JP2000213775A - Cooling system based on heat accumulation through building body - Google Patents

Cooling system based on heat accumulation through building body

Info

Publication number
JP2000213775A
JP2000213775A JP11013355A JP1335599A JP2000213775A JP 2000213775 A JP2000213775 A JP 2000213775A JP 11013355 A JP11013355 A JP 11013355A JP 1335599 A JP1335599 A JP 1335599A JP 2000213775 A JP2000213775 A JP 2000213775A
Authority
JP
Japan
Prior art keywords
ice
cooling
heat
heat storage
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11013355A
Other languages
Japanese (ja)
Inventor
Yoshinori Inoue
良則 井上
Nozomi Kusumoto
望 楠本
Yuji Yoshitake
裕二 吉竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANUERU JAPAN KK
Original Assignee
SANUERU JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANUERU JAPAN KK filed Critical SANUERU JAPAN KK
Priority to JP11013355A priority Critical patent/JP2000213775A/en
Publication of JP2000213775A publication Critical patent/JP2000213775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct a cooling system inexpensively while allowing adaptation to the case of a higher cooling load. SOLUTION: A plurality of ice making machines 21 are connected in parallel to an evaporator 3 of a turbo refrigerating machine 1 through first closed piping 26 and ice heat accumulation tanks 23 for accumulating produced ices are connected respectively to the ice making machines 21. Condensers 22 for cooling are connected respectively to the ice making machines in parallel with the ice heat accumulation tanks 23 through second closed piping 27, and a cooler 11 is connected to the condensers 22 for cooling to supply cool air to a building body or into a room through second refrigerant piping 25. This enables switching between the ice making/heat accumulation operation position, at which brine from the evaporator 3 is supplied to the ice making machines 21 and the condensers 22 for cooling to accomplish both of the making of ice and the accumulation of heat through a building body, and a cooling operation position, at which the driving of the turbo refrigerating machine 1 is stopped and the ice making machines 21 are made to work as a heat exchanger for thawing to supply cold accumulated in the ice heat accumulation tanks 23 to the condensers 22 for cooling to perform a cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、夜間などに安価な
夜間電力を用いて躯体を冷却し、昼間などには、躯体か
らの放熱により室内の冷房を行えるように構成した躯体
蓄熱型冷房システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type cooling system for cooling a body by using inexpensive nighttime electric power at night or the like and cooling the room by radiating heat from the body at daytime or the like. About.

【0002】[0002]

【従来の技術】このような躯体蓄熱型冷房システムとし
ては、従来一般に、躯体と天井板との空間内に冷風を供
給できるように冷房装置を設け、その冷房装置に、冷凍
サイクルを構成するように室外側熱交換器と圧縮機と膨
張弁とを冷媒配管を介して接続し、夜間において冷凍サ
イクルにより躯体に冷熱を供給して蓄え、昼間には、蓄
えられた冷熱を利用することにより、昼間の電力消費量
を低減して全体としての電力消費量を低減できるように
している。そして、冷房負荷が高くて、躯体からの放熱
量だけでは賄うことができないときには、上述の冷凍サ
イクルを駆動して、不足分を補っている。
2. Description of the Related Art Conventionally, as such a frame heat storage type cooling system, generally, a cooling device is provided so that cool air can be supplied into a space between a frame and a ceiling plate, and a cooling cycle is constituted in the cooling device. By connecting the outdoor heat exchanger, the compressor, and the expansion valve to the refrigerant via a refrigerant pipe, supplying and storing cold heat to the body by a refrigeration cycle at night, and utilizing the stored cold heat during the day, Daytime power consumption is reduced so that overall power consumption can be reduced. When the cooling load is high and the amount of heat released from the skeleton cannot be sufficient, the above-described refrigeration cycle is driven to compensate for the shortage.

【0003】また、昼間の電力消費量を低減できるよう
に構成するものとして、建物の地下などに、主熱源とし
て製氷機と氷蓄熱槽とを設け、夜間において製氷し、生
成した氷を氷蓄熱槽内に蓄え、昼間に、氷蓄熱槽からの
冷水を、建物の各階などに分散して設けた凝縮器などに
供給し、凝縮器から、各階の所定箇所に平面的に分散し
て設けた熱交換器に冷熱を供給して冷房するようにした
ものもある。
In order to reduce daytime power consumption, an ice maker and an ice storage tank are provided as main heat sources in the basement of a building, etc., and ice is made at night, and the generated ice is stored in an ice storage. It was stored in a tank, and in the daytime, the cold water from the ice heat storage tank was supplied to condensers and the like provided dispersedly on each floor of the building, and provided from the condenser at predetermined locations on each floor in a planar manner. There is also a type in which cooling is supplied by supplying cold heat to a heat exchanger.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、圧縮機
を有する冷凍サイクルの冷房装置を設ける従来例の場
合、冷房するエリアが広くなるに伴って圧縮機の台数が
増大せざるを得ず、また圧縮機の設置のための電気工事
も多くなり、イニシャルコストが高くなる欠点があっ
た。
However, in the case of a conventional example in which a cooling device for a refrigeration cycle having a compressor is provided, the number of compressors must be increased as the area to be cooled is increased. There was also the drawback that the electric work for installing the machine increased and the initial cost increased.

【0005】一方、主熱源として製氷機と氷蓄熱槽とを
設ける従来例の場合、氷蓄熱槽から多数の凝縮器に冷水
を供給するために、大がかりな配管が必要になってイニ
シャルコストが増大する欠点があり、また、昼間時にお
ける冷水の搬送動力のためにランニングコストも要する
欠点があった。
On the other hand, in the case of the conventional example in which an ice maker and an ice heat storage tank are provided as main heat sources, large-scale piping is required to supply cold water from the ice heat storage tank to a large number of condensers, thereby increasing initial costs. In addition, there is a disadvantage that running cost is required due to the power for transporting the cold water during the daytime.

【0006】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の躯体蓄熱型冷房
システムは、冷房負荷が高い場合に対応できるものであ
りながら、イニシャルコストおよびランニングコストの
いずれをも安価にしてシステムを構築できるようにする
ことを目的とし、また、請求項2に係る発明の躯体蓄熱
型冷房システムは、冷房能力の制御を容易に行えるよう
にすることを目的とする。
[0006] The present invention has been made in view of such circumstances, and the skeleton heat storage type cooling system according to the first aspect of the present invention can cope with a case where the cooling load is high. And the running cost is reduced so that the system can be constructed. In addition, the frame heat storage type cooling system according to the second aspect of the present invention makes it possible to easily control the cooling capacity. With the goal.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明の躯
体蓄熱型冷房システムは、上述のような目的を達成する
ために、低温熱媒を取り出す低温冷凍機に、低温熱媒と
の熱交換によって製氷する製氷機の複数個を密閉配管を
介して並列接続するとともに、製氷機それぞれに、製氷
機で得られた氷を蓄える氷蓄熱槽を接続し、製氷機それ
ぞれに、躯体に冷熱を供給する躯体蓄熱用熱交換手段と
室内に冷風を供給する冷房用熱交換手段とを氷蓄熱槽と
並列に密閉配管を介して接続し、低温冷凍機からの低温
熱媒を製氷機と躯体蓄熱用熱交換手段の両方に供給して
製氷と躯体蓄熱の両方を行う製氷・蓄熱運転状態と、製
氷機を解氷用熱交換器として作用させて氷蓄熱槽に蓄え
られた冷熱を冷房用熱交換手段に供給する冷房運転状態
とに切り換え可能に構成する。躯体蓄熱用熱交換手段と
冷房用熱交換手段とを兼用構成し、装置を極力小型化で
きるようにしても良い(請求項3)。
According to a first aspect of the present invention, there is provided a building thermal storage type cooling system, wherein a low-temperature refrigerator for extracting a low-temperature heat medium is supplied with heat from the low-temperature heat medium. A plurality of ice machines that make ice by replacement are connected in parallel via sealed pipes, and each ice machine is connected to an ice storage tank that stores the ice obtained by the ice machine. The heat exchange means for storage heat storage to be supplied and the heat exchange means for cooling supply cool air to the room are connected in parallel with the ice heat storage tank via a closed pipe, and the low temperature heat medium from the low temperature refrigerator is stored in the ice making machine and the heat storage in the body. Ice making and heat storage operating state in which both ice making and heat storage are performed by supplying both to the heat exchange means for cooling, and the cold stored in the ice heat storage tank by operating the ice making machine as a heat exchanger for deicing. Can be switched to the cooling operation state supplied to the exchange means To configure. The heat exchange means for heat storage of the building body and the heat exchange means for cooling may be configured so as to minimize the size of the apparatus (claim 3).

【0008】また、請求項2に係る発明の躯体蓄熱型冷
房システムは、前述のような目的を達成するために、請
求項1に係る発明の躯体蓄熱型冷房システムにおける製
氷機を、低温熱媒の流動空間を備えて周面に氷を生成す
る円筒体と、その円筒体の筒軸芯周りで回転し、円筒体
の周面に生成した氷を掻き取る氷掻き取り部材と、その
氷掻き取り部材を、回転数を変更可能に駆動回転する駆
動手段とを備えて構成する。
According to a second aspect of the present invention, in order to achieve the above object, the ice making machine of the first aspect of the present invention comprises a low-temperature heat medium. A cylindrical body having ice flowing on the peripheral surface thereof, an ice scraping member rotating around the cylindrical axis of the cylindrical body to scrape off the ice generated on the peripheral surface of the cylindrical body, and the ice scraping member. The take member is provided with driving means for driving and rotating so that the number of rotations can be changed.

【0009】[0009]

【作用】請求項1に係る発明の躯体蓄熱型冷房システム
の構成によれば、夜間などの安価な夜間電力を利用でき
るときに、製氷・蓄熱運転状態にして、ひとつの低温冷
凍機からの低温熱媒を複数個の製氷機と躯体蓄熱用熱交
換手段の両方に供給し、製氷機で氷を生成するとともに
その生成した氷を氷蓄熱槽に蓄え、一方、躯体蓄熱用熱
交換手段により躯体に冷熱を供給して躯体蓄熱を行う。
冷房負荷が高い場合には、冷房運転状態にして、製氷機
を解氷用熱交換器として作用させ、安価な夜間電力を利
用して氷蓄熱槽に蓄えられた冷熱を冷房用熱交換手段に
供給し、躯体に蓄えた冷熱と氷蓄熱槽に蓄えた冷熱の両
方によって冷房を行う。
According to the construction of the heat storage type cooling system according to the first aspect of the present invention, when low-cost nighttime electric power such as nighttime can be used, an ice making / heat storage operation state is set and low-temperature cooling from one low-temperature refrigerator is performed. The heat medium is supplied to both the plurality of ice making machines and the heat exchange means for heat storage of the frame, and ice is generated by the ice machine and the generated ice is stored in the ice heat storage tank. Cooling is supplied to the body to store heat.
When the cooling load is high, the cooling machine is put into a cooling operation state, the ice making machine acts as a heat exchanger for defrosting, and the cold heat stored in the ice heat storage tank is used as the heat exchange means for cooling by using inexpensive nighttime electric power. Cooling is performed by both the cold heat supplied and stored in the frame and the cold heat stored in the ice heat storage tank.

【0010】また、請求項2に係る発明の躯体蓄熱型冷
房システムの構成によれば、氷掻き取り部材の回転数を
変更することにより、製氷・蓄熱運転状態にあっては製
氷量を調整でき、一方、冷房運転状態にあっては、氷蓄
熱槽からの冷熱の取り出し量を調整できる。
Further, according to the configuration of the cooling system of the present invention, the amount of ice can be adjusted in the ice making / heat storing operation state by changing the number of revolutions of the ice scraping member. On the other hand, in the cooling operation state, the amount of cold heat taken out from the ice heat storage tank can be adjusted.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0012】図1は、本発明に係る躯体蓄熱型冷房シス
テムの第1実施例を示す全体システム構成図、図2は図
1の要部の拡大構成図であり、1はターボ冷凍機を示
し、凝縮器2と蒸発器3と圧縮機4とから構成され、凝
縮器2に、温水配管5と、第1のポンプ6aを介装した
冷却水配管6とを介して密閉型冷却塔7が接続され、蒸
発器3から、低温熱媒としての−10℃程度のブラインを
取り出すように構成されている。
FIG. 1 is an overall system configuration diagram showing a first embodiment of a skeleton thermal storage type cooling system according to the present invention. FIG. 2 is an enlarged configuration diagram of a main part of FIG. , A condenser 2, an evaporator 3, and a compressor 4. The closed cooling tower 7 is connected to the condenser 2 via a hot water pipe 5 and a cooling water pipe 6 provided with a first pump 6 a. It is connected and is configured to take out brine of about −10 ° C. as a low-temperature heat medium from the evaporator 3.

【0013】建物の各階それぞれにおいて、天井8と床
スラブ9との天井空間内に、水平方向に分散して、冷房
用コイル10のみを備えた冷房装置11,11と、冷房
用コイル10および暖房用コイル12を備えた冷暖房装
置13とが設けられている。
In each of the floors of the building, in the ceiling space between the ceiling 8 and the floor slab 9, cooling devices 11, 11 having only cooling coils 10 dispersed in the horizontal direction, And a cooling / heating device 13 provided with a use coil 12.

【0014】冷房装置11および冷暖房装置13は、い
ずれも、図2(この図2では、冷房装置11のみを示し
ている)に示すように、ケーシング14の下部側に室内
への室内側吹き出し口15を備えるとともに、ケーシン
グ14の上部側に床スラブ9の表面への躯体側吹き出し
口16を備え、更に、送風機17と、その送風機17に
よって送られる冷風または温風を、室内側吹き出し口1
5に送る状態と躯体側吹き出し口16に送る状態とに切
り換えるダンパー18とを備えて構成されている。
As shown in FIG. 2 (only the cooling device 11 is shown in FIG. 2), both the cooling device 11 and the cooling / heating device 13 15 and a frame-side outlet 16 to the surface of the floor slab 9 on the upper side of the casing 14, and further, a blower 17 and cool air or warm air blown by the blower 17 are supplied to the indoor outlet 1.
5 and a damper 18 that switches between a state of sending to the frame side outlet 16 and a state of sending to the frame side outlet 16.

【0015】前記温水配管5の途中箇所に暖房用蒸発器
19が接続されるとともに、この暖房用蒸発器19と暖
房用コイル12とが第1の冷媒配管20を介して接続さ
れ、暖房用蒸発器19と暖房用コイル12および第1の
冷媒配管20とにわたって、暖房用蒸発器19での熱交
換に伴って液体から気体に相変化するとともに暖房用コ
イル12での熱交換に伴って気体から液体に相変化する
第1の冷媒を密閉状態で循環流動するように構成され、
かつ、暖房用蒸発器19と暖房用コイル12との間に、
液体に相変化した第1の冷媒を暖房用蒸発器19に移送
するに足るヘッド差が備えられ、第1の冷媒を自然循環
流動させ、ターボ冷凍機1から密閉型冷却塔7に送られ
る温水を利用して暖房を行えるように構成されている。
第1の冷媒としては、例えば、無害なフロンガスR22
やフロンガスR134Aなどが用いられる。
A heating evaporator 19 is connected to the middle of the hot water pipe 5, and the heating evaporator 19 and the heating coil 12 are connected via a first refrigerant pipe 20. The phase changes from a liquid to a gas with the heat exchange in the heating evaporator 19 and from the gas with the heat exchange in the heating coil 12 across the vessel 19, the heating coil 12 and the first refrigerant pipe 20. The first refrigerant that changes into a liquid is configured to circulate and flow in a sealed state,
And, between the heating evaporator 19 and the heating coil 12,
There is provided a head difference sufficient to transfer the first refrigerant, which has changed into a liquid, to the heating evaporator 19, and the first refrigerant is caused to flow by natural circulation, and hot water sent from the centrifugal chiller 1 to the closed cooling tower 7 is provided. It is configured so that heating can be performed by utilizing the above.
As the first refrigerant, for example, harmless Freon gas R22
Or CFC gas R134A is used.

【0016】各階それぞれの機械室などに、製氷機21
と冷房用凝縮器22と氷蓄熱槽23とを備えた氷蓄熱ユ
ニットAが設置されている。製氷機21と氷蓄熱槽23
とが、第2のポンプ24aを介装した独立したポンプ配
管24を介して接続され、製氷機21で得られた氷を氷
蓄熱槽23に蓄えるとともに、氷蓄熱槽23に蓄えられ
た氷を製氷機21に供給できるように構成されている。
An ice machine 21 is provided in each machine room on each floor.
An ice heat storage unit A including a cooling condenser 22 and an ice heat storage tank 23 is provided. Ice machine 21 and ice thermal storage tank 23
Are connected via an independent pump pipe 24 having a second pump 24a interposed therebetween, and store the ice obtained by the ice making machine 21 in the ice heat storage tank 23 and the ice stored in the ice heat storage tank 23. It is configured so that it can be supplied to the ice making machine 21.

【0017】冷房用凝縮器22と冷房用コイル11とが
第2の冷媒配管25を介して接続され、冷房用凝縮器2
2と冷房用コイル11および第2の冷媒配管25とにわ
たって、冷房用凝縮器22での熱交換に伴って気体から
液体に相変化するとともに冷房用コイル11での熱交換
に伴って液体から気体に相変化する第2の冷媒を密閉状
態で循環流動するように構成され、かつ、冷房用凝縮器
22と冷房用コイル11との間に、液体に相変化した第
2の冷媒を冷房用コイル11に移送するに足るヘッド差
が備えられ、第2の冷媒を自然循環流動して冷房を行え
るように構成されている。第2の冷媒としては、第1の
冷媒と同様に、例えば、無害なフロンガスR22やフロ
ンガスR134Aなどが用いられる。
The cooling condenser 22 and the cooling coil 11 are connected via a second refrigerant pipe 25, and the cooling condenser 2
2 and the cooling coil 11 and the second refrigerant pipe 25, the phase changes from gas to liquid with heat exchange in the cooling condenser 22 and liquid to gas with heat exchange in the cooling coil 11. The second refrigerant, which has changed into a liquid, is circulated and flows in a closed state, and the second refrigerant, which has changed into a liquid, is cooled between the cooling condenser 22 and the cooling coil 11. There is provided a head difference sufficient to transfer the second refrigerant to the cooling medium 11 so that cooling can be performed by natural circulation of the second refrigerant. As the second refrigerant, for example, harmless Freon gas R22 or Freon gas R134A is used in the same manner as the first refrigerant.

【0018】上記第1および第2の冷媒配管20,25
それぞれには、図示していないが開閉弁が設けられ、冷
房を行う場合と暖房を行う場合とに適宜切り換えるよう
に構成されている。
The first and second refrigerant pipes 20, 25
Although not shown, each is provided with an on-off valve, and is configured to appropriately switch between a case of performing cooling and a case of performing heating.

【0019】製氷機21それぞれが、ターボ冷凍機1の
蒸発器3に第1の密閉配管26を介して並列接続される
とともに、製氷機21それぞれに第2の密閉配管27を
介して冷房用凝縮器22が接続されている。更に、冷房
用凝縮器22とターボ冷凍機1の蒸発器3とが、循環ポ
ンプ28を介装した第3の密閉配管29を介して接続さ
れている。
Each of the icemakers 21 is connected in parallel to the evaporator 3 of the turbo refrigerator 1 via a first sealed pipe 26, and each of the icemakers 21 is connected to a cooling condenser via a second sealed pipe 27. The container 22 is connected. Further, the cooling condenser 22 and the evaporator 3 of the centrifugal chiller 1 are connected through a third hermetic pipe 29 in which a circulation pump 28 is interposed.

【0020】製氷機21それぞれは、図示しないが、ブ
ラインの流動空間を備えて周面に氷を生成する円筒体
と、その円筒体の筒軸芯周りで回転し、円筒体の周面に
生成した氷を掻き取る氷掻き取り部材と、その氷掻き取
り部材を、回転数を変更可能に駆動回転する駆動手段と
しての電動モータとを備えて構成され、その電動モータ
の回転数を変更することにより、製氷量と、後述する氷
蓄熱槽23からの冷熱の取り出しの際の冷熱の取り出し
量とを容易に制御できるようになっている。本発明とし
ては、氷掻き取り部材を一定回転数で駆動回転するもの
でも良い。
Although not shown, each of the ice making machines 21 has a cylindrical body that has a flow space of brine and generates ice on the peripheral surface, and rotates around the cylinder axis of the cylindrical body to generate ice on the peripheral surface of the cylindrical body. An ice scraping member for scraping ice, and an electric motor as driving means for rotating the ice scraping member so that the number of rotations can be changed, and changing the number of rotations of the electric motor. Thus, the amount of ice making and the amount of cold heat taken out of the ice heat storage tank 23 described later can be easily controlled. In the present invention, the ice scraping member may be driven to rotate at a constant rotation speed.

【0021】以上の構成により、製氷と躯体蓄熱の両方
を行う製氷・蓄熱運転状態と、氷蓄熱槽23に蓄えられ
た氷による冷熱を利用して冷房を行う冷房運転状態とが
得られるようになっており、次に説明する。
With the above configuration, it is possible to obtain an ice making and heat storage operation state in which both ice making and frame heat storage are performed, and a cooling operation state in which cooling is performed using ice stored in the ice heat storage tank 23. It will be described next.

【0022】製氷・蓄熱運転状態 夜間電力の時間帯において、ダンパー18を、冷風を躯
体側吹き出し口16から吹き出し可能に切り換えてお
き、ターボ冷凍機1、第1のポンプ6a、送風機17、
製氷機21、第2のポンプ24aおよび循環ポンプ28
を駆動する。
Ice Making / Heat Storage Operation State In the nighttime power period, the damper 18 is switched so that cold air can be blown out from the body side outlet 16, and the turbo chiller 1, the first pump 6 a, the blower 17,
Ice machine 21, second pump 24a and circulation pump 28
Drive.

【0023】これにより、蒸発器3から取り出される低
温のブラインを製氷機21および冷房用凝縮器22に供
給し、製氷機21で氷を生成するとともに、その生成し
た氷を氷蓄熱槽23に蓄える。そして、冷房用凝縮器2
2では、第2の冷媒を凝縮液化し、冷房用コイル10と
の間で自然循環流動させ、冷風を床スラブ9に吹き付け
て躯体に冷熱を蓄える。
Thus, the low-temperature brine taken out of the evaporator 3 is supplied to the ice making machine 21 and the cooling condenser 22, and the ice making machine 21 generates ice, and the generated ice is stored in the ice heat storage tank 23. . And cooling condenser 2
In step 2, the second refrigerant is condensed and liquefied, and flows naturally through the cooling coil 10, and cool air is blown onto the floor slab 9 to store cold heat in the frame.

【0024】冷房運転状態(低負荷時) この状態では、ターボ冷凍機1、第1のポンプ6a、製
氷機21、第2のポンプ24aおよび循環ポンプ28の
駆動を停止するとともに、ダンパー18を室内側吹き出
し口16から吹き出し可能に切り換えておく。そして、
運転初期などの冷房負荷が低いときには、送風機17の
みを駆動し、躯体に蓄えられた冷熱を利用して、冷風を
室内に吹き出して冷房を行う。
Cooling operation state (at low load) In this state, the centrifugal chiller 1, the first pump 6a, the ice maker 21, the second pump 24a, and the circulation pump 28 are stopped, and the damper 18 is moved to the room. It is switched so that the air can be blown out from the inner outlet 16. And
When the cooling load is low at the beginning of operation or the like, only the blower 17 is driven, and cool air is blown out into the room using the cold heat stored in the skeleton to perform cooling.

【0025】冷房運転状態(高負荷時) 昼間など冷房負荷が高くなったときには、製氷機21、
第2のポンプ24aおよび循環ポンプ28を駆動状態に
切り換え、ブラインを第1、第2および第3の密閉配管
26,27,29を循環流動させ、製氷機21を解氷用
熱交換器として作用させてブラインを冷却し、その冷却
されたブラインを冷房用凝縮器22に供給し、第2の冷
媒を凝縮液化して冷房用コイル10との間で自然循環流
動させ、冷風を室内に吹き出して冷房を行う。このと
き、必要に応じてターボ冷凍機1を駆動し、いわゆる追
い掛け冷房運転を行うようにしても良い。
Cooling operation state (at high load) When the cooling load becomes high such as in the daytime, the ice making machine 21
The second pump 24a and the circulation pump 28 are switched to the driving state, and the brine is circulated through the first, second, and third sealed pipes 26, 27, and 29, and the ice making machine 21 acts as a heat exchanger for melting ice. Then, the brine is cooled, the cooled brine is supplied to the cooling condenser 22, the second refrigerant is condensed and liquefied and flows naturally through the cooling coil 10, and the cool air is blown into the room. Perform cooling. At this time, the centrifugal chiller 1 may be driven as necessary to perform a so-called chasing cooling operation.

【0026】以下に、上記製氷・蓄熱運転状態および冷
房運転状態(高負荷時)における具体数値例について説
明しておく。
Hereinafter, specific numerical examples in the ice making / heat storage operation state and the cooling operation state (at high load) will be described.

【0027】製氷・蓄熱運転状態 蒸発器3から温度−10℃のブラインを取り出すと、製氷
機21に約−9℃のブラインを供給でき、製氷機21で
製氷し、約−3℃の氷含有液を製氷機21から氷蓄熱槽
23に供給できる。製氷機21を通ったブラインの温度
は約−6℃となり、その−6℃のブラインを冷房用凝縮
器22に供給し、冷房用凝縮器22内の温度を約−1℃
にでき、冷房用コイル12に供給した時点での第2の冷
媒の温度を約1℃にでき、床スラブ9に冷風を吹き付け
て躯体温度が約6℃になるように蓄熱できる。なお、冷
房用凝縮器22を通ったブラインの温度は約−3℃にな
る。
Ice Making / Heat Storage Operation State When brine having a temperature of −10 ° C. is taken out from the evaporator 3, brine of about −9 ° C. can be supplied to the ice making machine 21, ice is made by the ice making machine 21, and ice containing about −3 ° C. is contained. The liquid can be supplied from the ice making machine 21 to the ice heat storage tank 23. The temperature of the brine passed through the ice making machine 21 becomes about -6C, and the brine at -6C is supplied to the cooling condenser 22, and the temperature inside the cooling condenser 22 is reduced to about -1C.
The temperature of the second refrigerant at the time when the second refrigerant is supplied to the cooling coil 12 can be set to about 1 ° C., and cold air can be blown onto the floor slab 9 to store heat so that the temperature of the skeleton becomes about 6 ° C. The temperature of the brine that has passed through the cooling condenser 22 is about −3 ° C.

【0028】冷房運転状態(高負荷時) 第1、第2および第3の密閉配管26,27,29を循
環流動するブラインの温度が約4℃とした場合、氷蓄熱
槽23から製氷機21に供給された氷含有液の温度が約
−2℃であるため、製氷機21を通って冷房用凝縮器2
2に供給されるブラインの温度は約1℃になり、冷房用
凝縮器22内の温度を約6℃にでき、冷房用コイル12
に供給した時点での第2の冷媒の温度を約8℃にでき、
室内には約13℃の冷風を吹き出して冷房を行うことがで
きる。なお、冷房用凝縮器22を通ったブラインの温度
は約4℃になる。
Cooling operation state (at high load) When the temperature of the brine circulating through the first, second and third closed pipes 26, 27 and 29 is set to about 4 ° C., the ice making machine 21 Since the temperature of the ice-containing liquid supplied to the cooling condenser 2 is about −2 ° C., the cooling condenser 2 passes through the ice making machine 21.
2, the temperature of the brine supplied to the cooling condenser 22 can be reduced to about 6 ° C.
The temperature of the second refrigerant at the time of supply to
Cooling can be performed by blowing cold air at about 13 ° C into the room. The temperature of the brine passed through the cooling condenser 22 becomes about 4 ° C.

【0029】図3は、本発明に係る躯体蓄熱型冷房シス
テムの第2実施例の要部を示す概略システム構成図であ
り、第1実施例と異なるところは、次の通りである。す
なわち、製氷機30が、ターボ冷凍機1からのブライン
を流す螺旋状の氷生成管31を有底円筒状の氷蓄熱槽3
2内に収容し、氷生成管31の外周面に氷を付着生成す
る、いわゆる内融管型に構成されている。
FIG. 3 is a schematic system configuration diagram showing a main part of a second embodiment of a skeleton heat storage type cooling system according to the present invention. The difference from the first embodiment is as follows. That is, the ice maker 30 connects the spiral ice generating pipe 31 through which the brine from the centrifugal chiller 1 flows to the cylindrical ice heat storage tank 3 having a bottom.
2 and is formed in a so-called inner melting tube type in which ice is formed on the outer peripheral surface of the ice forming tube 31.

【0030】各製氷機30である氷生成管31それぞれ
が第1の密閉配管33を介してターボ冷凍機1の蒸発器
3に接続されるとともに、氷生成管31それぞれに第2
の密閉配管34を介して冷房用凝縮器22が接続され、
更に、冷房用凝縮器22と蒸発器3とが、循環ポンプ3
5を介装した第3の密閉配管36を介して接続されてい
る。図示しないが、冷房用凝縮器22には第1実施例と
同じように第2の冷媒配管が接続されるとともに、他の
構成も第1実施例と同様に構成されており、その説明は
省略する。
Each of the ice producing pipes 31 as the ice makers 30 is connected to the evaporator 3 of the turbo refrigerator 1 via the first sealed pipe 33, and the second ice producing pipe 31 is connected to each of the ice producing pipes 31.
The cooling condenser 22 is connected via a closed pipe 34 of
Further, the cooling condenser 22 and the evaporator 3 are connected to the circulation pump 3
5 is connected via a third sealed pipe 36 interposed. Although not shown, a second refrigerant pipe is connected to the cooling condenser 22 in the same manner as in the first embodiment, and the other components are also configured in the same manner as in the first embodiment. I do.

【0031】上記実施例では、冷房用凝縮器22と冷房
用コイル10との間で第2の冷媒を自然循環流動させて
躯体蓄熱を行うように構成しているが、第3の密閉配管
29,36を冷房用コイル10に直接通すようにしても
良く、それらの構成をして、躯体蓄熱用熱交換手段と総
称する。
In the above embodiment, the second refrigerant is naturally circulated and flows between the cooling condenser 22 and the cooling coil 10 to store heat in the frame. , 36 may be directly passed through the cooling coil 10, and these components are collectively referred to as heat exchange means for heat storage of the building body.

【0032】また、上記実施例では、ダンパー18の切
り換えにより、冷房装置11ならびに冷暖房装置13で
躯体蓄熱と冷房とを行えるように、躯体蓄熱用熱交換手
段と冷房用熱交換手段とを兼用構成し、装置の小型化を
図っているが、本発明としては、躯体蓄熱用熱交換手段
および冷房用熱交換手段それぞれとして専用の装置で構
成し、躯体蓄熱および冷房それぞれを専用に行うように
するものでも良い。
Further, in the above embodiment, the heat exchange means for heat storage of the frame and the heat exchange means for cooling are configured so that the cooling device 11 and the cooling / heating device 13 can perform heat storage and cooling by switching the damper 18. Although the size of the apparatus is reduced, the present invention is configured such that the heat exchange means for heat storage of the skeleton and the heat exchange means for cooling are each constituted by a dedicated device, and the heat storage and the cooling of the skeleton are respectively performed exclusively. It may be something.

【0033】また、上記実施例では、低温熱媒を取り出
すのに、成績係数(C.O.P)が高くてコストの安価
なターボ冷凍機1を用いているが、本発明としては、例
えば、ガス吸収式冷凍機とか廃熱吸収式冷凍機など、各
種の低温冷凍機が適用可能である。
In the above embodiment, the low-temperature heat medium is taken out of the turbo refrigerator 1 having a high coefficient of performance (COP) and a low cost. Various low-temperature refrigerators such as a gas absorption refrigerator and a waste heat absorption refrigerator can be applied.

【0034】低温熱媒としては、上記実施例のようなブ
ラインに限らず、例えば、無害なフロンガスR22やフ
ロンガスR134Aとかアンモニア水溶液などが適用可
能である。
The low-temperature heat medium is not limited to the brine as in the above embodiment, but may be, for example, harmless Freon gas R22, Freon gas R134A, or an aqueous ammonia solution.

【0035】本発明は、高層ビルとか、ドームやスーパ
ーなどのように平面的に広い大規模商業施設とか、更に
は、地域冷暖房を構成する場合などに適用できる。
The present invention can be applied to a high-rise building, a large-scale commercial facility such as a dome or a supermarket, or a district cooling and heating system.

【0036】[0036]

【発明の効果】以上説明したように、請求項1に係る発
明の躯体蓄熱型冷房システムによれば、夜間などの安価
な夜間電力を利用できるときに、製氷・蓄熱運転状態に
して、ひとつの低温冷凍機から低温熱媒を供給すること
によって、製氷と、その生成した氷の氷蓄熱槽への蓄熱
と、躯体蓄熱とを行うから、圧縮機を有する冷凍サイク
ルの冷房装置を多数設けたり電気工事をしたりする必要
が無く、イニシャルコストを低減できる。また、各階と
か所定エリアなど、氷蓄熱槽を複数個設け、冷房負荷が
高い場合に、冷房運転状態にして、密閉配管内を低温熱
媒を流すことにより、製氷機を解氷用熱交換器として作
用させ、氷蓄熱槽に蓄えられた冷熱を、冷房用熱交換手
段に供給し、氷蓄熱槽に蓄えた冷熱によっても冷房を行
うから、建物の地下などに、主熱源として製氷機と氷蓄
熱槽とを設ける場合に比べ、躯体蓄熱で賄える分だけ製
氷機と氷蓄熱槽を小型化できるのみならず、断熱構造を
備えた大掛かりな配管を大幅に削減できるとともに冷水
搬送動力を減少でき、イニシャルコストおよびランニン
グコストのいずれをも大幅に低減でき、システム全体を
安価に構築できる。詳述すれば、従来の場合、氷蓄熱槽
から冷房用熱交換手段に冷水を搬送するための距離が長
くなるのに対して、請求項1に係る発明では、冷房用熱
交換手段それぞれに近い位置に氷蓄熱槽を設けることが
できるため、氷蓄熱槽と冷房用熱交換手段との距離を短
くできる。また、安価な夜間電力を用いて氷蓄熱槽に氷
を蓄えるから、従来の昼間の冷熱の搬送動力分の多くを
安価な夜間電力で賄えることになってランニングコスト
を低減できるのである。しかも、製氷機および氷蓄熱槽
を複数個設けるから、地下ピットのような大きな氷蓄熱
槽を不要にでき、そのうえ、複数個の冷房対象域の負荷
に適した規模の製氷機および氷蓄熱槽を設置でき、イニ
シャルコストを適正に低減できる。更に、低温冷凍機と
複数個の製氷機と躯体蓄熱用熱交換手段と冷房用熱交換
手段とを密閉配管を介して接続し、閉回路を構成するか
ら、低温熱媒を送るためにヘッドを確保せずに済み、低
温冷凍機の設置箇所に制約を受けず、システムを設計す
るうえでの自由度が高くなり、この点でもシステムを安
価に構築できる。
As described above, according to the building thermal storage type cooling system of the first aspect of the present invention, when an inexpensive nighttime electric power such as at night can be used, the ice making / thermal storage operation state is set to one. By supplying the low-temperature heat medium from the low-temperature refrigerator, the ice is made, the generated ice is stored in the ice storage tank, and the heat is stored in the frame. There is no need for construction, and the initial cost can be reduced. In addition, when a plurality of ice storage tanks are provided, such as on each floor or in a predetermined area, and the cooling load is high, the cooling machine is put into a cooling operation state and a low-temperature heat medium flows through the closed pipe, so that the ice making machine can be used as a heat-exchanging heat exchanger. The cold heat stored in the ice heat storage tank is supplied to the cooling heat exchange means, and cooling is also performed by the cold heat stored in the ice heat storage tank. Compared to the case where a heat storage tank is provided, not only can the ice making machine and the ice heat storage tank be miniaturized by the amount that can be covered by the heat storage of the skeleton, but also the large-scale piping with the heat insulation structure can be significantly reduced, and the power for transferring cold water can be reduced Both initial cost and running cost can be significantly reduced, and the entire system can be constructed at low cost. More specifically, in the conventional case, the distance for transporting the cold water from the ice heat storage tank to the cooling heat exchange means is long, whereas in the invention according to claim 1, each is close to the cooling heat exchange means. Since the ice heat storage tank can be provided at the position, the distance between the ice heat storage tank and the heat exchange means for cooling can be shortened. In addition, since ice is stored in the ice heat storage tank using inexpensive nighttime electric power, much of the conventional daytime cold heat transfer power can be covered by inexpensive nighttime electric power, thereby reducing running costs. In addition, since a plurality of ice machines and ice storage tanks are provided, a large ice storage tank such as an underground pit can be dispensed with, and in addition, an ice machine and ice storage tank of a scale suitable for the load of a plurality of cooling target areas can be provided. It can be installed and the initial cost can be reduced appropriately. Furthermore, the low-temperature refrigerator and the plurality of ice-making machines, the heat exchange means for heat storage of the building body, and the heat exchange means for cooling are connected via a closed pipe to form a closed circuit. There is no need to secure them, the installation location of the low-temperature refrigerator is not restricted, and the degree of freedom in designing the system is increased. In this respect, the system can be constructed at low cost.

【0037】また、請求項2に係る発明の躯体蓄熱型冷
房システムによれば、氷掻き取り部材の回転数を変更す
ることにより、製氷・蓄熱運転時の製氷量を、そして、
冷房運転時の氷蓄熱槽からの冷熱の取り出し量をそれぞ
れ調整できるから、冷房能力の制御を容易に行える。
Further, according to the cooling system of the present invention, the number of rotations of the ice scraping member is changed, so that the amount of ice during the ice making and heat storage operation can be reduced.
Since the amount of cold heat taken out from the ice storage tank during the cooling operation can be adjusted, the cooling capacity can be easily controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る躯体蓄熱型冷房システムの第1実
施例を示す全体システム構成図である。
FIG. 1 is an overall system configuration diagram showing a first embodiment of a skeleton thermal storage type cooling system according to the present invention.

【図2】図1の要部の拡大構成図である。FIG. 2 is an enlarged configuration diagram of a main part of FIG. 1;

【図3】本発明に係る躯体蓄熱型冷房システムの第2実
施例の要部を示す概略システム構成図である。
FIG. 3 is a schematic system configuration diagram showing a main part of a second embodiment of a skeleton thermal storage type cooling system according to the present invention.

【符号の説明】[Explanation of symbols]

1…ターボ冷凍機(低温冷凍機) 10…冷房用コイル(躯体蓄熱用熱交換手段) 21,30…製氷機 22…冷房用凝縮器(躯体蓄熱用熱交換手段) 23,32…氷蓄熱槽 26,33…第1の密閉配管 27,34…第2の密閉配管 29,36…第3の密閉配管 DESCRIPTION OF SYMBOLS 1 ... Turbo refrigerator (low-temperature refrigerator) 10 ... Cooling coil (heat exchange means for heat storage of frame) 21, 30 ... Ice machine 22 ... Condenser for cooling (heat exchange means for heat storage of frame) 23, 32 ... Ice heat storage tank 26, 33: first closed pipe 27, 34: second closed pipe 29, 36: third closed pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉竹 裕二 大阪市中央区城見1丁目2番27号 株式会 社サンウェル・ジャパン内 Fターム(参考) 3L092 TA12 UA02 UA25 UA33 UA34 VA07 WA15  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yuji Yoshitake 1-2-27 Jomi, Chuo-ku, Osaka City F-term in Sunwell Japan Co., Ltd. (Reference) 3L092 TA12 UA02 UA25 UA33 UA34 VA07 WA15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低温熱媒を取り出す低温冷凍機に、低温
熱媒との熱交換によって製氷する製氷機の複数個を密閉
配管を介して並列接続するとともに、前記製氷機それぞ
れに、前記製氷機で得られた氷を蓄える氷蓄熱槽を接続
し、前記製氷機それぞれに、躯体に冷熱を供給する躯体
蓄熱用熱交換手段と室内に冷風を供給する冷房用熱交換
手段とを前記氷蓄熱槽と並列に密閉配管を介して接続
し、前記低温冷凍機からの低温熱媒を前記製氷機と前記
躯体蓄熱用熱交換手段の両方に供給して製氷と躯体蓄熱
の両方を行う製氷・蓄熱運転状態と、前記製氷機を解氷
用熱交換器として作用させて前記氷蓄熱槽に蓄えられた
冷熱を前記冷房用熱交換手段に供給する冷房運転状態と
に切り換え可能に構成してあることを特徴とする躯体蓄
熱型冷房システム。
1. A plurality of icemakers for making ice by heat exchange with a low-temperature heat medium are connected in parallel via a closed pipe to a low-temperature refrigerator for taking out the low-temperature heat medium, and the icemakers are connected to the respective ice-makers. An ice heat storage tank for storing the ice obtained in step 1 is connected, and each of the ice making machines is provided with a heat exchange means for supplying heat to the body and a heat exchange means for cooling for supplying cool air to the room. An ice making / heat storage operation in which the low temperature heat medium from the low temperature refrigerator is supplied to both the ice making machine and the heat exchange means for heat storage of the frame to perform both ice making and heat storage of the frame. State and a cooling operation state in which the ice making machine acts as a heat-exchanging heat exchanger to supply the cold heat stored in the ice heat storage tank to the cooling heat exchange means. Features a heat storage type cooling system.
【請求項2】 請求項1に記載の製氷機が、 低温熱媒の流動空間を備えて周面に氷を生成する円筒体
と、 前記円筒体の筒軸芯周りで回転し、前記円筒体の周面に
生成した氷を掻き取る氷掻き取り部材と、 前記氷掻き取り部材を、回転数を変更可能に駆動回転す
る駆動手段と、 を備えている躯体蓄熱型冷房システム。
2. The ice making machine according to claim 1, further comprising: a cylindrical body provided with a flow space of a low-temperature heat medium and generating ice on a peripheral surface; and the cylindrical body rotating around a cylindrical axis of the cylindrical body. A heat storage type cooling system, comprising: an ice scraping member that scrapes ice generated on a peripheral surface of the body; and a driving unit that drives and rotates the ice scraping member so that the number of rotations can be changed.
【請求項3】 請求項1または請求項2のいずれかに記
載の躯体蓄熱用熱交換手段と冷房用熱交換手段とを兼用
構成してある躯体蓄熱型冷房システム。
3. A skeleton heat storage type cooling system wherein the skeleton heat storage heat exchange means and the cooling heat exchange means according to claim 1 are combined.
JP11013355A 1999-01-21 1999-01-21 Cooling system based on heat accumulation through building body Pending JP2000213775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11013355A JP2000213775A (en) 1999-01-21 1999-01-21 Cooling system based on heat accumulation through building body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11013355A JP2000213775A (en) 1999-01-21 1999-01-21 Cooling system based on heat accumulation through building body

Publications (1)

Publication Number Publication Date
JP2000213775A true JP2000213775A (en) 2000-08-02

Family

ID=11830804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11013355A Pending JP2000213775A (en) 1999-01-21 1999-01-21 Cooling system based on heat accumulation through building body

Country Status (1)

Country Link
JP (1) JP2000213775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369859A (en) * 2016-10-31 2017-02-01 天津大学 Multifunctional high-precision constant-temperature and constant-humidity control freezing and refrigerating system
CN115013895A (en) * 2022-06-14 2022-09-06 河北工程大学 Transverse heat exchange ice energy storage heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369859A (en) * 2016-10-31 2017-02-01 天津大学 Multifunctional high-precision constant-temperature and constant-humidity control freezing and refrigerating system
CN115013895A (en) * 2022-06-14 2022-09-06 河北工程大学 Transverse heat exchange ice energy storage heat exchanger
CN115013895B (en) * 2022-06-14 2023-05-26 河北工程大学 Transverse heat exchange ice energy storage heat exchanger

Similar Documents

Publication Publication Date Title
US3822561A (en) Self contained air cooling unit
CN100419349C (en) Refrigeration system
JP3882056B2 (en) Refrigeration air conditioner
JP2009236441A (en) Heat pump type refrigerating device
JPS58217133A (en) Heat pump system
KR100681462B1 (en) Magneto-Refrigeration Air conditioner
KR20200084238A (en) A cooling system without an outdoor unit combining a freezer and an air conditioner
JP2000213775A (en) Cooling system based on heat accumulation through building body
JP3814877B2 (en) Thermal storage air conditioner
JPH10205834A (en) Cold heat apparatus and refrigerating equipment
KR20100114296A (en) Apparatus for refrigeration cycle using ice thermal storage and showcase including the apparatus and control method for the same
JP2641394B2 (en) Cooling method and cooling device for showcase and vending machine
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
KR101770806B1 (en) cold or hot storage system
JP2000240980A (en) Refrigerator/air conditioner
JP3276013B2 (en) Thermal storage system
JP2875510B2 (en) Cooling method and cooling device for cooling equipment
JPH09159210A (en) Cooling system
JP3611424B2 (en) Refrigerated air conditioning apparatus and refrigerated air conditioning method
JPH10227498A (en) Thermal storage type cooling and heating method
JP2957923B2 (en) Showcase cooling method and cooling device
JP2003329316A (en) Cold generation system
KR100466504B1 (en) Air-cooler
JPH05180469A (en) Air conditioning
JPH09126500A (en) Heat storage type air-conditioner