JP2000213709A - Manufacture of low unburned carbon ash - Google Patents
Manufacture of low unburned carbon ashInfo
- Publication number
- JP2000213709A JP2000213709A JP1158799A JP1158799A JP2000213709A JP 2000213709 A JP2000213709 A JP 2000213709A JP 1158799 A JP1158799 A JP 1158799A JP 1158799 A JP1158799 A JP 1158799A JP 2000213709 A JP2000213709 A JP 2000213709A
- Authority
- JP
- Japan
- Prior art keywords
- unburned carbon
- ash
- residual powder
- fluidized bed
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、低未燃炭素灰の製
造方法に関し、さらに詳しくは、石炭,石油,廃棄物な
どの有機質資源の熱処理時に発生するフライアッシュな
どの残渣粉体を、流動層炉中で燃焼処理することによ
り、未燃炭素分を低減させ、高品質の低未燃炭素灰を効
率よく製造する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low-burning unburned carbon ash, and more particularly, to a method for removing residual powder such as fly ash generated during heat treatment of organic resources such as coal, petroleum and waste. The present invention relates to a method for efficiently producing high-quality low-unburnt carbon ash by reducing unburned carbon content by performing combustion treatment in a bed furnace.
【0002】[0002]
【従来の技術】産業廃棄物の一つとして、石炭燃焼に伴
って排出される石炭灰、いわゆるフライアッシュが知ら
れている。わが国においては、この石炭灰は、1996
年度で約720万トン排出されており、そして、その3
0%程度が廃棄処分されている。このような廃棄物自体
の大量発生、あるいは該廃棄物の運搬時のエネルギー消
費による二酸化炭素の発生などの環境面や、今後の灰処
理地の減少、高騰する灰処理費などを考慮すると、該石
炭灰の有効利用技術の開発は急務となっている。現在、
フライアッシュの中で品質の高いものは、セメント代替
として有償で取り引きされているが、このような高い付
加価値を有するJIS適合フライアッシュは、粒径分
布,灰中未燃炭素分,比表面積などの品質管理が困難な
ことから、約7%の50万トン程度しか利用されていな
いのが実状である。このため、わが国では現在、フライ
アッシュのJIS規格を改訂中であり、従来の品質基準
を1ランクから4ランクへ拡大して、リサイクル促進が
図られようとしている。高付加価値のフライアッシュが
生成され、有償でセメント代替としてリサイクルが促進
されれば、廃棄物自体の発生量の低減、廃棄物輸送時や
セメント製造時に発生する二酸化炭素低減による環境性
の向上のみならず、石炭利用サイトにおける灰処理地の
有効利用、さらには灰処理費の大幅低減などによる運用
性の向上が期待される。2. Description of the Related Art As one of industrial wastes, coal ash discharged from coal combustion, so-called fly ash, is known. In Japan, this coal ash was produced in 1996
Approximately 7.2 million tons are released in the fiscal year, and
About 0% are disposed of. Considering the environmental aspects such as the large amount of waste itself or the generation of carbon dioxide due to the energy consumption during transportation of the waste, the reduction of future ash disposal sites, the rising ash disposal costs, etc. Development of technology for effective utilization of coal ash is urgently needed. Current,
High-quality fly ash is traded as a substitute for cement for a fee. JIS-compliant fly ash with such high added value has a particle size distribution, unburned carbon content in ash, specific surface area, etc. Because of the difficulty in quality control, only about 7% of the 500,000 tons are actually used. For this reason, in Japan, the JIS standard for fly ash is currently being revised, and the existing quality standards have been expanded from one rank to four ranks to promote recycling. If high-value-added fly ash is generated and recycling is promoted as a substitute for cement for a fee, only the reduction of the amount of waste itself and the improvement of the environment by reducing the carbon dioxide generated during waste transportation and cement production will be improved. Rather, it is expected that operability will be improved through effective use of ash disposal sites at coal utilization sites and drastic reduction of ash disposal costs.
【0003】従来、フライアッシュの高品質化の実用技
術は少なく、例えばサイクロン分級器などを用いて、空
力学的に粒子の密度差と粒径の差を利用し、未燃炭素分
と粒度分布の調整が一部で行われているにすぎない。し
かしながら、この方法においては、多量の微細なアッシ
ュがサイクロン内へ同伴されるため、粒子群に同伴した
微細粒子が粗い粒子側に残存する割合が多く、分級が不
充分である。また、未燃炭素分が鉱物質と分離していれ
ばよいが、有機質資源種によっては、単一粒子中に未燃
炭素分が混在している粒子の割合が多いものがあり、こ
のような場合には、未燃炭素分の分離も不充分であるな
どの問題を有している。フライアッシュは、一般に未燃
炭素分を数%以上含んでいるが、JISに適合した高品
質の灰は、できる限り未燃炭素分の少ないことが要求さ
れる。Conventionally, there are few practical techniques for improving the quality of fly ash. For example, using a cyclone classifier or the like, the difference in particle density and particle size is utilized aerodynamically to obtain unburned carbon content and particle size distribution. Adjustments are only made in part. However, in this method, since a large amount of fine ash is entrained in the cyclone, a large proportion of the fine particles entrained in the particle group remains on the coarse particle side, and the classification is insufficient. In addition, it is sufficient that the unburned carbon component is separated from the mineral substance. In this case, there is a problem that the separation of the unburned carbon content is insufficient. Fly ash generally contains several percent or more of unburned carbon, but ash conforming to JIS is required to have as little unburned carbon as possible.
【0004】[0004]
【発明が解決しようとする課題】本発明は、このような
状況下で、石炭,石油,廃棄物などの有機質資源の熱処
理(燃焼,ガス化,液化,熱分解など)により発生する
残渣粉体中の未燃炭素分を低減させ、付加価値の高い高
品質の低未炭素灰を効率よく製造する方法を提供するこ
とを目的とするものである。SUMMARY OF THE INVENTION The present invention is directed to a method for producing residual powder generated by heat treatment (combustion, gasification, liquefaction, thermal decomposition, etc.) of organic resources such as coal, petroleum, and waste under such circumstances. It is an object of the present invention to provide a method for efficiently producing high-quality, low-value, low-carbon ash with high added value by reducing the unburned carbon content therein.
【0005】[0005]
【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、平均粒径があ
る値以下の残渣粉体を、該残渣粉体の平均粒径の10〜
100倍の粒径を有する粒子が充填された流動層炉にお
いて、流動させながら特定の温度で燃焼させることによ
り、その目的を達成しうることを見出した。本発明は、
かかる知見に基づいて完成したものである。すなわち、
本発明は、有機質資源の熱処理により発生する平均粒径
20μm以下の残渣粉体を、該残渣粉体の平均粒径に対
し、10〜100倍の粒径を有する粒子が充填された流
動層炉において、流動させながら700〜1000℃の
範囲の温度で燃焼させることを特徴とする低未燃炭素灰
の製造方法を提供するものである。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that a residue powder having an average particle size of a certain value or less is reduced to an average particle size of the residue powder. Of 10
It has been found that the object can be achieved by burning at a specific temperature while flowing in a fluidized bed furnace filled with particles having a particle size 100 times larger. The present invention
It has been completed based on such knowledge. That is,
The present invention provides a fluidized-bed furnace in which a residual powder having an average particle diameter of 20 μm or less generated by heat treatment of an organic resource is filled with particles having a particle diameter of 10 to 100 times the average particle diameter of the residual powder. And burning the mixture at a temperature in the range of 700 to 1000 ° C. while flowing the same.
【0006】[0006]
【発明の実施の形態】本発明の低未燃炭素灰の製造方法
において、原材料として用いられる有機質資源の熱処理
時に発生する残渣粉体としては特に制限はなく、例えば
石炭,石油,一般廃棄物や産業廃棄物などの廃棄物の燃
焼,ガス化,液化又は熱分解時に発生する残渣粉体を挙
げることができる。これらの中で、特に微粉炭の燃焼ボ
イラーから集塵器で採取されるフライアッシュが好適で
ある。本発明においては、該残渣粉体として平均粒径2
0μm以下のものが用いられる。フライアッシュには、
通常粒径が1〜6μm程度の球形粒子と粒径が数十μm
程度の不定形粒子が含まれており、未燃炭素分が多くな
るに伴って不定形粒子の割合が多くなる。この原材料の
残渣粉体中の未燃炭素分は、該残渣粉体の由来により左
右されるが、一般的には、5〜40重量%程度の未燃炭
素分を含む残渣粉体が用いられる。BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing low unburned carbon ash of the present invention, there is no particular limitation on residue powder generated during heat treatment of an organic resource used as a raw material, for example, coal, petroleum, general waste, Residual powder generated during combustion, gasification, liquefaction, or thermal decomposition of waste such as industrial waste can be mentioned. Among them, fly ash collected by a dust collector from a pulverized coal combustion boiler is particularly preferable. In the present invention, the residual powder has an average particle size of 2
Those having a size of 0 μm or less are used. For fly ash,
Normally, spherical particles having a particle size of about 1 to 6 μm and a particle size of several tens μm
To a certain degree, and the proportion of the irregular particles increases as the unburned carbon content increases. The unburned carbon content in the residual powder of the raw material depends on the origin of the residual powder, but generally a residual powder containing about 5 to 40% by weight of unburned carbon is used. .
【0007】本発明の方法においては、前記の平均粒径
が20μm以下の残渣粉体を、流動層炉中において流動
させながら、燃焼処理して未燃炭素分を減少させる。こ
の際、流動層炉としては、使用する残渣粉体の平均粒径
に対し、10〜100倍の粒径を有する粒子(流動化粒
子)を充填したものが用いられる。該流動化粒子の粒径
が上記範囲を逸脱すると流動化が充分に起こらず、本発
明の目的が達せられない。流動層炉に充填される流動化
粒子の材質については特に制限はないが、例えばアルミ
ナ,シリカ,シリカ−アルミナ,チタニア,ジルコニア
などの粒子が好ましく用いられる。流動化ガスとして
は、通常空気が用いられ、また、その流速は、流動化し
うるのに充分な速度であり、かつ残渣粒子の滞留時間が
所望の未燃炭素分含量になるのに充分とれる速度であれ
ばよく、特に制限はない。In the method of the present invention, the residual powder having an average particle diameter of 20 μm or less is subjected to a combustion treatment while flowing in a fluidized bed furnace to reduce the unburned carbon content. In this case, a fluidized-bed furnace filled with particles (fluidized particles) having a particle diameter 10 to 100 times the average particle diameter of the residual powder to be used is used. If the particle size of the fluidized particles is out of the above range, fluidization does not sufficiently occur, and the object of the present invention cannot be achieved. The material of the fluidized particles to be charged into the fluidized bed furnace is not particularly limited, but particles such as alumina, silica, silica-alumina, titania, and zirconia are preferably used. Air is usually used as the fluidizing gas, and the flow rate is a rate sufficient to enable fluidization and a rate sufficient to allow the residence time of the residual particles to reach the desired unburned carbon content. There is no particular limitation.
【0008】本発明においては、この流動層炉における
燃焼温度は700〜1000℃の範囲で選定される。こ
の温度が700℃未満では未燃炭素分が充分に減少せ
ず、本発明の目的が達せられず、また1000℃を超え
ると残渣粉体が溶けて流動しなくなるなどの不都合が生
ずる。未燃炭素分の減少効果及び流動性などを考慮する
と、この燃焼温度は800〜900℃の範囲が好まし
い。このようにして燃焼処理された残渣粉体はその一部
が流動化ガスに伴って、流動層から飛び出すので、サイ
クロンやフィルターなどを用いて、それを回収すること
により、未燃炭素分が少なく、かつ粒径の比較的揃った
低未燃炭素灰(燃焼処理灰)が得られる。このようにし
て得られた燃焼処理灰中の未燃炭素分の含有量は、通常
5重量%未満であり、セメント・コンクリート分野での
使用において要求される充分な品質を有している。[0008] In the present invention, the combustion temperature in the fluidized bed furnace is selected in the range of 700 to 1000 ° C. If the temperature is lower than 700 ° C., the unburned carbon content is not sufficiently reduced, and the object of the present invention cannot be achieved. If the temperature is higher than 1000 ° C., inconveniences such as melting of the residual powder and not flowing are caused. Considering the effect of reducing unburned carbon and the fluidity, the combustion temperature is preferably in the range of 800 to 900C. A part of the residue powder burned in this way jumps out of the fluidized bed along with the fluidizing gas.Therefore, by collecting it using a cyclone or a filter, the unburned carbon content is reduced. In addition, low unburned carbon ash (combustion treated ash) having a relatively uniform particle size can be obtained. The content of unburned carbon in the burnt ash obtained in this manner is usually less than 5% by weight, and has a sufficient quality required for use in the cement / concrete field.
【0009】[0009]
【実施例】次に、本発明を実施例により、さらに詳しく
説明するが、本発明は、これらの例によってなんら限定
されるものではない。なお、原材料のフライアッシュ及
び燃焼処理灰(低未燃炭素灰)中の未燃炭素分の含有量
は、熱天秤を用い、815℃で燃焼することにより、測
定した。 実施例1 流動層炉として、内径2.5cm、高さ30cmの石英反
応器に、流動化粒子である32〜62メッシュのアルミ
ナ粒子32ミリリットルを充填したものを用い、反応器
から飛び出したフライアッシュは、サイクロン及びフィ
ルターによって回収した。フライアッシュとして実験用
微粉炭燃焼炉から回収した、平均粒径10.0μm、未燃
炭素分含有量17.6重量%の山西炭燃焼灰を用い、流動
層の静止層高さが8cmとなるように、上記反応器に仕
込み、流動化ガス(空気)流速7.2cm/秒、温度82
0℃の条件で燃焼試験を行った。燃焼処理灰の回収率、
回収した燃焼処理灰の未燃炭素分の含有量及び平均粒径
を求め、結果を第1表に示した。なお、回収率は、反応
器出口以降で回収したすべての燃焼処理灰の重量を、供
給した原材料のフライアッシュ重量で除し、百分率で表
した値である。Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The content of unburned carbon in fly ash and burned ash (low unburned carbon ash) as raw materials was measured by burning at 815 ° C. using a thermobalance. Example 1 As a fluidized bed furnace, a quartz reactor having an inner diameter of 2.5 cm and a height of 30 cm charged with 32 ml of 32-62 mesh alumina particles as fluidized particles was used, and fly ash jumped out of the reactor. Was collected by cyclone and filter. As a fly ash, a Shanxi coal ash with an average particle diameter of 10.0 μm and an unburned carbon content of 17.6% by weight, collected from an experimental pulverized coal combustion furnace, is used, and the height of the fluidized bed is 8 cm. Thus, the reactor was charged, and the fluidizing gas (air) flow rate was 7.2 cm / sec, and the temperature was 82
A combustion test was performed at 0 ° C. Recovery rate of combustion ash,
The unburned carbon content and the average particle size of the recovered combustion ash were determined, and the results are shown in Table 1. The recovery rate is a value expressed as a percentage by dividing the weight of all the combustion ash recovered from the outlet of the reactor by the weight of fly ash of the supplied raw material.
【0010】実施例2〜4 実施例1において、流動層の静止層の高さ及び/又は流
動化ガスの流速を、第1表に示すように変えた以外は、
実施例1と同様な操作を行った。結果を第1表に示す。Examples 2 to 4 In Example 1, except that the height of the stationary bed of the fluidized bed and / or the flow rate of the fluidizing gas were changed as shown in Table 1,
The same operation as in Example 1 was performed. The results are shown in Table 1.
【0011】[0011]
【表1】 [Table 1]
【0012】実施例1及び2は、流動層の静止高さを変
えた場合の比較であり、層高を高くした方が燃焼処理灰
中の未燃炭素分の除去率が高く、実施例2では、回収し
た燃焼処理灰中の未燃炭素分は3.3重量%と極めて低
い。層高が高い場合に、未燃炭素分除去率が向上した理
由の一つは、フライアッシュの流動層内滞在時間が増大
したことによるものと思われる。実施例2〜4は、ガス
流速を変えた場合の比較であり、ガス流速の増加と共
に、燃焼処理灰の回収率は増加するが、回収灰中の未燃
炭素分も増加している。これは、ガス流速を増加するこ
とにより、フライアッシュの流動層内の滞在時間が減少
するためである。フライアッシュをセメント・コンクリ
ート分野で有効利用するためには、灰中の未燃炭素分を
5重量%以下にすることが要求されるが、第1表から、
回収率はやや低いものの、燃焼処理灰中の未燃炭素分を
5重量%以下に実現できることが明らかとなった。Examples 1 and 2 are comparisons in the case where the stationary height of the fluidized bed is changed. The higher the bed height, the higher the removal rate of unburned carbon in the combustion ash. The unburned carbon content in the recovered combustion ash is extremely low at 3.3% by weight. One of the reasons why the unburned carbon removal rate was improved when the bed height was high is thought to be due to the increased residence time of fly ash in the fluidized bed. Examples 2 to 4 are comparisons in the case of changing the gas flow rate. As the gas flow rate increases, the recovery rate of the combustion ash increases, but the unburned carbon content in the recovered ash also increases. This is because the residence time of the fly ash in the fluidized bed is reduced by increasing the gas flow rate. In order to effectively utilize fly ash in the field of cement and concrete, it is required that the unburned carbon content in the ash be 5% by weight or less.
Although the recovery rate was somewhat low, it became clear that the unburned carbon content in the combustion ash could be realized to 5% by weight or less.
【0013】実施例5及び6 実施例1において、原材料のフライアッシュとして、実
験用微粉炭燃焼炉から回収した平均粒径6.1μm、未燃
炭素分含有量9.5重量%のドレイトン炭燃焼灰を用い、
流動層の静止高さ及び流動化ガス流速を、第2表に示す
ように変えた以外は、実施例1と同様な操作を行った。
その結果を第2表に示す。Examples 5 and 6 In Example 1, Drayton coal combustion having an average particle diameter of 6.1 μm and an unburned carbon content of 9.5% by weight recovered from an experimental pulverized coal combustion furnace was used as a raw material fly ash. Using ash,
The same operation as in Example 1 was performed except that the stationary height of the fluidized bed and the fluidized gas flow velocity were changed as shown in Table 2.
Table 2 shows the results.
【0014】[0014]
【表2】 [Table 2]
【0015】実施例5及び実施例6は、燃焼条件は同一
であり、2つの実験結果から、フライアッシュ回収率及
び未燃炭素分の含有量ともに若干の違いが認められるも
のの、再現性は概ね良好と判断できる。ドレイトン燃焼
灰の場合、回収灰中の未炭素分は多くても1重量%程度
であり、実施例1〜4の山西炭燃焼灰の場合に比べて、
未燃炭素分を効率よく除去できることが分かる。In Example 5 and Example 6, the combustion conditions were the same, and although the fly ash recovery rate and the unburned carbon content were slightly different from the results of the two experiments, the reproducibility was almost the same. It can be judged as good. In the case of Drayton's combustion ash, the uncarbon content in the recovered ash is at most about 1% by weight, compared with the case of the Shanxi coal combustion ash in Examples 1 to 4.
It can be seen that unburned carbon can be efficiently removed.
【0016】[0016]
【発明の効果】本発明によれば、石炭,石油,廃棄物な
どの有機質資源の熱処理時に発生するフライアッシなど
の残渣を、流動層炉中で燃焼処理することにより、未燃
炭素分を低減させ、高品質の低未燃炭素灰を効率よく製
造することができる。このようにして得られた低未燃炭
素灰は、例えば、セメント代替品などとして好適に用い
られる。According to the present invention, unburned carbon is reduced by burning residues such as fly ash generated during heat treatment of organic resources such as coal, petroleum and waste in a fluidized bed furnace. As a result, high-quality, low-burning unburned carbon ash can be efficiently produced. The low unburned carbon ash obtained in this way is suitably used, for example, as a cement substitute.
Claims (3)
粒径20μm以下の残渣粉体を、該残渣粉体の平均粒径
に対し、10〜100倍の粒径を有する粒子が充填され
た流動層炉において、流動させながら700〜1000
℃の範囲の温度で燃焼させることを特徴とする低未燃炭
素灰の製造方法。1. A fluidized bed in which a residue powder having an average particle diameter of 20 μm or less generated by heat treatment of an organic resource is filled with particles having a particle diameter of 10 to 100 times the average particle diameter of the residue powder. 700-1000 while flowing in a furnace
A method for producing low unburned carbon ash, characterized by burning at a temperature in the range of ° C.
粒径20μm以下の残渣粉体が、石炭,石油又は廃棄物
の燃焼,ガス化,液化又は熱分解時に発生する残渣粉体
である請求項1記載の低未燃炭素灰の製造方法。2. The residue powder having an average particle size of 20 μm or less generated by heat treatment of an organic resource is a residue powder generated during combustion, gasification, liquefaction, or thermal decomposition of coal, petroleum, or waste. The method for producing low unburned carbon ash according to the above.
粒径20μm以下の残渣粉体が、フライアッシュである
請求項2記載の低未燃炭素灰の製造方法。3. The method for producing low unburned carbon ash according to claim 2, wherein the residual powder having an average particle size of 20 μm or less generated by heat treatment of the organic resources is fly ash.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158799A JP2000213709A (en) | 1999-01-20 | 1999-01-20 | Manufacture of low unburned carbon ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158799A JP2000213709A (en) | 1999-01-20 | 1999-01-20 | Manufacture of low unburned carbon ash |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000213709A true JP2000213709A (en) | 2000-08-02 |
Family
ID=11782046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1158799A Pending JP2000213709A (en) | 1999-01-20 | 1999-01-20 | Manufacture of low unburned carbon ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000213709A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008247641A (en) * | 2007-03-29 | 2008-10-16 | Reiseki:Kk | Light weight ceramic, heat insulating material consisting of the light weight ceramic and manufacturing method of the light weight ceramic |
CN105441131A (en) * | 2015-11-10 | 2016-03-30 | 清华大学 | Method for preparing ash and steam by oxidation and decarbonization of coal gasification ash residues |
JP6722839B1 (en) * | 2019-03-18 | 2020-07-15 | 株式会社トクヤマ | Method of modifying fly ash |
WO2020189109A1 (en) * | 2019-03-18 | 2020-09-24 | 株式会社トクヤマ | Fly ash modification method |
CN111836792A (en) * | 2018-03-13 | 2020-10-27 | 株式会社德山 | Method and device for modifying fly ash |
KR102718601B1 (en) | 2019-03-18 | 2024-10-18 | 가부시끼가이샤 도꾸야마 | Method of modifying fly ash |
-
1999
- 1999-01-20 JP JP1158799A patent/JP2000213709A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008247641A (en) * | 2007-03-29 | 2008-10-16 | Reiseki:Kk | Light weight ceramic, heat insulating material consisting of the light weight ceramic and manufacturing method of the light weight ceramic |
CN105441131A (en) * | 2015-11-10 | 2016-03-30 | 清华大学 | Method for preparing ash and steam by oxidation and decarbonization of coal gasification ash residues |
CN105441131B (en) * | 2015-11-10 | 2018-04-20 | 清华大学 | A kind of method of coal gasification lime-ash oxidation and decarbonization ash content coproduction steam |
CN111836792A (en) * | 2018-03-13 | 2020-10-27 | 株式会社德山 | Method and device for modifying fly ash |
US11407683B2 (en) | 2018-03-13 | 2022-08-09 | Tokuyama Corporation | Process for reforming the fly ash and apparatus therefor |
JP6722839B1 (en) * | 2019-03-18 | 2020-07-15 | 株式会社トクヤマ | Method of modifying fly ash |
WO2020189109A1 (en) * | 2019-03-18 | 2020-09-24 | 株式会社トクヤマ | Fly ash modification method |
CN113544105A (en) * | 2019-03-18 | 2021-10-22 | 株式会社德山 | Modification method of fly ash |
KR20210138600A (en) | 2019-03-18 | 2021-11-19 | 가부시끼가이샤 도꾸야마 | How to reform fly ash |
KR102718601B1 (en) | 2019-03-18 | 2024-10-18 | 가부시끼가이샤 도꾸야마 | Method of modifying fly ash |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000140800A (en) | Device for gasification treatment of waste | |
JPH10310783A (en) | High-temperature gasification of waste and system therefor | |
WO2019181619A1 (en) | Fly ash modification method | |
KR950011827B1 (en) | Proces for the conversion of coal and gypsum to valuble products | |
US4389019A (en) | Method of and apparatus for the dry separation of pyrite from coal | |
JP2003039056A (en) | Waste treatment method and apparatus utilizing metal refining process | |
JP2000213709A (en) | Manufacture of low unburned carbon ash | |
JP3830096B2 (en) | Carbonization system | |
CN113544105A (en) | Modification method of fly ash | |
JPH09235559A (en) | Utilization of residue and waste in terms of material and energy in upright furnace | |
JP4918833B2 (en) | Waste melting furnace and waste melting furnace operating method | |
EP1076206A1 (en) | Method for processing furnace-bottom residue produced in gasification and slagging combustion furnace | |
JPH1157653A (en) | Recovery device for slag of waste and slagging method | |
JPH11173523A (en) | Method and device for treating waste through combustion | |
JP3670219B2 (en) | Method and apparatus for producing and using solid waste fuel | |
JP3909514B2 (en) | Method for treating bottom residue of gasification melting furnace | |
JP5737588B2 (en) | Abrasive material manufacturing method and abrasive material | |
JP3941196B2 (en) | Waste gasification method and apparatus | |
JP3627951B2 (en) | Aggregation of waste molten slag | |
JP2000303078A (en) | Apparatus for recovering char from coal gasifier plant | |
KR100581509B1 (en) | Method for improving properties of combustion residues produced by combustion plant, and method for treatment of the residues | |
JP2003287209A (en) | Pressurized two-stage gasification method for combustible refuse | |
JP3495476B2 (en) | Method and apparatus for treating waste containing chlorine-containing plastic | |
JPH0885797A (en) | Production of refuse-solidified fuel | |
JP2001153324A (en) | Method for treating residue at furnace bottom of gasification melting furnace |