JP2000214139A - Method for evaluating physical properties of elastoplastic object by percussion sound - Google Patents

Method for evaluating physical properties of elastoplastic object by percussion sound

Info

Publication number
JP2000214139A
JP2000214139A JP11019062A JP1906299A JP2000214139A JP 2000214139 A JP2000214139 A JP 2000214139A JP 11019062 A JP11019062 A JP 11019062A JP 1906299 A JP1906299 A JP 1906299A JP 2000214139 A JP2000214139 A JP 2000214139A
Authority
JP
Japan
Prior art keywords
waveform
sound pressure
elastoplastic
specimen
percussion sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11019062A
Other languages
Japanese (ja)
Other versions
JP3023508B1 (en
Inventor
Mitsuhiro Inamori
光洋 稲森
Teruo Kuranaga
輝雄 倉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUDO KAIHATSU CONSULTANT KK
Original Assignee
KOKUDO KAIHATSU CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUDO KAIHATSU CONSULTANT KK filed Critical KOKUDO KAIHATSU CONSULTANT KK
Priority to JP11019062A priority Critical patent/JP3023508B1/en
Application granted granted Critical
Publication of JP3023508B1 publication Critical patent/JP3023508B1/en
Publication of JP2000214139A publication Critical patent/JP2000214139A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a physical property evaluating method by a percussion sound capable of quantitatively evaluating the properties or conditions of an elastoplastic object by striking the elastoplastic object by a hammer to catch the percussion sound waveform thereof and especially analyzing the vibration characteristics of the initial component thereof. SOLUTION: A steel ball 2 is allowed to fall on a sample S of an elastoplastic object and a percussion sound waveform of the sample is caught by a microphone 3. This waveform is amplified by an amplifier 4 to be recorded on a data recorder 5 and the vibration characteristics thereof are analyzed by a waveform analyzer 6 and the properties or conditions of the elastoplastic object are quantitatively evaluated and displayed corresponding to the analyzed data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、弾塑性体の物性評
価方法に関し、とくに弾塑性体の供試体をハンマー等で
打叩して生じた打診音の波形を分析することにより、そ
の物性を評価する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating physical properties of an elasto-plastic body, and more particularly, to analyzing the physical properties of the elasto-plastic body by analyzing a percussion sound waveform generated by hitting the elasto-plastic body with a hammer or the like. It is about the method of evaluation.

【0002】[0002]

【従来の技術】従来技術の一例として、岩盤を対象に地
質調査を実施したり、なんらかの工事を実施しようとす
る場合には、岩盤の性質や条件を合理的に評価する必要
がある。そのため、複雑な様相を呈する岩盤の性質や条
件を簡潔な形で表現する手段として、岩盤分類が行われ
る。この岩盤分類に良く用いられる分類要素には、一軸
圧縮強度、割れ目間隔、弾性波速度、RQD、スレーキ
ング特性などがある。また、簡易な指標を用いた分類要
素の一つとして、ハンマー打診による岩石強さの判定が
ある。この判定はすべての岩盤調査の段階で行われ、定
性的な表現で岩盤分類に用いられている。
2. Description of the Related Art As an example of the prior art, when a geological survey is to be carried out on a bedrock or when some kind of construction is to be carried out, it is necessary to rationally evaluate the properties and conditions of the bedrock. Therefore, rock mass classification is performed as a means for expressing the properties and conditions of a rock mass exhibiting a complicated aspect in a simple form. Classification factors often used in this rock classification include uniaxial compressive strength, crack spacing, elastic wave velocity, RQD, and slaking characteristics. One of the classification factors using a simple index is the determination of rock strength by hammering. This judgment is made at every stage of rock survey and is used in rock classification in qualitative terms.

【0003】[0003]

【発明が解決しようとする課題】ハンマー打診による岩
石強さの判定は、現場的に簡易な方法であるので、定性
的な分類要素として、利用価値が極めて高いというメリ
ットがある。しかしながら、この判定結果は、定性的な
表現に止まり定量的ではなく、判定者の経験と勘に依存
し、個人差による誤差が生じるという問題があった。本
発明は、上記のような実状に鑑みてなされたものであ
り、ハンマーの打診音を音圧波形として捉え、その振動
特性を分析することにより、岩盤の性質や条件を定量的
に評価できることを見い出し、本発明をするに至った。
すなわち、本発明は、評価の際の個人差を無くし定量的
な判定から得られる打診音による弾塑性体の物性評価方
法を提供することを目的とするものである。
Since the determination of rock strength by hammering is a simple method on site, there is an advantage that the utility value is extremely high as a qualitative classification element. However, this determination result is not limited to a qualitative expression and is not quantitative, but has a problem that an error due to individual differences occurs depending on the experience and intuition of the determiner. The present invention has been made in view of the above-described situation, and it has been found that the characteristics and conditions of the rock can be quantitatively evaluated by capturing the percussion sound of a hammer as a sound pressure waveform and analyzing its vibration characteristics. And found the present invention.
That is, an object of the present invention is to provide a method for evaluating physical properties of an elasto-plastic body using a percussion sound obtained from quantitative judgment by eliminating individual differences at the time of evaluation.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、弾塑性体の供試体をハンマー等で打診
し、この打診音を波形信号に変換し、この波形の振動特
性を分析することにより弾塑性体の性質を評価すること
を特徴とする。また、打診音の波形信号のうち初期成分
の振動特性を分析することにより、弾塑性体の材質特性
を評価することを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention percusses an elasto-plastic specimen with a hammer or the like, converts this percussion sound into a waveform signal, and examines the vibration characteristics of this waveform. It is characterized in that the properties of the elasto-plastic body are evaluated by analysis. Further, the characteristic of the material of the elasto-plastic body is evaluated by analyzing the vibration characteristic of the initial component in the waveform signal of the percussion sound.

【0005】[0005]

【発明の実施の形態】モルタルブロックのような弾塑性
体をハンマーで叩けば、打診音が反射的に生じる。この
打診音の主な発生機構は、ハンマーと被打診物との衝突
時の急激な弾塑性変形による音響放射と、その後のハン
マーと被打診物に各々生じる自由振動や内部共振による
音響放射とに分けられる。前者の成分は、被打診物の材
質的特性を主に反映し、後者の成分は、ハンマーや被打
診物の形状寸法及び境界条件等の物理的特性に強く支配
されていると思われる。そこで本発明者らは鋭意研究の
結果、打診音の波形のうち、とくに前者の成分に注目し
て、初期成分の振動特性の分析を行なった。その分析結
果から、岩盤分類の定量的な判定指標の一つとして、打
診音による岩盤評価方法を提案する。
BEST MODE FOR CARRYING OUT THE INVENTION When an elasto-plastic material such as a mortar block is hit with a hammer, a percussion sound is generated reflexively. The main generation mechanism of this percussion sound is acoustic radiation due to sudden elasto-plastic deformation at the time of collision between the hammer and the object to be perceived, and acoustic radiation due to free vibration and internal resonance that respectively occur in the hammer and the object to be perceived. Divided. The former component mainly reflects the material properties of the object to be perceived, and the latter component seems to be strongly governed by physical characteristics such as the shape and size and boundary conditions of the hammer and the object to be perceived. Accordingly, the present inventors have conducted intensive studies and analyzed the vibration characteristics of the initial component, focusing on the former component in the waveform of the percussion sound. From the analysis results, we propose a rock evaluation method using percussion sound as one of the quantitative judgment indexes for rock classification.

【0006】本発明で言う弾塑性体の供試体には、岩
盤、岩石、コンクリートに加えて、その他の自然鉱物又
は人工鉱物が含まれる。例えば、供試体の性質や条件と
しては、例えば、弾性係数、一軸圧縮強度、割れ目間
隔、単位体積重量などがあげられる。
[0006] The specimen of the elasto-plastic material referred to in the present invention includes other natural minerals or artificial minerals in addition to bedrock, rock and concrete. For example, the properties and conditions of the specimen include, for example, an elastic modulus, a uniaxial compressive strength, a crack interval, a unit volume weight, and the like.

【0007】実際の測定手順は、図11に示すように、
まず岩石等の供試体Sをハンマー2で打診し、発生した
打診音をマイクロフォン3で電気的な波形信号として捕
らえる。次いで、この波形信号をアンプ4等で増幅した
後、これをデータ信号としてデータ記録器5に集録す
る。集録されたデータ信号の参考例として、新第三紀鮮
新世の砂岩CH級〜CM級、D級の波形を、それぞれ図
12(a)、(b)に示す。このような波形を対象にし
て、その振動特性を波形分析器6で分析することによ
り、供試体Sの性質や条件の評価が可能になり、その結
果は出力表示器7より定量的なグラフ及び数値として出
力される。
The actual measurement procedure is as shown in FIG.
First, a specimen S such as a rock is percussed by the hammer 2, and the percussion sound generated is captured by the microphone 3 as an electric waveform signal. Next, the waveform signal is amplified by the amplifier 4 or the like, and then the data signal is recorded in the data recorder 5 as a data signal. As reference examples of the collected data signals, waveforms of the Neogene Pliocene sandstone CH class to CM class and D class are shown in FIGS. 12A and 12B, respectively. By analyzing the vibration characteristics of such a waveform with the waveform analyzer 6, it is possible to evaluate the properties and conditions of the specimen S. Output as a number.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1に示すように、供試体Sとして人工的に岩石
を製作してマット1の上に載置し、供試体Sの表面にハ
ンマー手段として鋼球2を落下させ、マイクロフォン3
で打診音波形を捕らえ、アンプ4で増幅した後にデータ
記録器5に集録し、その振動特性を波形分析器6で分析
することで、打診音波形と供試体Sの基本的性質の関係
を、出力表示器7により表示するようにしたものであ
る。尚、8は落下点近くの供試体S上に設置され、上下
方向加速度を測定する加速度計である。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a rock is artificially manufactured as a specimen S, placed on a mat 1, and a steel ball 2 is dropped on the surface of the specimen S as a hammer means, and a microphone 3
The percussion sound waveform is captured by the amplifier 4, amplified by the amplifier 4, collected in the data recorder 5, and its vibration characteristics are analyzed by the waveform analyzer 6. This is displayed on the output display 7. Reference numeral 8 denotes an accelerometer installed on the specimen S near the drop point to measure the vertical acceleration.

【0009】図1では、サイズ300mm×300mm
×200mmの供試体Sを打診し、打診音波形、すなわ
ち、音圧の時刻歴変化と、供試体表面での上下方向加速
度の時刻歴とを同時に測定した。打診は、供試体Sの中
央部付近に鉛直上方から、大きさの異なる4種類の鋼球
2を落下させて行なった。それぞれの落下高さhは、供
試体Sに与えるエネルギーが一定になるように設定し
た。供試体Sとしては、セメントモルタルと、セメント
ベントナイトモルタルの合計14種類(M1〜M7、B
1〜B7)を製作した。各供試体Sの成分配合を表1に
示す。また、前記各供試体Sと同じ成分配合の円柱状供
試体を製作した。この円柱状供試体から得られた物理量
と力学的特性を、表2に示す。さらに、前記4種類の鋼
球2の大きさ等を表3に示す。
In FIG. 1, the size is 300 mm × 300 mm.
A sample S of × 200 mm was percussed, and the percussion sound waveform, that is, the change in the time history of the sound pressure and the time history of the vertical acceleration on the surface of the test sample were measured simultaneously. The percussion was performed by dropping four types of steel balls 2 of different sizes from above vertically near the center of the specimen S. Each drop height h was set such that the energy given to the specimen S was constant. As the specimen S, a total of 14 types of cement mortar and cement bentonite mortar (M1 to M7, B
1 to B7). Table 1 shows the component composition of each specimen S. Further, a columnar specimen having the same composition as that of each specimen S was produced. Table 2 shows the physical quantities and mechanical properties obtained from the cylindrical specimen. Table 3 shows the sizes and the like of the four types of steel balls 2.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】この実験では、上記14種類の供試体につ
いて、4種類の鋼球2を各10回ずつ合計560(14
×4×10)回落下させて打診した。これらのうち供試
体(M7、B4)の2例を、それぞれ図2(a)〜
(e)、図3(a)〜(e)に示す。図2中及び図3
中、(a)は音圧原波形図、(c)はその周波数解析と
してのパワースペクトル図である。また、同図中の
(b)は供試体表面での上下方向加速度波形図、(d)
はそのパワースペクトル図である。これらの図から
(c)と(d)双方のパワースペクトルの卓越振動数は
ほぼ一致していることが判る。
In this experiment, four types of steel balls 2 were used 10 times each for the above 14 types of test specimens, for a total of 560 (14
(× 4 × 10) It was dropped and percussed. Two examples of the specimens (M7, B4) are shown in FIGS.
3 (e) and FIGS. 3 (a) to 3 (e). 2 and 3
In the figure, (a) is an original sound pressure waveform diagram, and (c) is a power spectrum diagram as a frequency analysis thereof. Also, (b) in the figure is a vertical acceleration waveform diagram on the surface of the test piece, (d)
Is a power spectrum diagram. From these figures, it can be seen that the dominant frequencies of the power spectra of both (c) and (d) are almost the same.

【0014】被打診物の材質特性は、主に音圧原波形の
初期の部分に反映されると考えられ、同図中の(e)示
すにように、初期の音圧原波形の中でも、とくに立ち上
がりの勾配に着目した。この立ち上がりの勾配は、音圧
の時間的変化に相当するもので、空気の音速度約340
m/sと鋼球2の音速度約5000m/sの違いから、
音圧原波形の初期の部分には、打診直後に鋼球2中に最
初に伝播してくる音波、すなわち、「被打診物の材質特
性を含んだ音圧」が現れてくると考えられる。被打診物
固有の材質特性を特異的に示唆するシグナルとして、音
圧原波形の初期部分の立ち上がりの勾配を、以下、「応
答音圧パルス勾配」という。
It is considered that the material characteristics of the object to be consulted are mainly reflected in the initial part of the original sound pressure waveform, and as shown in FIG. We paid particular attention to the rising slope. This rising gradient corresponds to the temporal change of sound pressure, and the sound speed of air is about 340.
m / s and the difference between the sound speed of the steel ball 2 of about 5000 m / s,
It is considered that a sound wave initially propagating into the steel ball 2 immediately after the percussion, that is, “sound pressure including material properties of the object to be perceived” appears in an initial portion of the original sound pressure waveform. The rising gradient of the initial part of the original sound pressure waveform as a signal that specifically indicates the material characteristics unique to the object to be consulted is hereinafter referred to as “response sound pressure pulse gradient”.

【0015】図1に示した鋼球を用いた実験から得られ
た140個の音圧波形について、周波数解析を行って、
パワーの大きいものから順番にpawer1、pawe
r2、…と名付け、4個の卓越振動数をとった。この卓
越振動数と応答音圧パルス勾配との関係を図4に示す。
また、この中で最もパワーの大きなpawer1だけ取
り出したものを図5に示す。これらの図より明らかなよ
うに、打診音の卓越振動数と応答音圧パルス勾配との間
には、密接な関係があると言える。したがって、応答音
圧パルス勾配は、打診音の振動数特性を表現する指標の
一つになり得ると考えられる。
The frequency analysis was performed on 140 sound pressure waveforms obtained from the experiment using the steel balls shown in FIG.
Power1 and power in order of power
r2, ..., four dominant frequencies were taken. FIG. 4 shows the relationship between the dominant frequency and the response sound pressure pulse gradient.
FIG. 5 shows only the power1 having the highest power among them. As apparent from these figures, it can be said that there is a close relationship between the dominant frequency of the percussion sound and the response sound pressure pulse gradient. Therefore, it is considered that the response sound pressure pulse gradient can be one of the indexes expressing the frequency characteristics of the percussion sound.

【0016】一般に供試体の物性値としては、単位体積
重量、縦波伝播速度、静ポアソン比、一軸圧縮強度、弾
性係数、動弾性係数等があるが、落下エネルギー一定条
件下での供試体の各物性値と応答音圧パルス勾配との相
関関係を、図6、図7、図8のグラフに示す。同グラフ
では、横軸に応答音圧パルス勾配をとり、縦軸に供試体
の各物性値をとっている。尚、グラフ中Rは相関係数を
表す。ここに、静ポアソン比は一軸圧縮強度の1/3の
応力状態における値であり、動弾性係数は単位体積重
量、縦波伝播速度及び静ポアソン比の値を用いて計算し
た。これらのグラフから明らかなように、供試体の各物
性値と応答音圧パルス勾配との相関関係に程度の差が若
干あるものの、総じて応答音圧パルス勾配は、供試体の
物性値を評価する指標の一つになり得ると考えられる。
In general, the physical properties of a specimen include unit weight, longitudinal wave propagation velocity, static Poisson's ratio, uniaxial compressive strength, elastic modulus, kinetic elastic modulus, and the like. The correlation between each physical property value and the response sound pressure pulse gradient is shown in the graphs of FIG. 6, FIG. 7, and FIG. In the graph, the horizontal axis represents the response sound pressure pulse gradient, and the vertical axis represents each physical property value of the specimen. In the graph, R represents a correlation coefficient. Here, the static Poisson's ratio is a value in a stress state of 1/3 of the uniaxial compressive strength, and the dynamic elastic modulus was calculated using the values of unit weight, longitudinal wave propagation velocity and static Poisson's ratio. As is clear from these graphs, although there is a slight difference in the correlation between each physical property value of the test sample and the response sound pressure pulse gradient, the response sound pressure pulse gradient generally evaluates the physical property value of the test sample. It is considered to be one of the indicators.

【0017】上記の実験結果は、供試体をマットに載せ
た状態で打診したものである。そこで、次に供試体をマ
ット上ではなく砂土槽の中に埋め込んで、境界条件を変
えた打診音実験を試みた。ここでは、供試体(B4)を
一例として、これをマットに載置した場合と、砂土槽の
中に埋め込んだ場合とで比較し、両方の実験結果から得
られた音圧原波形図、パワースペクトル図、音圧原波形
の初期の部分の拡大図を、それぞれ図9中及び図10中
の(a)、(b)、(c)に示す。
The above experimental results were obtained by percussion with the specimen placed on a mat. Then, the specimen was buried in a sandy soil tank instead of on a mat, and a percussion sound experiment with different boundary conditions was attempted. Here, taking the specimen (B4) as an example, a comparison is made between a case where the specimen is placed on a mat and a case where the specimen is embedded in a sandstone tank, and a sound pressure original waveform diagram obtained from both experimental results, Power spectrum diagrams and enlarged views of the initial part of the original sound pressure waveform are shown in (a), (b), and (c) of FIG. 9 and FIG. 10, respectively.

【0018】これらの図から明らかなように、音圧原波
形の初期部分は似ているものの、それ以降は境界条件に
よって大きく変わることが判る。また、音圧原波形の振
動数特性は、卓越振動数のパワーやピークの鮮明度に差
が生じることが判る。その一方で、応答音圧パルス勾配
は変化が少なく、ほぼ一定であるといえる。
As apparent from these figures, although the initial portions of the original sound pressure waveforms are similar, the subsequent portions greatly change depending on the boundary conditions. Further, it can be seen that the frequency characteristic of the original sound pressure waveform has a difference in the power of the dominant frequency and the sharpness of the peak. On the other hand, it can be said that the response sound pressure pulse gradient has little change and is almost constant.

【0019】以上のように、岩盤分類の指標の一つであ
るハンマー打診音について、音圧原波形の立ち上がり部
分を分析することで、得られた応答音圧パルス勾配を一
つの指標として、岩石や岩盤の力学的性質や物性値を定
量的に評価することができ、極力個人差のない信頼度の
高い客観的判定データが得られる。
As described above, by analyzing the rising portion of the original sound pressure waveform of the hammer percussion sound, which is one of the indices of rock classification, the obtained response sound pressure pulse gradient is used as one index, It is possible to quantitatively evaluate the mechanical properties and physical properties of rocks and rocks, and obtain highly reliable objective judgment data with no individual differences as much as possible.

【0020】尚、本実施例では供試体として、セメント
モルタル又はセメントベントナイトモルタルを配合した
ものを用いて、これを鋼球で打診したが、これと異なる
成分配合の岩石等をハンマーで打診しても、上記と同様
の実験結果が得られ、岩石等の性質や物性値を正確に定
量評価できた。
In this embodiment, as the specimen, a mixture of cement mortar or cement bentonite mortar was used, and this was percussed with a steel ball. Also, the same experimental results as above were obtained, and the properties and physical properties of rocks and the like could be accurately and quantitatively evaluated.

【0021】[0021]

【発明の効果】本発明によれば、岩盤を分類する際、岩
盤表面をハンマーで打診し、この打診音による波形の振
動特性を分析するようにしたので、岩盤の性質や条件を
定量的に評価することができ、従来のように、判定結果
に個人差が生じるおそれがないという優れた効果があ
る。とくに、打診音の波形のうち初期成分の振動特性を
分析して応答音圧パルス勾配を得て、これを判定指標と
することにより、境界条件に左右されずに、岩盤の力学
的性質や物性値の定量的評価を的確に行なうことができ
る。加えて、簡単な手順で岩盤を評価できるので、地質
調査や土木工事等を行なう際に広範に実施でき、現場に
熟練の判定者がいなくても、岩盤の基本的材質特性を簡
単に客観評価できる。
According to the present invention, when classifying rock, the rock surface is percussed with a hammer and the vibration characteristics of the waveform due to the percussion sound are analyzed, so that the properties and conditions of the rock can be quantitatively determined. It is possible to evaluate, and there is an excellent effect that there is no possibility that there is an individual difference in the determination result as in the related art. In particular, by analyzing the vibration characteristics of the initial component of the percussion sound waveform and obtaining the response sound pressure pulse gradient, and using this as a judgment index, the mechanical properties and physical properties of the rock mass are not affected by the boundary conditions. Quantitative evaluation of the value can be performed accurately. In addition, the rock can be evaluated by a simple procedure, so that it can be widely used when conducting geological surveys and civil engineering work, etc., and even if there is no skilled judge at the site, it is easy to objectively evaluate the basic material properties of the rock it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る測定装置を示す概念構成図であ
る。
FIG. 1 is a conceptual configuration diagram showing a measuring device according to the present invention.

【図2】本実施例に係る供試体M7の波形図を示し、
(a)は音圧波形図、(c)はそのパワースペクトル
図、(b)は供試体表面での上下方向加速度波形図、
(d)はそのパワースペクトル図、(e)は音圧原波形
の初期部分の拡大図である。
FIG. 2 shows a waveform diagram of a specimen M7 according to the present embodiment,
(A) is a sound pressure waveform diagram, (c) is a power spectrum diagram, (b) is a vertical acceleration waveform diagram on the surface of the test piece,
(D) is the power spectrum diagram, and (e) is an enlarged view of the initial part of the original sound pressure waveform.

【図3】本実施例に係る供試体B4の波形図を示し、
(a)は音圧原波形図、(c)はそのパワースペクトル
図、(b)は供試体表面での上下方向加速度波形図、
(d)はそのパワースペクトル図、(e)は音圧原波形
の初期部分の拡大図である。
FIG. 3 shows a waveform diagram of a specimen B4 according to the present embodiment,
(A) is an original sound pressure waveform diagram, (c) is a power spectrum diagram, (b) is a vertical acceleration waveform diagram on the surface of the test piece,
(D) is the power spectrum diagram, and (e) is an enlarged view of the initial part of the original sound pressure waveform.

【図4】本実施例に係る音圧波形の卓越振数と応答音圧
パルス勾配との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a dominant frequency of a sound pressure waveform and a response sound pressure pulse gradient according to the present embodiment.

【図5】本実施例に係る音圧波形の最大パワー卓越振動
数と応答音圧パルス勾配との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a maximum power dominant frequency of a sound pressure waveform and a response sound pressure pulse gradient according to the present embodiment.

【図6】本実施例に係る供試体の各物性値と応答音圧パ
ルス勾配の相関関係を示すグラフであり、(a)は同勾
配と単位体積重量の関係図、(b)は同勾配と縦波伝播
速度の関係図である。
6A and 6B are graphs showing a correlation between each physical property value and a response sound pressure pulse gradient of a specimen according to the present embodiment, wherein FIG. 6A is a graph showing the relationship between the gradient and the unit volume weight, and FIG. FIG. 6 is a relationship diagram between the longitudinal wave propagation velocity and the longitudinal wave velocity.

【図7】本実施例に係る供試体の各物性値と応答音圧パ
ルス勾配の相関関係を示すグラフであり、(c)は同勾
配と静ポアソン比の関係図、(d)は同勾配と一軸圧縮
強度の関係図である。
FIGS. 7A and 7B are graphs showing the correlation between each physical property value and the response sound pressure pulse gradient of the test piece according to the present embodiment, wherein FIG. 7C is a graph showing the relationship between the gradient and the static Poisson's ratio, and FIG. FIG. 4 is a diagram showing the relationship between and uniaxial compressive strength.

【図8】本実施例に係る供試体の各物性値と応答音圧パ
ルス勾配の相関関係を示すグラフであり、(e)は同勾
配と弾性係数の関係図、(f)は同勾配と計算で求めた
動弾性係数の関係図である。
FIG. 8 is a graph showing the correlation between each physical property value and the response sound pressure pulse gradient of the specimen according to the present embodiment, wherein (e) is a graph showing the relationship between the gradient and the elastic modulus, and (f) is a graph showing the relationship between the gradient and the elastic modulus. It is a relation diagram of the dynamic elastic coefficient calculated | required.

【図9】マットに載せた供試体B4の波形図を示し、
(a)は音圧原波形図、(b)は音圧パワースペクトル
図、(c)は音圧原波形の初期部分の拡大図である。
FIG. 9 shows a waveform diagram of a specimen B4 placed on a mat,
(A) is an original sound pressure waveform diagram, (b) is a sound pressure power spectrum diagram, and (c) is an enlarged view of an initial portion of the original sound pressure waveform.

【図10】砂土槽に埋めた供試体B4の波形図を示し、
(a)は音圧原波形図、(b)は音圧パワースペクトル
図、(c)は音圧原波形の初期部分の拡大図である。
FIG. 10 shows a waveform diagram of a specimen B4 embedded in a sand tank,
(A) is an original sound pressure waveform diagram, (b) is a sound pressure power spectrum diagram, and (c) is an enlarged view of an initial portion of the original sound pressure waveform.

【図11】本発明に係る測定評価装置を概念的に説明す
る構成図である。
FIG. 11 is a configuration diagram conceptually illustrating a measurement evaluation device according to the present invention.

【図12】データ記録器に集録したデータ波形参考図を
示し、(a)は新第三紀鮮新世の砂岩CH級〜CM級の
打診音波形図、(b)は砂岩D級の打診音波形図であ
る。
FIGS. 12A and 12B show data waveform reference diagrams collected in a data recorder, wherein FIG. 12A is a percussion sound wave diagram of a Neogene Pliocene sandstone CH class to CM class, and FIG. 12B is a percussion sound wave of sandstone D class. FIG.

【符号の説明】[Explanation of symbols]

1 マット 2 鋼球(ハンマー) 3 マイクロフォン 4 アンプ 5 データ記録器 6 波形分析器 7 出力表示器 8 加速度計 S 供試体 1 Mat 2 Steel ball (hammer) 3 Microphone 4 Amplifier 5 Data recorder 6 Waveform analyzer 7 Output display 8 Accelerometer S Specimen

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月29日(1999.10.
29)
[Submission date] October 29, 1999 (1999.10.
29)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、弾塑性体の供試体をハンマー等で打診
し、この打診音を波形信号に変換し、この波形信号のう
ち初期成分の振動特性を分析して応答音圧パルス勾配を
得て、この応答音圧パルス勾配を判定指標とすることに
より弾塑性体の物性を評価することを特徴とする。
In order to achieve the above-mentioned object, the present invention percusses an elasto-plastic specimen with a hammer or the like, converts the percussion sound into a waveform signal, and converts the waveform signal into a waveform signal.
The response sound pressure pulse gradient is analyzed by analyzing the vibration characteristics of the initial components.
Then, this response sound pressure pulse gradient is used as a judgment index.
It is characterized by evaluating the physical properties of the elasto-plastic body more .

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】[0021]

【発明の効果】本発明によれば、弾塑性体の物性評価に
おいて、打診音の波形のうち初期成分の振動特性を分析
して、固有の材質特性を特異的に示唆する応答音圧パル
ス勾配を得て、これを判定指標とするようにしたので、
判定結果に個人差が生じるおそれないことはもとより、
境界条件に左右されずに、岩盤の力学的性質や物性値
例えば単位体積重量、縦波伝播速度、静ポアソン比、一
軸圧縮強度、弾性係数、動弾性係数等の定量的評価を的
確に行うことができる。加えて、簡単な手順で岩盤を評
価できるので、地質調査や土木工事等を行う際に広範に
実施でき、現場に熟練の判定者がいなくても、岩盤の基
本的材質特性を簡単に客観評価できる。
According to the present invention, it is possible to evaluate physical properties of an elastoplastic body.
Analysis of the initial component vibration characteristics of the percussion sound waveform
Response sound pressure pulse that specifically suggests unique material properties
Since the slope was obtained and used as a judgment index ,
In addition to the fact that there is no risk of individual differences in the judgment result ,
Regardless of the boundary conditions, the mechanical properties and physical properties of the rock mass ,
For example, unit weight, longitudinal wave velocity, static Poisson's ratio,
Quantitative evaluation of axial compression strength, elastic modulus, dynamic elastic modulus, etc. can be accurately performed. In addition, the rock can be evaluated in a simple procedure, so it can be extensively performed when conducting geological surveys and civil engineering work, and the objective evaluation of the basic material properties of the rock can be easily performed without a skilled judge at the site. it can.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G047 AA10 BA04 BC04 BC20 CA03 CA07 EA09 EA10 EA12 GA18 GG12 2G061 BA20 CA06 EA06 EB08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G047 AA10 BA04 BC04 BC20 CA03 CA07 EA09 EA10 EA12 GA18 GG12 2G061 BA20 CA06 EA06 EB08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弾塑性体の供試体をハンマー等で打診
し、この打診音を波形信号に変換し、この波形の振動特
性を分析することにより弾塑性体の性質を評価すること
を特徴とする打診音による弾塑性体の物性評価方法。
The present invention is characterized in that a sample of an elasto-plastic body is percussed with a hammer or the like, the percussion sound is converted into a waveform signal, and the characteristics of the elasto-plastic body are evaluated by analyzing the vibration characteristics of the waveform. Method for evaluating physical properties of elasto-plastic body using percussive sound.
【請求項2】 打診音の波形信号のうち初期成分の振動
特性を分析することにより、弾塑性体の材質特性を評価
することを特徴とする請求項1記載の打診音による弾塑
性体の物性評価方法。
2. The physical properties of an elasto-plastic body according to the percussion sound according to claim 1, wherein the material properties of the elasto-plastic body are evaluated by analyzing the vibration characteristics of the initial component of the percussion sound waveform signal. Evaluation method.
JP11019062A 1999-01-27 1999-01-27 Evaluation method of physical properties of elasto-plastic body by percussion sound Expired - Lifetime JP3023508B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11019062A JP3023508B1 (en) 1999-01-27 1999-01-27 Evaluation method of physical properties of elasto-plastic body by percussion sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11019062A JP3023508B1 (en) 1999-01-27 1999-01-27 Evaluation method of physical properties of elasto-plastic body by percussion sound

Publications (2)

Publication Number Publication Date
JP3023508B1 JP3023508B1 (en) 2000-03-21
JP2000214139A true JP2000214139A (en) 2000-08-04

Family

ID=11988957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11019062A Expired - Lifetime JP3023508B1 (en) 1999-01-27 1999-01-27 Evaluation method of physical properties of elasto-plastic body by percussion sound

Country Status (1)

Country Link
JP (1) JP3023508B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801281B1 (en) * 2007-07-30 2008-02-04 울산대학교 산학협력단 Nondestructive inspection device for detecting defect of multilayer piezo-actuator
KR100809638B1 (en) 2006-04-26 2008-03-05 울산대학교 산학협력단 Nondestructive inspection device for detecting defect of multilayer piezo-actuator
JP2011257261A (en) * 2010-06-09 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for detecting damage of columnar structure, and program
JP2016008879A (en) * 2014-06-24 2016-01-18 鹿島建設株式会社 Evaluation method of underwater concrete or underwater base rock
JP7489637B2 (en) 2020-05-20 2024-05-24 株式会社Kjtd Non-destructive testing equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982792B2 (en) * 2001-08-21 2007-09-26 大成建設株式会社 Method and apparatus for evaluating soundness of concrete
JP2003329655A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Damage inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809638B1 (en) 2006-04-26 2008-03-05 울산대학교 산학협력단 Nondestructive inspection device for detecting defect of multilayer piezo-actuator
KR100801281B1 (en) * 2007-07-30 2008-02-04 울산대학교 산학협력단 Nondestructive inspection device for detecting defect of multilayer piezo-actuator
JP2011257261A (en) * 2010-06-09 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for detecting damage of columnar structure, and program
JP2016008879A (en) * 2014-06-24 2016-01-18 鹿島建設株式会社 Evaluation method of underwater concrete or underwater base rock
JP7489637B2 (en) 2020-05-20 2024-05-24 株式会社Kjtd Non-destructive testing equipment

Also Published As

Publication number Publication date
JP3023508B1 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US11293845B2 (en) Non-destructive anchor bolt pull out load capacity testing system
CA3007067C (en) Method and apparatus for non-destructive measurement of modulus of elasticity and/or the compressive strength of masonry samples
JP3340702B2 (en) A method for measuring deterioration of a concrete structure and a measuring device therefor.
Lo et al. Non-destructive test for pile beneath bridge in the time, frequency, and time-frequency domains using transient loading
JP2004150946A (en) Nondestructive measuring instrument and method for concrete rigidity by ball hammering
CN108344806A (en) A method of Rock Damage degree under blast action is calculated based on nuclear magnetic resonance
Ni et al. Low-strain integrity testing of drilled piles with high slenderness ratio
KR101787512B1 (en) Dynamic cone penetrometer system for measurement of ground shear wave velocity and method of test using the same
Montiel-Zafra et al. Monitoring the internal quality of ornamental stone using impact-echo testing
JP3023508B1 (en) Evaluation method of physical properties of elasto-plastic body by percussion sound
JP2012168022A (en) Method for diagnosing quality of concrete-based structure
Sas et al. Laboratory measurement of shear stiffness in resonant column apparatus
JP3491263B2 (en) Measurement method of deformation characteristics of ground material by contact time
JP2004053586A (en) Evaluation method for ground characteristic
JPH11352043A (en) Method for measuring degree of damage to base rock
Finno et al. Guided wave interpretation of surface reflection techniques for deep foundations
JP3510835B2 (en) Deterioration measurement device for concrete structures.
Dahlen et al. NDT&E International
US20030145659A1 (en) Remote structural material evaluation apparatus
Sawangsuriya et al. Wave-based techniques for evaluating elastic modulus and Poisson’s ratio of laboratory compacted lateritic soils
Si et al. Performance evaluation of granite rock based on the quantitative piezoceramic sensing technique
JP2003149215A (en) Soil strength measuring method and measuring apparatus thereof
Yan-guo et al. Experimental study of seismic cyclic loading effects on small strain shear modulus of saturated sands
Chen et al. Technique standardization of bender elements and international parallel test
JP2001296214A (en) Deterioration measuring device for concrete structure, and its measuring method