JP2000218392A - Corrosion resistant cobalt group welding material, tig welding electrode composed of material, plasma transfer arc welding powder, covered electrode, and valve - Google Patents

Corrosion resistant cobalt group welding material, tig welding electrode composed of material, plasma transfer arc welding powder, covered electrode, and valve

Info

Publication number
JP2000218392A
JP2000218392A JP11025059A JP2505999A JP2000218392A JP 2000218392 A JP2000218392 A JP 2000218392A JP 11025059 A JP11025059 A JP 11025059A JP 2505999 A JP2505999 A JP 2505999A JP 2000218392 A JP2000218392 A JP 2000218392A
Authority
JP
Japan
Prior art keywords
welding
corrosion
carbide
resistant cobalt
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11025059A
Other languages
Japanese (ja)
Other versions
JP3131587B2 (en
Inventor
Masatoshi Okano
正敏 岡野
Hitoshi Honda
整 本田
Katsumi Hirano
克己 平野
Tatsumi Watanabe
辰美 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okano Valve Mfg Co Ltd
Original Assignee
Okano Valve Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okano Valve Mfg Co Ltd filed Critical Okano Valve Mfg Co Ltd
Priority to JP11025059A priority Critical patent/JP3131587B2/en
Publication of JP2000218392A publication Critical patent/JP2000218392A/en
Application granted granted Critical
Publication of JP3131587B2 publication Critical patent/JP3131587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion resistant cobalt group welding material which can be used in a corrosive fluid without causing grain boundary corrosion. SOLUTION: This corrosion resistant cobalt group welding material is chemically composed of, 0.20-0.50 wt.% C, 25.0-30.0 wt.% Cr, 4.0 wt.% or less Ni, 5.0-6.0 wt.% Mo, 1.6-10.0 wt.% Nb, and the balance of substantially Co. Nb is easier than Cr to be combined with C in the material, and so C in the alloy is combined with Nb to generate NbC (niobium carbide). Then, since Cr is remained in a matrix, Cr carbide is not generated in the alloy. As a result, Cr shortage layers are not caused at an adjacent part of the Cr carbide, so as to prevent such a grain boundary corrosion that a local part around the Cr carbide is corroded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腐食性流体で使用
される機器に肉盛溶接される材料、特に、耐食性コバル
ト基溶接材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material to be build-up welded on equipment used with a corrosive fluid, and more particularly to a corrosion-resistant cobalt-based welding material.

【0002】[0002]

【従来の技術】従来、腐食性流体に使用される弁等であ
って、仕切弁のように弁座が摺動する形態以外の弁の弁
座や流体接触部において、耐食性や耐キャビテーション
性が必要な箇所には、ステライトNo21と称される、
化学成分が重量%で、C:0.20〜0.30、Cr:
25.5〜29.0、Ni:1.75〜3.25以下、
Mo:5.0〜6.0、残部がCoよりなるコバルト基
溶接材料による肉盛溶接が適用されてきた。
2. Description of the Related Art Corrosion resistance and cavitation resistance of valves and other fluids that are used for corrosive fluids and that are of a type other than a type in which a valve seat slides, such as a gate valve, are known. Where necessary, referred to as Stellite No. 21,
Chemical components are% by weight, C: 0.20 to 0.30, Cr:
25.5-29.0, Ni: 1.75-3.25 or less,
Mo: 5.0 to 6.0, and the rest has been applied with build-up welding using a cobalt-based welding material composed of Co.

【0003】[0003]

【発明が解決しようとする課題】しかし、この溶接材料
を炭素鋼やオーステナイト系ステンレス鋼に適用する際
に、基材(主として鉄:Fe)の溶込みが5%以下とな
るような肉盛溶接を行なわない場合には、溶接部の結晶
粒界に炭化物が生成し、粒界腐食を生じてしまうという
傾向があった。また、このような傾向は、基材の溶込み
量が多くなるほど、促進されることが知られていた。
However, when this welding material is applied to carbon steel or austenitic stainless steel, build-up welding is performed such that the penetration of the base material (mainly iron: Fe) is 5% or less. If not performed, carbides are formed at the crystal grain boundaries of the welded portion, and there is a tendency that intergranular corrosion occurs. It has been known that such a tendency is promoted as the penetration amount of the base material increases.

【0004】ここで、図1は、正常なステライトNo2
1溶接部の炭化物の分布状態を示す模式図である。この
図1に示すように、溶接材料たるステライトNo21の
本来の金属組織は、Co−Cr−Moからなるマトリッ
クスの中に、Crを主体とする炭化物が点状に分布する
ものである。
FIG. 1 shows a normal stellite No. 2
It is a schematic diagram which shows the distribution state of carbide | carbonized_material of 1 welding part. As shown in FIG. 1, the original metal structure of stellite No. 21 as a welding material is such that a carbide mainly composed of Cr is distributed in a matrix in a Co-Cr-Mo matrix.

【0005】しかし、基材の溶込みが多くなると、点状
の炭化物が減少し、図2の模式図に示すように、結晶粒
界に炭化物が生成されるようになる。この現象は、基材
を主として構成するFeが溶込むと、合金中のCr量が
相対的に減少して、凝固が最初に生じる結晶粒内で炭化
物を生成させることができなくなり、溶質が濃縮される
結晶粒界で炭化物の生成が生じる傾向が大きくなること
による。
[0005] However, as the penetration of the base material increases, the amount of carbides in the form of dots decreases, and as shown in the schematic diagram of FIG. 2, carbides are generated at the crystal grain boundaries. This phenomenon is caused by the fact that when Fe, which mainly constitutes the base material, dissolves, the amount of Cr in the alloy relatively decreases, so that carbide cannot be generated in crystal grains where solidification occurs first, and the solute is concentrated. This tends to increase the tendency of carbide formation at the crystal grain boundaries to be formed.

【0006】また、この際、結晶粒界に炭化物が生成す
ると、炭化物がCrを主体とした化合物であるため、粒
界隣接部のCr量が極端に減少し、このCr欠乏層が選
択的に腐食される条件が形成される。その結果、粒界腐
食が生じてしまうという問題が生じてしまうのである。
At this time, when carbide is generated at the crystal grain boundary, the amount of Cr in the vicinity of the grain boundary is extremely reduced because the carbide is a compound mainly composed of Cr, and this Cr-deficient layer is selectively formed. Corrosive conditions are formed. As a result, there arises a problem that intergranular corrosion occurs.

【0007】一方、電弧を用いる溶接では、Feの溶込
みは避けられない問題である。そのため、このような粒
界腐食の発生傾向を必ず生ずるものであり、従って、電
弧溶接を行ってFeの溶込みが生じても、このような粒
界腐食を生じないステライトNo21相当材を開発する
ことが望まれていた。
On the other hand, in welding using an electric arc, penetration of Fe is an unavoidable problem. Therefore, such a tendency of intergranular corrosion always occurs, and therefore, a material equivalent to stellite No. 21 which does not cause such intergranular corrosion even when the penetration of Fe occurs by performing arc welding is developed. It was desired.

【0008】従って、本発明は、上述した従来の技術の
問題を解決するためになされたもので、粒界腐食を生じ
ることがなく、腐食性流体で使用することのできる耐食
性コバルト基溶接材料を提供することを主な目的とする
ものである。
Accordingly, the present invention has been made in order to solve the above-mentioned problems of the prior art, and provides a corrosion-resistant cobalt-based welding material which does not cause intergranular corrosion and can be used in a corrosive fluid. Its primary purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
め、請求項1に記載の本発明は、耐食性コバルト基溶接
材料は、化学成分が重量%で、C:0.20〜0.5
0、Cr:25.0〜30.0、Ni:4.0以下、M
o:5.0〜6.0、Nb:1.6〜10.0、残部が
実質的にCoよりなることを特徴としている。
In order to achieve the above object, according to the present invention, there is provided a corrosion-resistant cobalt-based welding material comprising:
0, Cr: 25.0 to 30.0, Ni: 4.0 or less, M
o: 5.0 to 6.0, Nb: 1.6 to 10.0, and the balance substantially consists of Co.

【0010】前記耐食性コバルト基溶接材料は、ティグ
溶接棒、プラズマ・トランスファ・アーク溶接用粉末、
被覆電弧溶接棒、弁等に適用することができる。
[0010] The corrosion-resistant cobalt-based welding material includes a TIG welding rod, a powder for plasma transfer arc welding,
It can be applied to a covered arc welding rod, a valve and the like.

【0011】[0011]

【作用】耐食性コバルト基溶接材料を、ステライトNo
21に相当する材料にNbを添加して上記のような化学
成分にすることにより、Nbは、Crよりも材料中のC
と結合し易いために、合金中のCは、Nbと結合してN
bC(ニオブ炭化物)を生成し、Crはマトリックス中
に残るために、合金中において、Cr炭化物の生成がな
くなる。その結果、Cr炭化物隣接部のCr欠乏層を生
じることがなくなり、これにより、Cr炭化物周囲の局
部が腐食される粒界腐食が防止される。
[Function] Corrosion-resistant cobalt-based welding material is made of Stellite No.
By adding Nb to the material corresponding to No. 21 to make the above-mentioned chemical components, Nb is more likely to be present in the material than in Cr.
C in the alloy is bonded to Nb to form N
Since bC (niobium carbide) is generated and Cr remains in the matrix, the generation of Cr carbide in the alloy is eliminated. As a result, a Cr deficiency layer adjacent to the Cr carbide is not generated, thereby preventing intergranular corrosion in which a local portion around the Cr carbide is corroded.

【0012】また、このような耐食性コバルト基溶接材
料を、腐食性流体にさらされる弁やこの流体にされされ
る機器を溶接するためのティグ溶接棒、プラズマ・トラ
ンスファ・アーク溶接用粉末、被覆電弧溶接棒等に使用
すると、耐食性に優れているため、信頼性の高い装置等
が得られる。
Further, a TIG welding rod for welding a valve exposed to a corrosive fluid or a device exposed to the fluid, a powder for plasma transfer arc welding, a coated arc, When used for a welding rod or the like, a highly reliable device or the like can be obtained because of its excellent corrosion resistance.

【0013】[0013]

【発明の実施の形態】まず最初に、本発明に従う耐食性
コバルト基溶接材料の各化学成分の割合の選択の根拠に
ついて述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the grounds for selecting the ratio of each chemical component of the corrosion-resistant cobalt-based welding material according to the present invention will be described.

【0014】C(炭素)は、従来のステライトNo21
においては、Crと結合して炭化物を生成し、合金の硬
度を高め、強度を維持するのに寄与していた。一方、本
発明に係る材料においては、Nbと結合してNb炭化物
(NbC)を生成して、同じく合金の硬度を高めるた
め、大きな強度を維持するのに有効である。このため、
C量が少ないと、必要とする硬度や強度が得られず、C
量が多すぎると、CをNb炭化物にするためのNb量が
多くなる。従って、Cの含有量の範囲は、重量%で、
0.20〜0.50%とする。
C (carbon) is a conventional stellite No. 21
In the case of, bond with Cr to form carbides, increase the hardness of the alloy and contribute to maintaining the strength. On the other hand, the material according to the present invention combines with Nb to form Nb carbide (NbC) and also increases the hardness of the alloy, which is effective for maintaining a large strength. For this reason,
If the C content is small, the required hardness and strength cannot be obtained,
If the amount is too large, the amount of Nb for converting C into Nb carbide increases. Therefore, the range of the content of C is% by weight,
0.20 to 0.50%.

【0015】Cr(クロム)は、本合金の耐酸化性を向
上させ、また硝酸等の酸化性の酸に対する耐食性を向上
させる。このため、Crの含有量の範囲は、重量%で、
25.0〜30.0%とする。
[0015] Cr (chromium) improves the oxidation resistance of the present alloy, and also improves the corrosion resistance to oxidizing acids such as nitric acid. For this reason, the range of the content of Cr is% by weight,
25.0 to 30.0%.

【0016】Ni(ニッケル)は、Coと類似な特性を
有するが、Coよりも耐酸化性が大きい。また、Ni
は、硫酸等の還元性の酸に対する耐食性を向上するが、
多量に含有すると、Co合金が面心立方晶になるのを助
長して、Co合金が六方晶であるε相に変態するのを妨
げる。なお、Co基合金が優れた耐キャビテーション性
を示すのは、流体内における気泡の壊滅時の衝撃エネル
ギーを、面心立方から六方晶へ変態することで吸収する
からである。従って、Niの含有量の範囲は、重量%
で、その上限値を4.0%とする。
Ni (nickel) has similar properties to Co, but has higher oxidation resistance than Co. Also, Ni
Improves the corrosion resistance to reducing acids such as sulfuric acid,
When contained in a large amount, it promotes the Co alloy to be face-centered cubic and prevents the Co alloy from transforming into a hexagonal ε phase. The reason why the Co-based alloy exhibits excellent cavitation resistance is that the impact energy at the time of collapse of bubbles in the fluid is absorbed by transforming from face-centered cubic to hexagonal. Therefore, the range of the content of Ni is as follows:
The upper limit is set to 4.0%.

【0017】Mo(モリブデン)は、主としてCoのマ
トリックス中に固溶し、高温強度を向上させるのに有効
である。従って、Moの含有量は、重量%で、5.0〜
6.0%とする。
Mo (molybdenum) forms a solid solution mainly in a matrix of Co and is effective for improving high-temperature strength. Therefore, the content of Mo is 5.0 to 5.0% by weight.
6.0%.

【0018】Nb(ニオブ)は、Cと結合してNb炭化
物を生成し、CをNb炭化物として固定することによ
り、Cr炭化物を生成しないようにする。このため、本
発明においては、最も重要な元素である。また、Cを固
定するNbの添加量は、Cの8倍より効果がある。しか
し、本発明では、この効果をさらに徹底させるために、
Cの20倍までの添加を行う。従って、Nbの含有量
は、重量%で、1.6〜10.0%とする。
Nb (niobium) combines with C to form Nb carbide and fixes C as Nb carbide so that Cr carbide is not formed. Therefore, in the present invention, it is the most important element. Further, the amount of Nb to fix C is more effective than C by 8 times. However, in the present invention, in order to make this effect more thorough,
Add up to 20 times C. Therefore, the content of Nb is set to 1.6 to 10.0% by weight.

【0019】以上のような検討によって、ステライトN
o21に相当する、本発明に係る耐食性コバルト基溶接
材料の化学成分組成を、重量%で、C:0.20〜0.
50、Cr:25.0〜30.0、Ni:4.0以下、
Mo:5.0〜6.0、Nb:1.6〜10.0、残部
は実質的にCoよりなるように選定した。次に、本発明
に係る耐食性コバルト基溶接材料の機械的性質について
検討する。検討するに当たって、本発明者は、次の二種
類の比較実験を行なった。
From the above study, it was found that stellite N
The chemical composition of the corrosion-resistant cobalt-based welding material according to the present invention, which corresponds to O21, is represented by C: 0.20-0.
50, Cr: 25.0 to 30.0, Ni: 4.0 or less,
Mo: 5.0 to 6.0, Nb: 1.6 to 10.0, and the balance were selected to be substantially composed of Co. Next, the mechanical properties of the corrosion-resistant cobalt-based welding material according to the present invention will be discussed. In conducting the study, the present inventors conducted the following two types of comparative experiments.

【0020】[比較実験1]本発明者は、金属粉末を混
合して、アルゴン中の不活性ガス雰囲気中でアーク溶解
して、表1(明細書の発明の詳細な説明の最後に添付)
に示す化学成分組成を有するΦ40×20tの約200
gの合金塊を製作し、試験試料とした。試験試料として
は、ステライトNo21に炭素鋼が溶込んだ場合を模擬
した比較試料:F1,F2、そして、これに約5%のN
bを添加したFN1,FN2およびFN3の5種類を作
製した。なお、これらの試験試料には、実製品の場合と
同様に、650°C×4時間の応力除去焼鈍を加えた。
[Comparative experiment 1] The present inventor mixed a metal powder, arc-melted in an inert gas atmosphere in argon, and obtained the results shown in Table 1 (attached to the end of the detailed description of the invention in the specification).
About 200 of Φ40 × 20t having the chemical composition shown in
g of alloy ingot was prepared and used as a test sample. As test samples, comparative samples simulating the case where carbon steel was dissolved in Stellite No. 21: F1, F2, and about 5% N
Five types of FN1, FN2 and FN3 to which b was added were prepared. Note that these test samples were subjected to stress relief annealing at 650 ° C. for 4 hours as in the case of the actual product.

【0021】試験は、これらの試験試料から腐食試験片
を加工して、JIS・G0575に規定する硫酸・硫酸
銅の沸騰溶液による16時間の粒界腐食試験と、JIS
・G0572に規定する硫酸・硫酸第二鉄の沸騰溶液に
よる24時間の粒界腐食試験との2種類を実施した。
In the test, a corrosion test specimen was processed from these test samples, and subjected to a 16-hour intergranular corrosion test using a boiling solution of sulfuric acid / copper sulfate specified in JIS G0575.
And 24 hours of intergranular corrosion test using a boiling solution of sulfuric acid and ferric sulfate specified in G0572.

【0022】各試験における試験結果を表1に示す。表
1から分かるように、Nbを添加しない試料F1および
F2では、両試験共に著しい粒界腐食を生じた。
Table 1 shows the test results in each test. As can be seen from Table 1, Samples F1 and F2 to which Nb was not added caused significant intergranular corrosion in both tests.

【0023】しかしながら、Nbを添加した試料FN
1,FN2およびFN3では、硫酸・硫酸銅溶液による
試験では、粒界腐食は生じなかった。また、硫酸・硫酸
第二鉄溶液による試験では、試料FN1で0.04m
m、試料FN2で0.05mmの粒界腐食を生じたが、
Nbを添加しない試料F1およびF2の0.48mmお
よび0.69mmの粒界腐食量に比して、約1/10で
あり、はるかに少ない腐食深さであった。
However, the sample FN to which Nb was added
1, FN2 and FN3 did not cause intergranular corrosion in a test using a sulfuric acid / copper sulfate solution. In the test using a sulfuric acid / ferric sulfate solution, the sample FN1 was 0.04 m
m, intergranular corrosion of 0.05 mm occurred in sample FN2,
Compared to the intergranular corrosion amounts of 0.48 mm and 0.69 mm of the samples F1 and F2 to which Nb was not added, the corrosion depth was about 1/10 and much smaller.

【0024】なお、鉄の含有量の多い試料FN3の硫酸
・硫酸第二鉄溶液での試験では、全面腐食が生じ、粒界
腐食は認められなかった。
In a test of a sample FN3 having a high iron content in a sulfuric acid / ferric sulfate solution, general corrosion occurred, and no intergranular corrosion was observed.

【0025】一般に、金属材料の耐粒界腐食特性は、例
えば、海水中程度の腐食環境では、硫酸・硫酸銅による
試験で粒界腐食が生じない場合には、実用上十分な耐粒
界腐食性があると評価してよい。また、溶接で基材(主
としてFe)の溶込みの生じる量は、15〜30%程度
である場合が多い。従って、本試験結果から本発明に係
る材料を使用して溶接した溶接部を、海水、蒸気および
高温高圧水中で使用する場合には、十分な耐食性を有す
ると判断できる。
In general, the intergranular corrosion resistance of a metal material is, for example, in a corrosive environment of about seawater, if the intergranular corrosion does not occur in a test using sulfuric acid / copper sulfate, a sufficient intergranular corrosion resistance is practically sufficient. It may be evaluated that there is. Also, the amount of penetration of the base material (mainly Fe) by welding is often about 15 to 30%. Accordingly, it can be determined from the test results that the welded portion welded using the material according to the present invention has sufficient corrosion resistance when used in seawater, steam, and high-temperature and high-pressure water.

【0026】また、硫酸・硫酸第二鉄溶液での試験は、
更に過酷な粒界腐食条件に関する試験である。しかし、
この試験条件下においても、本発明に係る材料を使用し
て溶接した溶接部は、鉄が35%程度溶込んだ場合で
も、ステライトNo21を用いて溶接した溶接部より、
はるかに優れた耐粒界腐食性を示した。
The test using a sulfuric acid / ferric sulfate solution is as follows.
This is a test for more severe intergranular corrosion conditions. But,
Even under this test condition, the welded portion using the material according to the present invention has a higher weldability than the welded portion using stellite No. 21 even when iron is penetrated by about 35%.
It showed much better intergranular corrosion resistance.

【0027】図3に、ステライトNo21と本発明に係
る材料とを用いて溶接した溶接部のヴィッカース硬さH
vを、Fe含有量と関連させて示す。ヴィッカース硬さ
は、溶接部の強度や耐キャビテーション・エロージョン
特性を示す指標になる。この図3に示すように、同一の
Fe含有量に対しては、ステライトNo21を用いた溶
接部よりも、本発明に係る材料を用いた溶接部の方が硬
く、溶接部の機械的性質において、本発明に係る材料
は、優れていることが推定された。
FIG. 3 shows the Vickers hardness H of the welded portion using Stellite No. 21 and the material according to the present invention.
v is shown in relation to the Fe content. Vickers hardness is an index indicating the strength of the welded portion and the cavitation erosion resistance. As shown in FIG. 3, for the same Fe content, the weld using the material according to the present invention is harder than the weld using Stellite No. 21, and the mechanical properties of the weld are higher. It was presumed that the material according to the present invention was excellent.

【0028】[比較試験2]次に、本発明者は、金属粉
末を混合して、アルゴン不活性ガス雰囲気中でアーク溶
解して、表2(明細書の発明の詳細な説明の最後に添
付)に示す化学成分組成を有するΦ40×20tの約2
00gの合金塊を製作し、試験試料とした。試験試料と
しては、ステライトNo21自体、およびステライトN
o21にステンレス鋼(SUS316L)が溶け込んだ
場合を模擬した比較試料:S0〜S4、そしてこれらに
Nbを1.3〜2.5%添加したSN0〜SN4、並び
にNbを約5%添加したSN5〜SN8の14種類を作
製した。なお、これらの試験試料には、実製品と同様
に、1070°C×4時間空冷の溶体化処理を加えた。
[Comparative Test 2] Next, the present inventors mixed the metal powder, arc-melted it in an argon inert gas atmosphere, and attached Table 2 (attached to the end of the detailed description of the invention in the specification). ) Having a chemical composition shown in FIG.
An alloy lump of 00 g was manufactured and used as a test sample. As test samples, Stellite No. 21 itself and Stellite N
Comparative samples simulating the case where stainless steel (SUS316L) was dissolved in o21: S0 to S4, and SN0 to SN4 to which Nb was added to 1.3 to 2.5%, and SN5 to about 5% of Nb were added. Fourteen types of SN8 were prepared. These test samples were subjected to a solution treatment of air cooling at 1070 ° C. × 4 hours as in the actual product.

【0029】試験は、これらの試験試料から腐食試験片
を加工して、[比較試験1]と同様に、JIS・G05
75に規定する硫酸・硫酸銅の沸騰溶液による16時間
の粒界腐食試験と、JIS・G0572に規定する硫酸
・硫酸第二鉄の沸騰溶液による24時間の粒界腐食試験
との2種類を実施した。
In the test, a corrosion test piece was processed from these test samples, and was subjected to JIS G05 as in [Comparative Test 1].
Two types of tests were performed: a 16-hour intergranular corrosion test using a boiling solution of sulfuric acid and copper sulfate specified in 75, and a 24-hour intergranular corrosion test using a boiling solution of sulfuric acid and ferric sulfate specified in JIS G0572. did.

【0030】各試験における試験結果を表2に示す。表
2から分かるように、硫酸・硫酸銅の沸騰溶液による腐
食試験では、ステライトNo21自体、並びにステライ
トNo21にステンレス鋼が溶込んだ場合共、Nb添加
の有無や量に関せず、粒界腐食は生じなかった。
Table 2 shows the test results in each test. As can be seen from Table 2, in the corrosion test using a boiling solution of sulfuric acid / copper sulfate, the intergranular corrosion was observed regardless of whether Nb was added or not, regardless of whether or not Nb was added, both in the case where stellite No21 itself and stainless steel were dissolved in stellite No21. Did not occur.

【0031】一方、硫酸・硫酸第二鉄の沸騰溶液中の腐
食試験では、ステライトNo21に鉄の溶け込みのない
場合には、Nb添加の影響は認められなかった。しかし
ながら、鉄の溶け込みが15〜27%では、Nb無添加
の試料(S1及びS2)に比してNbを2.1〜4.8
%添加した試料(SN1及びSN2、SN6及びSN
7)では、粒界腐食深さは、無添加のものに比して約1
/2となった。なお、ステンレス鋼の溶け込みが35%
以上では、Nb添加材の試料(SN3及びSN4)に比
してNb無添加の試料(S3及びS4)の方が、むしろ
粒界腐食性は良好となった。
On the other hand, in a corrosion test of a sulfuric acid / ferric sulfate in a boiling solution, when iron did not dissolve into Stellite No. 21, the effect of Nb addition was not recognized. However, when the penetration of iron was 15 to 27%, Nb was 2.1 to 4.8 as compared with the samples without Nb (S1 and S2).
% Added samples (SN1 and SN2, SN6 and SN
In (7), the intergranular corrosion depth is about 1 compared to the case of no additive.
/ 2. The penetration of stainless steel is 35%
In the above description, the grain boundary corrosion property of the sample without Nb (S3 and S4) was better than that of the sample with Nb additive (SN3 and SN4).

【0032】前述したように、海水、蒸気および高温高
圧水環境での耐粒界質食性については、硫酸・硫酸溶液
の試験で粒界腐食が発生しなければ、実用的に十分な耐
粒界腐食性があると評価できる。従って、総ての試験試
料に対して粒界腐食が生じなかったので、このような使
用環境で使用されるステンレス鋼に対する溶接材料とし
て、本発明に係る材料を使用する必要はない。
As described above, regarding the intergranular corrosion resistance in seawater, steam and high-temperature and high-pressure water environments, if the intergranular corrosion does not occur in a test of a sulfuric acid / sulfuric acid solution, a practically sufficient grain boundary corrosion resistance is obtained. It can be evaluated as corrosive. Therefore, since no intergranular corrosion occurred in all test samples, it is not necessary to use the material according to the present invention as a welding material for stainless steel used in such a use environment.

【0033】しかし、粒界腐食環境が硫酸・硫酸第二鉄
沸騰溶液で代表されるような、さらに厳しい環境におい
ては、本発明に係る材料は、この材料を用いて溶接した
溶接部に、ステンレス鋼がFe量:15〜30%まで溶
け込んだ場合に、特に有効である。この溶込み量は、通
常の溶接における基材の溶込み量において、多く認めら
れる量に相当している。
However, in a more severe environment where the intergranular corrosion environment is typified by sulfuric acid / ferric sulfate boiling solution, the material according to the present invention is used for welding a welded portion using this material. This is particularly effective when the steel is dissolved up to an Fe content of 15 to 30%. This penetration amount corresponds to the amount that is often observed in the penetration amount of the base material in ordinary welding.

【0034】次に、Nbの添加量の違いによる比較検討
をする。Nbの添加量は、表2の試料SN3と試料SN
8とを比較すると分かるように、Nb量:1.6%の試
料より、Nb量:4.4%の試料の方が、Feの溶込み
量の多い範囲で良好な耐腐食性を示した。
Next, a comparative study based on the difference in the amount of Nb added will be described. The amount of Nb added was determined according to Samples SN3 and SN in Table 2.
As can be seen from comparison with Sample No. 8, the sample with the Nb content of 4.4% exhibited better corrosion resistance in the range where the amount of Fe penetration was larger than the sample with the Nb content of 1.6%. .

【0035】しかし、試料SN0〜SN3およびSN5
〜SN8のNb/Cの比と、粒界腐食の深さとについて
検討すると、Nb/C:14〜20倍と29〜49倍と
について、粒界腐食深さに大きな違いはない。そのた
め、本発明に係る材料のNb/Cの比は、上述したよう
に、Cの20倍まで選定することにした。
However, samples SN0-SN3 and SN5
Examining the ratio of Nb / C of ~ SN8 and the depth of intergranular corrosion, there is no significant difference in the intergranular corrosion depth for Nb / C: 14 to 20 times and 29 to 49 times. Therefore, the Nb / C ratio of the material according to the present invention is selected up to 20 times C as described above.

【0036】図4に、ステライトNo21と本発明に係
る材料とを用いて溶接した溶接部のヴィッカース硬さH
vを、Fe含有量と関連させて示す。なお、上述したよ
うに、ヴィッカース硬さは、溶接部の強度や耐キャビテ
ーション・エロージョン特性を示す指標になる。図4に
示すように、ヴィッカース硬さは、Nbを添加しないス
テライトNo21を用いた溶接部よりも、本発明に係る
Nbを添加した材料を用いた溶接部の方が硬くなる。ま
た、Nb添加量については、Nb添加量が1.3〜2.
5%のものより、4.2〜4.8%添加のもののほうが
硬くなった。従って、本発明に係る材料を用いて溶接し
た溶接部の機械的性質は、ステライトNo21を用いて
溶接した溶接部より、優れていることが推定された。
FIG. 4 shows the Vickers hardness H of the welded portion using Stellite No. 21 and the material according to the present invention.
v is shown in relation to the Fe content. As described above, the Vickers hardness is an index indicating the strength of the welded portion and the cavitation / erosion resistance. As shown in FIG. 4, the Vickers hardness of the welded portion using the material to which Nb according to the present invention is added is higher than that of the welded portion using Stellite No. 21 to which Nb is not added. As for the amount of Nb added, the amount of Nb added is 1.3 to 2.2.
The sample with 4.2-4.8% addition became harder than the sample with 5%. Therefore, it was presumed that the mechanical properties of the welded portion welded using the material according to the present invention were superior to those welded using Stellite No. 21.

【0037】以上の2種類の試験結果より、ステンレス
鋼にステライトNo21を溶接して、蒸気や高温水、あ
るいは海水程度の腐食環境で使用する場合には、特にN
bの添加は必要でない。しかし、更に厳しい腐食環境下
でステンレス鋼が使用される場合には、Nbを添加した
本発明に係るコバルト基溶接材料を使用すると有効であ
ることが判明した。以上、本発明に係る耐食性コバルト
基溶接材料を、溶接棒に実施した場合について説明した
が、本発明は、この実施例に限定されるものではなく、
厳しい腐食環境下で使用される弁等にも好適に適用でき
る。
From the above two types of test results, when welding Stellite No. 21 to stainless steel and using it in a corrosive environment such as steam, high-temperature water, or seawater, N
No addition of b is necessary. However, it has been found that when stainless steel is used in a more severe corrosive environment, it is effective to use the cobalt-based welding material according to the present invention to which Nb is added. As described above, the case where the corrosion-resistant cobalt-based welding material according to the present invention is applied to a welding rod has been described, but the present invention is not limited to this example.
It can be suitably applied to valves used in severe corrosive environments.

【0038】[0038]

【発明の効果】本発明に係る耐食性コバルト基溶接材料
を、ステライトNo21に相当する材料にNbを添加し
て請求項1に記載のような化学成分にすることにより、
Nbは、Crよりも材料中のCと結合し易いために、合
金中のCは、Nbと結合してNbC(ニオブ炭化物)を
生成し、Crはマトリックス中に残るために、合金中に
おいて、Cr炭化物の生成がなくなる。そのため、Cr
炭化物隣接部のCr欠乏層を生じることがなくなり、こ
れにより、Cr炭化物周囲の局部が腐食される粒界腐食
が防止される。
According to the present invention, the corrosion-resistant cobalt-based welding material according to the present invention is obtained by adding Nb to a material corresponding to stellite No. 21 to obtain a chemical component as described in claim 1.
Since Nb is more easily bonded to C in the material than Cr, C in the alloy combines with Nb to form NbC (niobium carbide), and Cr remains in the matrix. The generation of Cr carbide is eliminated. Therefore, Cr
The Cr deficiency layer adjacent to the carbide is not generated, thereby preventing intergranular corrosion in which a local portion around the Cr carbide is corroded.

【0039】また、このような耐食性コバルト基溶接材
料を、腐食性流体にさらされる弁やこの流体にされされ
る機器を溶接するためのティグ溶接棒、プラズマ・トラ
ンスファ・アーク溶接用粉末、被覆電弧溶接棒等に使用
すると、耐食性に優れているため、信頼性の高い装置等
が得られる。
Further, a TIG welding rod for welding a valve exposed to a corrosive fluid or a device exposed to the fluid, a powder for plasma transfer arc welding, a coated arc, When used for a welding rod or the like, a highly reliable device or the like can be obtained because of its excellent corrosion resistance.

【表1】 [Table 1]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正常なステライトNo21溶接部の炭化物の
分布状態を示す模式図である。
FIG. 1 is a schematic diagram showing a distribution state of carbides in a normal stellite No. 21 weld.

【図2】 鉄が約30%溶込んだステライトNo21の
炭化物の分布状態を示す模式図である。
FIG. 2 is a schematic diagram showing a distribution state of carbides of Stellite No. 21 in which about 30% of iron is dissolved.

【図3】 ステライトNo21ならびに本発明材を炭素
鋼に適用した場合のFe溶込み量と硬さとの関係であ
る。
FIG. 3 shows the relationship between Fe penetration and hardness when Stellite No. 21 and the material of the present invention are applied to carbon steel.

【図4】 ステライトNo21ならびに本発明材をステ
ンレス鋼に適用した場合のFe溶込み量と硬さの関係で
ある。
FIG. 4 shows the relationship between Fe penetration and hardness when Stellite No. 21 and the material of the present invention are applied to stainless steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 克己 福岡県北九州市門司区中町1番14号 岡野 バルブ製造株式会社内 (72)発明者 渡辺 辰美 福岡県北九州市門司区中町1番14号 岡野 バルブ製造株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Katsumi Hirano 1-14 Nakamachi, Moji-ku, Kitakyushu City, Fukuoka Prefecture Inside of Okano Valve Manufacturing Co., Ltd. (72) Tatsumi Watanabe 1-14 Nakamachi, Moji-ku, Kitakyushu City, Fukuoka Okano Valve Manufacturing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が重量%で、C:0.20〜
0.50、Cr:25.0〜30.0、Ni:4.0以
下、Mo:5.0〜6.0、Nb:1.6〜10.0、
残部が実質的にCoよりなる耐食性コバルト基溶接材
料。
C. 0.20 to 0.1% by weight of a chemical component.
0.50, Cr: 25.0 to 30.0, Ni: 4.0 or less, Mo: 5.0 to 6.0, Nb: 1.6 to 10.0,
Corrosion-resistant cobalt-based welding material whose balance substantially consists of Co.
【請求項2】 請求項1に記載の耐食性コバルト基溶接
材料からなるティグ溶接棒。
2. A TIG welding rod made of the corrosion-resistant cobalt-based welding material according to claim 1.
【請求項3】 請求項1に記載の耐食性コバルト基溶接
材料からなるプラズマ・トランスファ・アーク溶接用粉
末。
3. A powder for plasma transfer arc welding comprising the corrosion-resistant cobalt-based welding material according to claim 1.
【請求項4】 請求項1に記載の耐食性コバルト基溶接
材料からなる被覆電弧溶接棒。
4. A coated arc welding rod made of the corrosion-resistant cobalt-based welding material according to claim 1.
【請求項5】 請求項1に記載の耐食性コバルト基溶接
材料を適用した弁。
5. A valve to which the corrosion-resistant cobalt-based welding material according to claim 1 is applied.
JP11025059A 1999-02-02 1999-02-02 Corrosion resistant cobalt-based welding material and TIG welding rod, powder for plasma transfer arc welding, coated arc welding rod and valve made of the same Expired - Fee Related JP3131587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11025059A JP3131587B2 (en) 1999-02-02 1999-02-02 Corrosion resistant cobalt-based welding material and TIG welding rod, powder for plasma transfer arc welding, coated arc welding rod and valve made of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11025059A JP3131587B2 (en) 1999-02-02 1999-02-02 Corrosion resistant cobalt-based welding material and TIG welding rod, powder for plasma transfer arc welding, coated arc welding rod and valve made of the same

Publications (2)

Publication Number Publication Date
JP2000218392A true JP2000218392A (en) 2000-08-08
JP3131587B2 JP3131587B2 (en) 2001-02-05

Family

ID=12155366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11025059A Expired - Fee Related JP3131587B2 (en) 1999-02-02 1999-02-02 Corrosion resistant cobalt-based welding material and TIG welding rod, powder for plasma transfer arc welding, coated arc welding rod and valve made of the same

Country Status (1)

Country Link
JP (1) JP3131587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676808B1 (en) * 2014-06-25 2015-02-25 電源開発株式会社 Co-base alloy for welding, filler metal and overlay metal parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676808B1 (en) * 2014-06-25 2015-02-25 電源開発株式会社 Co-base alloy for welding, filler metal and overlay metal parts

Also Published As

Publication number Publication date
JP3131587B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
EP1732729A1 (en) Chromium-free welding consumable
EP2552639B1 (en) Nickel-based alloy, welding consumable formed from the said alloy and use of the consumable in a welding process.
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
EP0867256A1 (en) Welding material for stainless steels
JPH028840B2 (en)
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
US3510294A (en) Corrosion resistant nickel-base alloy
JP4699161B2 (en) Austenitic stainless steel welding wire with excellent low temperature toughness and seawater corrosion resistance
JP2005118875A (en) Welding wire of high ni-based alloy
JP3854530B2 (en) Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion
KR102197134B1 (en) Ni based alloy flux cored wire
JPS58202993A (en) Welding wire rod of stainless steel
JP3131587B2 (en) Corrosion resistant cobalt-based welding material and TIG welding rod, powder for plasma transfer arc welding, coated arc welding rod and valve made of the same
JP2009504921A (en) Composite material
JP3854554B2 (en) Submerged arc welding method for austenitic stainless steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
JPH07214374A (en) High ni alloy welding wire
JP3165902B2 (en) High Cr steel welding method
JPS60165363A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
JP3466303B2 (en) Nickel base alloy for overlay welding of reactor pressure vessel and reactor pressure vessel using the same
JP7485594B2 (en) Flux-cored wire and gas-shielded arc welding method
JP7016283B2 (en) High temperature corrosion resistant heat resistant alloy, welding powder and piping with overlay welding layer on the outer peripheral surface
JP2664242B2 (en) Light water reactor piping valve
JP7011987B2 (en) Ni-based weld metal and welded structure
JP2000326089A (en) WELDING FILLER METAL OF Ni-Cr-W BASED ALLOY

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees