JPH11352043A - Method for measuring degree of damage to base rock - Google Patents

Method for measuring degree of damage to base rock

Info

Publication number
JPH11352043A
JPH11352043A JP10163341A JP16334198A JPH11352043A JP H11352043 A JPH11352043 A JP H11352043A JP 10163341 A JP10163341 A JP 10163341A JP 16334198 A JP16334198 A JP 16334198A JP H11352043 A JPH11352043 A JP H11352043A
Authority
JP
Japan
Prior art keywords
damage
load
rock
time
core sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10163341A
Other languages
Japanese (ja)
Other versions
JP2899700B1 (en
Inventor
Masahiro Seto
政宏 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10163341A priority Critical patent/JP2899700B1/en
Application granted granted Critical
Publication of JP2899700B1 publication Critical patent/JP2899700B1/en
Publication of JPH11352043A publication Critical patent/JPH11352043A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of speedily measuring the degree of damage to base rock by a simple device and operation without the need for a large number of devices, complicated facilities, a large amount of time, effort, or cost for installing them. SOLUTION: Acoustic emission which occurs at the time, when a core sample is collected from base rock and is uniaxially compressed is measured. Then a damage parameter x is obtained according to the equation χ=σAE×Sc/P<2> (where Sc is strength at sound state, σAE is a load when the occurrence of AE suddenly starts to increase at measurement, and P is a maximum load at measurement) to measure the degree of damage to the base rock in this method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アコースティック
・エミッション(以下AEと略す)を利用して、岩盤の
損傷度を簡単に測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily measuring the degree of damage to rock using acoustic emission (hereinafter abbreviated as AE).

【0002】[0002]

【従来の技術】AEは、物理的な荷重を印加された材料
が変形したり、内部で亀裂が発生する際、それまで蓄え
られていた歪みエネルギーが解放されて音として伝播し
ていく現象である。ところで、岩盤を機械掘削したり発
破で破壊すると、その掘削や発破により破壊された領域
の周囲も損傷を受けるが、この損傷を定量的に知ること
は、その後の作業計画において重要である。そのためA
Eセンサーを利用して地山の崩壊を予知したり、崩壊位
置を標定することが行われている。
2. Description of the Related Art AE is a phenomenon in which, when a material to which a physical load is applied is deformed or a crack is generated therein, strain energy stored up to that time is released and propagated as sound. is there. By the way, when the rock is mechanically excavated or destroyed by blasting, the area around the area destroyed by the excavation or blasting is also damaged. However, it is important to know the damage quantitatively in the subsequent work plan. Therefore A
E-sensors are used to predict the collapse of the ground and to locate the collapse location.

【0003】例えば、地山内又は地山貫入部材に配設し
たAEセンサーとこのセンサーに接続されたAE電気信
号の計数回路と、この計数回路のカウントデータを入
力、解析して地山崩壊を予測するコンピューターで構成
された地山崩壊予知装置を用いる方法(特開平2−24
521号公報)、両端部にAEセンサーを取り付けたウ
エーブガイドを崩壊が予想される地中に埋設し、前記の
両センサーによってAE現象を検出し、両者の時間差と
前記ウエーブガイドを伝わる音速とを計測することによ
って崩壊位置を検知する地盤の崩壊位置標定方法(特開
平2−190520号公報)、地山の内部崩壊挙動に伴
って発生するAE音を捕捉し、電気信号に変換して計
測、解析する際に、発生要因の異なるAE信号のグルー
プ化を行い、各グループの代表的なAE信号の発生数の
変化から、地山内部の破壊現象を推定する方法(特開平
5−112923号公報)、両端にAEセンサーを取り
付けたウエーブガイドを、予測される滑り面をまたいで
地山に設置して地盤内に発生するAE波の計測を行い、
前記両端AEセンサーに到達したデータより位置標定が
できているデータを選び、位置標定がなされた個々のA
E波形特性について調べ、同一AE発生源からのAE波
と判定された位置標定結果だけを評価データとして用い
て斜面崩壊位置の標定を行う方法(特開平6−8874
4号公報)などがこれまでに提案されている。
[0003] For example, an AE sensor disposed in a ground or on a ground penetrating member, a counting circuit for an AE electric signal connected to the sensor, and count data of the counting circuit are inputted and analyzed to predict a ground collapse. Using a mountain landslide prediction device configured with a computer (Japanese Patent Laid-Open No. 2-24)
No. 521), a wave guide having AE sensors attached to both ends is buried in the ground where collapse is expected, and the AE phenomenon is detected by the two sensors, and the time difference between the two and the sound speed transmitted through the wave guide are determined. A method of locating a ground collapse by detecting a collapse position by measuring (JP-A-2-190520), capturing an AE sound generated due to an internal collapse behavior of a ground, converting the AE sound into an electric signal, and measuring. At the time of analysis, a method of grouping AE signals having different generation factors and estimating a destruction phenomenon inside the ground based on a change in the number of representative AE signals generated in each group (Japanese Patent Laid-Open No. 5-112923) ), Wave guides with AE sensors attached to both ends are installed on the ground over the expected slip surface to measure AE waves generated in the ground,
Data that has been located is selected from the data that has arrived at the AE sensors at both ends, and each A that has been located is selected.
A method of investigating the E waveform characteristics and locating the slope failure position using only the position locating results determined as AE waves from the same AE source as evaluation data (Japanese Patent Laid-Open No. 6-8874).
No. 4) has been proposed so far.

【0004】しかしながら、これらの方法はいずれも、
崩壊が予想される岩盤又はその周囲に多数のAEセンサ
ーを配置し、それらによって得られる情報を解析して、
損傷度の測定や崩壊位置の検知を行うものであるため、
多数の装置や複雑な設備、それらを設置するための多大
の労力や経費を必要とする上に、解析に長時間を要する
という欠点があった。
However, all of these methods are
A large number of AE sensors are placed on or around the rock where the collapse is expected, and the information obtained by them is analyzed.
Since it measures the degree of damage and detects the collapse position,
There are drawbacks in that a large number of devices and complicated equipment, a great deal of labor and cost for installing them, and a long time for analysis are required.

【0005】[0005]

【発明が解決しようとする課題】本発明は、多数の装置
や複雑な設備、それらを設置するための多大の労力や経
費を必要とせず簡単な装置及び操作で、しかも迅速に岩
盤損傷度を測定する方法を提供するものである。
SUMMARY OF THE INVENTION The present invention reduces the degree of rock damage quickly with a simple device and operation without requiring a large number of devices and complicated equipment and a great deal of labor and cost for installing them. It provides a method for measuring.

【0006】[0006]

【課題を解決するための手段】本発明者らは、AE現象
を利用して、簡単かつ迅速に岩盤損傷度を測定する方法
を開発するために鋭意研究を重ねた結果、全く損傷を受
けない岩盤及び掘削や発破により破壊された領域の周囲
の岩盤からコアサンプルを採取し、それを一軸圧縮すれ
ば、損傷度に関するデータが簡単に得られることを見出
し、その知見に基づいて本発明をなすに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to develop a method for easily and quickly measuring the degree of rock damage utilizing the AE phenomenon. The present inventors have found that if a core sample is collected from a bedrock and a bedrock surrounding an area destroyed by excavation or blasting and is uniaxially compressed, data on the degree of damage can be easily obtained. Reached.

【0007】すなわち、本発明は、岩盤からコアサンプ
ルを採取し、一軸圧縮して発生するアコースティック・
エミッション(Acoustic Emission)
を計測し、式 χ=σAE×Sc/P2 (ただし、Scは健全時の強度、σAEは計測時にAE
の発生が急激に増加し始めるときの荷重、Pは計測時の
最大荷重である)に従って損傷パラメータχを求めるこ
とを特徴とする、岩盤損傷度の測定方法を提供するもの
である。
That is, according to the present invention, an acoustic core generated by collecting a core sample from rock and uniaxially compressing it.
Emission (Acoustic Emission)
And the equation 式 = σAE × Sc / P 2 (where Sc is the strength at the time of soundness and σAE is the AE at the time of measurement.
(P is the maximum load at the time of measurement), and the damage parameter に 従 っ て is determined in accordance with the load at the time when the occurrence of abrupt increase starts to increase rapidly.

【0008】[0008]

【発明の実施の形態】次に、添付図面に従って、本発明
方法をさらに詳細に説明する。図1は、コアサンプル1
を支持具2,3に挟み、一方又は両方から荷重を印加し
て一軸圧縮し、発生するAEをセンサー4により計測す
る。岩石や土質材料に荷重を加えると、その材料が以前
に受けた応力までAEを発生しないという性質がある。
この性質のことをカイザー効果というが、岩石や土質材
料の場合、コアサンプルを採取してから、それを測定に
供するまでの時間が長期になると、このカイザー効果が
不明瞭になり、地圧推定が困難になる。
Next, the method of the present invention will be described in more detail with reference to the accompanying drawings. Figure 1 shows core sample 1
Is sandwiched between the supports 2 and 3, and a load is applied from one or both of them to uniaxially compress, and the generated AE is measured by the sensor 4. When a load is applied to a rock or soil material, the material has the property that AE does not occur until the stress previously applied to the material.
This property is called the Kaiser effect.In the case of rocks and soil materials, if the time from when a core sample is collected to when it is used for measurement becomes long, the Kaiser effect becomes unclear, and the ground pressure is estimated. Becomes difficult.

【0009】しかしながら、本発明方法においては、コ
アサンプルに一軸圧縮応力下で繰り返し圧力を加えて得
られるAE発生パターンをみると、カイザー効果が不明
瞭な場合においても、その後の繰り返し荷重印加の過程
で先行応力に相当する応力でのAE発生の増加が認めら
れる。したがって、この現象を利用することにより、従
来困難とされていた採取後長時間経過したコアサンプル
によっても岩盤の損傷度の評価を行うことが可能になっ
た。
However, in the method of the present invention, the AE generation pattern obtained by repeatedly applying pressure to the core sample under uniaxial compressive stress shows that even if the Kaiser effect is not clear, the process of the subsequent repeated load application The increase in AE generation at the stress corresponding to the precedent stress is observed. Therefore, by utilizing this phenomenon, it has become possible to evaluate the degree of damage of rock mass even with a core sample that has been long time elapsed after collection, which has been considered difficult in the past.

【0010】本発明方法においては、前記計算式によっ
て損傷パラメータχを求めることが必要である。この式
中のScは、なんら損傷を与えていない健全時の岩盤の
強度であり、これは、掘削や発破による破壊を行うに先
立って、所定の岩盤からサンプルを採取し、その強度を
測定することにより得られる。また、σAEは、圧縮試
験によりPを増大させ、それに対応するAEを測定して
いくときに、AEの発生が急激に増加するときの荷重で
あって、これは印加する荷重とAEとの関係をプロット
したグラフから容易に知ることができる。
In the method of the present invention, it is necessary to determine the damage parameter に よ っ て by the above formula. Sc in this equation is the strength of the rock mass at the time of soundness without any damage, which is obtained by taking a sample from a predetermined rock mass and measuring the strength before crushing by excavation or blasting. It can be obtained by: ΣAE is a load at which the occurrence of AE sharply increases when P is increased by a compression test and the corresponding AE is measured. This is the relationship between the applied load and AE. Can be easily known from the graph in which is plotted.

【0011】そして、このようにして求められた損傷パ
ラメータχは、岩盤が弾性的な挙動を示す限界値の50
%応力レベルでほぼ1.0になるので、この値によって
岩盤がまだ健全な弾性的挙動を示す範囲にあるのか、あ
るいは弾性限界を越えて亀裂が多くなった塑性的挙動を
示す状態にあるのかを簡単に判断することができる。
[0011] The damage parameter χ obtained in this way is the limit value of 50, at which the rock exhibits elastic behavior.
Since the% stress level is almost 1.0, this value indicates whether the rock mass is still in a range showing sound elastic behavior or is in a state showing plastic behavior in which cracks have increased beyond the elastic limit. Can be easily determined.

【0012】[0012]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
Next, the present invention will be described in more detail with reference to examples.

【0013】参考例 砂岩試験片(直径4cm、長さ11cm、圧縮強度40
0kgf/cm2)に対し、その圧縮強度の15〜10
0%に相当する荷重を印加して、あらかじめ損傷を加え
たサンプルを調製した。次に、この各サンプルについて
圧縮試験を行い、そのときのAEを計測し、その結果を
グラフとして図2に示す。このAE計測結果から損傷パ
ラメータを計算して、事前に加えた荷重レベルとの関係
を求めたところ、荷重レベルすなわち負荷が大きいほど
損傷パラメータは低下し、岩石が弾性的な挙動を示す限
界の50%応力レベルでほぼ1.0になった。
Reference Example Sandstone specimen (diameter 4 cm, length 11 cm, compressive strength 40)
0 kgf / cm 2 ), the compressive strength of which is 15 to 10
A load corresponding to 0% was applied to prepare a sample that had been damaged in advance. Next, a compression test was performed on each of the samples, and the AE at that time was measured. The results are shown as a graph in FIG. When the damage parameter was calculated from the AE measurement result and the relationship with the load level applied in advance was obtained, the damage parameter decreased as the load level, that is, the load increased, and the limit of 50, at which the rock exhibited elastic behavior. The% stress level was almost 1.0.

【0014】実施例 健全時の圧縮強度1600kgf/cm2の岩盤に発破
をかけて破壊させた領域の周辺をボーリングしてコアサ
ンプル(直径4.5cm、長さ10cm)を採取した。
このコアサンプルについて採取後24時間放置し、圧縮
試験機にかけて、各荷重ごとのAEを計算し、この関係
をグラフとして図3に示す。このグラフよりσAE及び
Pを求め、損傷パラメータを算出したところ1.28で
あった。このことより、このコアサンプルを採取した岩
盤は弾性限界以内であることが分った。
Example A core sample (4.5 cm in diameter and 10 cm in length) was taken by drilling around the area where a rock having a healthy compressive strength of 1600 kgf / cm 2 was blasted and destroyed.
This core sample was allowed to stand for 24 hours after collection, and was subjected to a compression tester to calculate AE for each load, and this relationship is shown as a graph in FIG. ΣAE and P were obtained from this graph, and the damage parameter was calculated to be 1.28. From this, it was found that the rock mass from which this core sample was taken was within the elastic limit.

【0015】比較例 実施例とは別の領域から同じ寸法のコアサンプルを採取
し、実施例と同様にして荷重とAEとの関係を調べた。
この結果をグラフとして図4に示す。このグラフに基づ
いてσAEとPを求め、損傷パラメータを算出したとこ
ろ0.816であった。このことより、このコアサンプ
ルを採取した岩盤は亀裂により、塑性的挙動を示す状態
にあることが分った。
Comparative Example A core sample having the same dimensions was taken from a region different from that of the example, and the relationship between load and AE was examined in the same manner as in the example.
This result is shown in FIG. 4 as a graph. ΣAE and P were obtained based on this graph, and the damage parameter was calculated to be 0.816. From this, it was found that the rock mass from which this core sample was taken was in a state of showing plastic behavior due to cracks.

【0016】[0016]

【発明の効果】本発明方法によると、岩盤をボーリング
して得たコアサンプルを圧縮試験機に取り付け、荷重を
印加しながら、荷重が増加していく過程でのAE発生数
を計測するだけで、岩盤の損傷度を簡単に測定すること
ができる。
According to the method of the present invention, a core sample obtained by boring a rock is attached to a compression tester, and while applying a load, the number of AEs generated while the load is increasing is measured. In addition, the degree of rock damage can be easily measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法で用いる試験方法を示す説明図。FIG. 1 is an explanatory diagram showing a test method used in the method of the present invention.

【図2】 参考例で得た荷重とAEとの関係を示すグラ
フ。
FIG. 2 is a graph showing a relationship between a load and AE obtained in a reference example.

【図3】 実施例で得た荷重とAEとの関係を示すグラ
フ。
FIG. 3 is a graph showing a relationship between a load and AE obtained in an example.

【図4】 比較例で得た荷重とAEとの関係を示すグラ
フ。
FIG. 4 is a graph showing a relationship between a load and AE obtained in a comparative example.

【符号の説明】[Explanation of symbols]

1 コアサンプル 2,3 支持具 4 センサー 1 core sample 2, 3 support 4 sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 岩盤からコアサンプルを採取し、一軸圧
縮して発生するアコースティック・エミッション(Ac
oustic Emission)を計測し、次式に従
って損傷パラメータχを求めることを特徴とする、岩盤
損傷度の測定方法。 χ=σAE×Sc/P2 ただし、Scは健全時の強度、σAEは計測時にAEの
発生が急激に増加し始めるときの荷重、Pは計測時の最
大荷重である。
1. Acoustic emission (Ac) generated by collecting a core sample from rock and uniaxially compressing the core sample.
and measuring a damage parameter に 従 っ て according to the following equation. χ = σAE × Sc / P 2 where Sc is the strength at the time of soundness, σAE is the load at which the occurrence of AE starts to increase sharply at the time of measurement, and P is the maximum load at the time of measurement.
【請求項2】 岩盤の弾性限界を検知する請求項1記載
の測定方法。
2. The method according to claim 1, wherein an elastic limit of the rock is detected.
JP10163341A 1998-06-11 1998-06-11 Rock damage measurement method Expired - Lifetime JP2899700B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163341A JP2899700B1 (en) 1998-06-11 1998-06-11 Rock damage measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163341A JP2899700B1 (en) 1998-06-11 1998-06-11 Rock damage measurement method

Publications (2)

Publication Number Publication Date
JP2899700B1 JP2899700B1 (en) 1999-06-02
JPH11352043A true JPH11352043A (en) 1999-12-24

Family

ID=15772040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163341A Expired - Lifetime JP2899700B1 (en) 1998-06-11 1998-06-11 Rock damage measurement method

Country Status (1)

Country Link
JP (1) JP2899700B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281345A (en) * 2007-05-08 2008-11-20 Denso Corp Crack inspection method, and manufacturing method having the inspection method
KR100903949B1 (en) 2008-05-09 2009-06-25 한국지질자원연구원 Method for predicting failure of geotechnical structure
US20110239764A1 (en) * 2010-04-06 2011-10-06 Varel Europe S.A.S. Acoustic Emission Toughness Testing For PDC, PCBN, Or Other Hard Or Superhard Materials
US8397572B2 (en) 2010-04-06 2013-03-19 Varel Europe S.A.S. Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard materials
US8596124B2 (en) 2010-04-06 2013-12-03 Varel International Ind., L.P. Acoustic emission toughness testing having smaller noise ratio
CN103512816A (en) * 2013-10-15 2014-01-15 三峡大学 Real-time measuring method for rock sample damage in circulation loading process
US9086348B2 (en) 2010-04-06 2015-07-21 Varel Europe S.A.S. Downhole acoustic emission formation sampling
US9249059B2 (en) 2012-04-05 2016-02-02 Varel International Ind., L.P. High temperature high heating rate treatment of PDC cutters
US9297731B2 (en) 2010-04-06 2016-03-29 Varel Europe S.A.S Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard material inserts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872352B (en) * 2017-03-21 2023-05-16 湖南科技大学 Test device and method for simulating secondary diagenetic of broken rock mass
CN116127239B (en) * 2022-11-21 2023-12-19 长安大学 Rock damage state evaluation method, device and storage medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281345A (en) * 2007-05-08 2008-11-20 Denso Corp Crack inspection method, and manufacturing method having the inspection method
KR100903949B1 (en) 2008-05-09 2009-06-25 한국지질자원연구원 Method for predicting failure of geotechnical structure
JP2013524234A (en) * 2010-04-06 2013-06-17 バレル ユーロプ ソシエテ パ アクシオンス シンプリフィエ Acoustic radiation toughness testing for PDC, PCBN, or other hard or ultra-hard materials
US8365599B2 (en) * 2010-04-06 2013-02-05 Varel Europe S.A.S. Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard materials
US8397572B2 (en) 2010-04-06 2013-03-19 Varel Europe S.A.S. Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard materials
JP2013524232A (en) * 2010-04-06 2013-06-17 バレル ユーロプ ソシエテ パ アクシオンス シンプリフィエ Acoustic radiation toughness testing for PDC, PCBN, or other hard or ultra-hard materials
US20110239764A1 (en) * 2010-04-06 2011-10-06 Varel Europe S.A.S. Acoustic Emission Toughness Testing For PDC, PCBN, Or Other Hard Or Superhard Materials
US8596124B2 (en) 2010-04-06 2013-12-03 Varel International Ind., L.P. Acoustic emission toughness testing having smaller noise ratio
US9086348B2 (en) 2010-04-06 2015-07-21 Varel Europe S.A.S. Downhole acoustic emission formation sampling
US9297731B2 (en) 2010-04-06 2016-03-29 Varel Europe S.A.S Acoustic emission toughness testing for PDC, PCBN, or other hard or superhard material inserts
US9249059B2 (en) 2012-04-05 2016-02-02 Varel International Ind., L.P. High temperature high heating rate treatment of PDC cutters
CN103512816A (en) * 2013-10-15 2014-01-15 三峡大学 Real-time measuring method for rock sample damage in circulation loading process
CN103512816B (en) * 2013-10-15 2015-04-29 三峡大学 Real-time measuring method for rock sample damage in circulation loading process

Also Published As

Publication number Publication date
JP2899700B1 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
Zhao et al. Damage stress and acoustic emission characteristics of the Beishan granite
Khandelwal et al. Correlating static properties of coal measures rocks with P-wave velocity
Wu et al. Debond detection using embedded piezoelectric elements in reinforced concrete structures-part I: experiment
Lavrov Kaiser effect observation in brittle rock cyclically loaded with different loading rates
Mangal et al. Structural monitoring of offshore platforms using impulse and relaxation response
Feng et al. ISRM suggested method for in situ acoustic emission monitoring of the fracturing process in rock masses
Gao et al. Estimation of effect of voids on frequency response of mountain tunnel lining based on microtremor method
JP2899700B1 (en) Rock damage measurement method
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
JP3054709B2 (en) Ground damage measurement method
Saroglou et al. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock
Chary et al. Evaluation of engineering properties of rock using ultrasonic pulse velocity and uniaxial compressive strength
CN102016641A (en) Collapse prediction method for ground structure
Lee et al. Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests
Hertlein Stress wave testing of concrete: A 25-year review and a peek into the future
Chan Bender element test in soil specimens: identifying the shear wave arrival time
Maxwell et al. A micro-velocity tool to assess the excavation damaged zone
Choo et al. Effect of directional stress history on anisotropy of initial stiffness of cohesive soils measured by bender element tests
Hao et al. Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models part 2: stochastic approach
KR100921382B1 (en) Method for predicting failure of geotechnical structure
JP2899699B1 (en) Diagnosis method for rock damage
KR100863582B1 (en) Measuring method for ground of strength
JP3023508B1 (en) Evaluation method of physical properties of elasto-plastic body by percussion sound
Usol'tseva et al. Investigation of strength and microseismic emission characteristics of rock joints under shear loading
CN114113316A (en) Three-dimensional analog simulation device and three-dimensional test monitoring method for overburden rock movement

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term