by the general formula:
Zr 1 (Ni 1-x Co x ) y (where 0.2 <x
≦ 0.8, 0.8 ≦ y ≦ 1.2) and a mixed phase of a cubic B2 structure and an orthorhombic Bf structure.
A low hydrogen equilibrium dissociation pressure can be obtained, and there is an effect of exhibiting excellent durability in repeated absorption and release.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例における各供試材のPCT線
図である。
FIG. 1 is a PCT diagram of each test material in an example of the present invention.

【図2】 同じく図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 1;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兜森 俊樹 北海道室蘭市茶津町4番地 株式会社日本 製鋼所内 (72)発明者 後藤 敏満 北海道室蘭市茶津町4番地 株式会社日本 製鋼所内 (72)発明者 村井 正光 北海道室蘭市茶津町4番地 株式会社日本 製鋼所内 (72)発明者 土谷 邦彦 茨城県東茨城郡大洗町成田町新堀3607番地 日本原子力研究所 大洗研究所内 (72)発明者 河村 弘 茨城県東茨城郡大洗町成田町新堀3607番地 日本原子力研究所 大洗研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiki Kabumori 4th Chazu-cho, Muroran-shi, Hokkaido Inside Japan Steel Works, Ltd. Masamitsu Murai 4th Chazu-cho, Muroran-shi, Hokkaido Japan Steel Works, Ltd. (72) Kunihiko Tsuchiya Inventor 3607 Niibori, Narita-cho, Oarai-cho, Higashiibaraki-gun, Japan 3607 Niibori, Narita-cho, Oarai-machi, Ibaraki

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成が下記一般式からなり、かつ立方晶
系B2構造と斜方晶系Bf構造の混合相からなることを
特徴とする水素または水素同位体吸蔵材料 一般式 Zr(Ni1−xCo ただし、0.2<x≦0.8、0.8≦y≦1.2
1. A hydrogen or hydrogen isotope storage material having a composition represented by the following general formula and a mixed phase of a cubic B2 structure and an orthorhombic Bf structure, wherein Zr 1 (Ni 1 −x Co x ) y where 0.2 <x ≦ 0.8, 0.8 ≦ y ≦ 1.2
【請求項2】 量比xが、0.4≦x<0.8であるこ
とを特徴とする請求項1記載の水素または水素同位体吸
蔵材料
2. The hydrogen or hydrogen isotope storage material according to claim 1, wherein the quantity ratio x satisfies 0.4 ≦ x <0.8.
JP02163299A 1999-01-29 1999-01-29 Hydrogen or hydrogen isotope storage material Expired - Fee Related JP3670506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02163299A JP3670506B2 (en) 1999-01-29 1999-01-29 Hydrogen or hydrogen isotope storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02163299A JP3670506B2 (en) 1999-01-29 1999-01-29 Hydrogen or hydrogen isotope storage material

Publications (2)

Publication Number Publication Date
JP2000219926A true JP2000219926A (en) 2000-08-08
JP3670506B2 JP3670506B2 (en) 2005-07-13

Family

ID=12060455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02163299A Expired - Fee Related JP3670506B2 (en) 1999-01-29 1999-01-29 Hydrogen or hydrogen isotope storage material

Country Status (1)

Country Link
JP (1) JP3670506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562912A (en) * 2019-10-18 2019-12-13 中国工程物理研究院材料研究所 Method for improving hydrogen absorption and desorption cycle performance of ZrCo-based hydrogen isotope storage material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562912A (en) * 2019-10-18 2019-12-13 中国工程物理研究院材料研究所 Method for improving hydrogen absorption and desorption cycle performance of ZrCo-based hydrogen isotope storage material
CN110562912B (en) * 2019-10-18 2023-06-23 中国工程物理研究院材料研究所 Method for improving hydrogen absorption and desorption cycle performance of ZrCo-based hydrogen isotope storage material

Also Published As

Publication number Publication date
JP3670506B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
Isnard et al. Neutron diffraction study of the structural and magnetic properties of the R2Fe17Hx (Dx) ternary compounds (R Ce, Nd and Ho)
JP2002327230A (en) Magnesium-based hydrogen absorbing alloy
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
JP2955662B1 (en) Ternary hydrogen storage alloy and method for producing the same
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
CN113201679B (en) ZrCo-based high-entropy intermetallic compound with stable isomorphous hydrogen absorption/desorption reaction and preparation and application thereof
JP2008523240A (en) Magnesium alloy for hydrogen storage
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JP3670506B2 (en) Hydrogen or hydrogen isotope storage material
US20100150822A1 (en) Pulverulent intermetallic materials for the reversible storage of hydrogen
CN112251647B (en) ZrCo-based hydrogen isotope storage alloy with orthorhombic crystal structure and high cycle stability as well as preparation and application thereof
US4576640A (en) Hydrogen storage material
JP2834165B2 (en) Production method and electrode for hydrogen storage alloy
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JP2022543828A (en) METHOD FOR PRODUCING HYDROGEN STORAGE ALLOY
CN115595491B (en) Design and preparation method of ZrCo-based multi-element intermetallic compound with weak hydrogen absorption and desorption lattice distortion
US4576639A (en) Hydrogen storage metal material
JP2935972B2 (en) Hydrogen and hydrogen isotope storage alloys
CN115747608B (en) ZrCo-based multi-element intermetallic compound with high thermal stability and high structural stability and preparation and application thereof
JPS5947022B2 (en) Alloy for hydrogen storage
CN114457260B (en) MgCu 4 Sn type hydrogen storage alloy and preparation method thereof
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPS5824498B2 (en) Vanadium-containing hydrogen storage alloy
JPS583025B2 (en) Metal materials for hydrogen storage
WO2018155400A1 (en) Hydrogen-occluding alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees