JP2000210566A - Catalyst for producing methacrylic acid, its production, and production of methacrylic acid using same catalyst - Google Patents

Catalyst for producing methacrylic acid, its production, and production of methacrylic acid using same catalyst

Info

Publication number
JP2000210566A
JP2000210566A JP11043391A JP4339199A JP2000210566A JP 2000210566 A JP2000210566 A JP 2000210566A JP 11043391 A JP11043391 A JP 11043391A JP 4339199 A JP4339199 A JP 4339199A JP 2000210566 A JP2000210566 A JP 2000210566A
Authority
JP
Japan
Prior art keywords
catalyst
heat treatment
methacrylic acid
producing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11043391A
Other languages
Japanese (ja)
Other versions
JP3581038B2 (en
Inventor
Yuichiro Nagata
祐一郎 永田
Seigo Watanabe
聖午 渡辺
Motomu Okita
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP04339199A priority Critical patent/JP3581038B2/en
Publication of JP2000210566A publication Critical patent/JP2000210566A/en
Application granted granted Critical
Publication of JP3581038B2 publication Critical patent/JP3581038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of producing methacrylic acid at high production yield by gas phase contact oxidation of metacrolein, a production method of the catalyst, and a production method of methacrylic acid. SOLUTION: This catalyst for producing methacrylic acid is produced by heating a catalyst precursor containing at least molybdenum, phosphorus, and vanadium at 350-500 deg.C for 1-30 hours at least two times in the gas ventilation condition, temporarily cooling the catalyst precursor to 250 deg.C or lower between respective heating treatment, and keeping the temperature difference of the respective heating treatment within 30 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタクロレインを
気相接触酸化してメタクリル酸を製造するのに使用する
触媒、その触媒の製造法、及びメタクリル酸の製造法に
関する。
The present invention relates to a catalyst used for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation, a method for producing the catalyst, and a method for producing methacrylic acid.

【0002】[0002]

【従来の技術】従来、メタクロレインを気相接触酸化し
てメタクリル酸を製造する際に用いられる触媒に関して
は数多くの提案がなされている。このうちモリブデン、
リン及びバナジウムを含む触媒が、メタクリル酸の収率
からみて比較的優れており、この触媒の製造過程におけ
る熱処理方法に関しても、例えば特開平5−27929
1号公報、特開平9−75740号公報、特開平9−1
73852号公報等の報告がある。特開平5−2792
91号公報では酸素濃度0.1〜10容量%の含酸素ガ
スの流通下での熱処理について、特開平9−75740
号公報では不活性ガス中400〜500℃での熱処理に
ついて、特開平9−173852号公報では空気流通下
で180〜300℃で熱処理した後湿式賦型し、さらに
300〜500℃で再度熱処理する方法について、それ
ぞれ提案されている。しかしながら、これらの方法によ
って得られた触媒は、反応成績が充分でなかったり、触
媒活性の経時低下が大きい等の問題点を有しており、工
業触媒としてはさらに改良が望まれているのが現状であ
る。
2. Description of the Related Art Conventionally, many proposals have been made on catalysts used for producing methacrylic acid by gas phase catalytic oxidation of methacrolein. Molybdenum,
The catalyst containing phosphorus and vanadium is relatively excellent in view of the yield of methacrylic acid. Regarding the heat treatment method in the production process of this catalyst, for example, Japanese Patent Application Laid-Open No. 5-27929
No. 1, JP-A-9-75740, JP-A-9-1
No. 73852 and the like. JP-A-5-2792
Japanese Patent Laid-Open No. 91-75740 discloses a heat treatment under the flow of an oxygen-containing gas having an oxygen concentration of 0.1 to 10% by volume.
In JP-A-9-173852, heat treatment is performed at 180 to 300 ° C in an air flow, then wet shaping is performed, and heat treatment is performed again at 300 to 500 ° C. Methods have been proposed for each. However, catalysts obtained by these methods have problems such as inadequate reaction results and a large decrease in catalytic activity with time, and further improvement is desired as an industrial catalyst. It is the current situation.

【0003】[0003]

【発明が解決しようとする課題】本発明は、メタクロレ
インを気相接触酸化してメタクリル酸を高収率で製造し
うる触媒及びその製造法並びにその触媒を用いるメタク
リル酸の製造法の提供を目的としている。
SUMMARY OF THE INVENTION The present invention provides a catalyst capable of producing methacrylic acid in a high yield by subjecting methacrolein to gas-phase catalytic oxidation, a method for producing the same, and a method for producing methacrylic acid using the catalyst. The purpose is.

【0004】[0004]

【課題を解決するための手段】本発明は、メタクロレイ
ンを気相接触酸化してメタクリル酸を製造するのに用い
られる少なくともモリブデン、リン及びバナジウムを含
む触媒を製造する際に、触媒前駆体を少なくとも2回、
ガス流通下に350〜500℃の温度で1〜30時間熱
処理を行い、各回の熱処理の間に触媒前駆体を250℃
以下まで一旦冷却し、かつ、各回の熱処理温度の差を3
0℃以内として製造するメタクリル酸製造用触媒にあ
る。
SUMMARY OF THE INVENTION The present invention provides a method for producing a catalyst containing at least molybdenum, phosphorus and vanadium which is used for producing methacrylic acid by subjecting methacrolein to gas phase catalytic oxidation. At least twice
Heat treatment is performed at a temperature of 350 to 500 ° C. for 1 to 30 hours under a gas flow, and the catalyst precursor is heated at 250 ° C. between each heat treatment.
Once cooled to below, and the difference between heat treatment
It is in the catalyst for producing methacrylic acid which is produced within 0 ° C.

【0005】更に本発明は、メタクロレインを気相接触
酸化してメタクリル酸を製造するのに用いられる少なく
ともモリブデン、リン及びバナジウムを含む触媒を製造
する際に、触媒前駆体を少なくとも2回、ガス流通下に
350〜500℃の温度で1〜30時間熱処理を行い、
各回の熱処理の間に触媒前駆体を250℃以下まで一旦
冷却し、かつ、各回の熱処理温度の差を30℃以内とす
るメタクリル酸製造用触媒の製造法にある。
Further, the present invention relates to a method for producing a catalyst containing at least molybdenum, phosphorus and vanadium which is used for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation. Perform heat treatment at a temperature of 350 to 500 ° C for 1 to 30 hours under circulation,
There is a method for producing a catalyst for producing methacrylic acid in which the catalyst precursor is once cooled to 250 ° C. or less during each heat treatment, and the difference between the heat treatment temperatures is 30 ° C. or less.

【0006】更に本発明は、上記触媒を用いてメタクロ
レインを気相接触酸化するメタクリル酸の製造法にあ
る。
Further, the present invention resides in a method for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation using the above catalyst.

【0007】[0007]

【発明の実施の形態】本発明のメタクロレインを気相接
触酸化してメタクリル酸を製造するのに用いられる触媒
は、少なくともモリブデン、リン及びバナジウムを含む
ものである。この触媒を調製するための原料としては特
に限定はなく、各元素の硝酸塩、炭酸塩、酢酸塩、アン
モニウム塩、酸化物、ハロゲン化物などを組み合わせて
使用することができる。例えばモリブデン原料としては
パラモリブデン酸アンモニウム、三酸化モリブデン、モ
リブデン酸、塩化モリブデン等、バナジウム原料として
はメタバナジン酸アンモニウム、五酸化バナジウム、塩
化バナジウム等が使用できる。
DETAILED DESCRIPTION OF THE INVENTION The catalyst used for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation according to the present invention contains at least molybdenum, phosphorus and vanadium. There are no particular limitations on the raw materials for preparing this catalyst, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, and the like of each element can be used in combination. For example, as a molybdenum raw material, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride and the like can be used, and as a vanadium raw material, ammonium metavanadate, vanadium pentoxide, vanadium chloride and the like can be used.

【0008】これらの触媒調製用の原料から本発明の触
媒の触媒前駆体を製造する方法としては、特殊な方法に
限定する必要はなく、成分の著しい偏在を伴わない限
り、従来からよく知られている蒸発乾固法、沈殿法、酸
化物混合法等の種々の方法を用いることができる。次い
で触媒成分を含む混合物は打錠成形機、押出し成形機、
転動造粒機等の一般的な粉体用成形機等を用いて球状、
リング状(円筒状)、円柱状、中空状、星形状等任意の
形状に成形する。なお、本発明において触媒前駆体と
は、最後の熱処理が済んでいないものを指す。
The method for producing the catalyst precursor of the catalyst of the present invention from these raw materials for preparing the catalyst does not need to be limited to a special method, and it is well known in the art so long as there is no significant uneven distribution of components. Various methods such as the evaporation to dryness method, the precipitation method, and the oxide mixing method can be used. Then, the mixture containing the catalyst component is compressed into a tableting machine, an extruder,
Spherical, using a general powder molding machine such as a rolling granulator,
It is formed into an arbitrary shape such as a ring (cylindrical), a column, a hollow, and a star. In the present invention, the catalyst precursor refers to a catalyst precursor that has not been subjected to the final heat treatment.

【0009】本発明の触媒の製造法においては触媒前駆
体をガス流通下に熱処理する。熱処理は少なくとも2回
行う。熱処理に使用するガスとしては、一回目の熱処理
に使用するものと二回目またはそれ以降の熱処理に使用
するものを同一にしてもよいが、同一でなくてもよい。
ガスの種類としては、空気、水蒸気を含む空気等の含酸
素ガスや、窒素、アルゴン等の不活性ガス等、触媒前駆
体の熱処理に使用するガスとして公知のものを使用する
ことができる。
In the method for producing a catalyst of the present invention, the catalyst precursor is heat-treated under a gas flow. The heat treatment is performed at least twice. As the gas used for the heat treatment, the gas used for the first heat treatment and the gas used for the second or subsequent heat treatment may be the same, but may not be the same.
As the type of the gas, a known gas used for the heat treatment of the catalyst precursor, such as an oxygen-containing gas such as air or air containing water vapor or an inert gas such as nitrogen or argon, can be used.

【0010】本発明において上記の熱処理は、通常の加
熱炉(装置)で行ってもよいが、触媒製造工程を簡略化
する上で、触媒前駆体をメタクリル酸製造用の反応管に
充填し、反応管中で行うことが好ましい。
In the present invention, the above heat treatment may be carried out in a usual heating furnace (apparatus). However, in order to simplify the catalyst production process, a catalyst precursor is charged into a reaction tube for producing methacrylic acid, It is preferably performed in a reaction tube.

【0011】触媒前駆体の熱処理における流通ガスの空
間速度(以下、SVと略記する。)は、各回の熱処理で
同一でもよいが、異なっていてもよく、熱処理に用いる
装置、炉の大きさに合わせて自由に決めることができる
が、100〜30000h-1が適当であり、特に300
〜10000h-1の範囲が好ましい。また、それぞれの
熱処理中に変動させてもよい。
The space velocity of the flowing gas in the heat treatment of the catalyst precursor (hereinafter, abbreviated as SV) may be the same in each heat treatment, but may be different, depending on the size of the apparatus and furnace used for the heat treatment. It can be freely determined together, but 100 to 30000 h -1 is appropriate, and especially 300
A range of from 1 to 10,000 h -1 is preferred. Further, it may be varied during each heat treatment.

【0012】熱処理の温度は、各回とも350〜500
℃の範囲内で、使用するガスの種類により自由に選択す
ることができる。熱処理はこの範囲の温度で少なくとも
2回行う。少なくとも2回熱処理を行うことにより、触
媒活性が向上し、しかも選択率は1回処理の場合とほぼ
同等に維持されることから、結果としてメタクリル酸収
率が向上する効果がある。また、各回の熱処理温度の最
大値と最小値の差は30℃以内である。触媒前駆体に施
す各回の熱処理の時間は、1〜30時間であり、好まし
くは1〜15時間の範囲である。
The temperature of the heat treatment is 350 to 500 each time.
Within the range of ° C., it can be freely selected according to the type of gas used. The heat treatment is performed at least twice at a temperature in this range. By performing the heat treatment at least twice, the catalytic activity is improved, and the selectivity is maintained substantially the same as in the case of the single treatment, so that the yield of methacrylic acid is improved. The difference between the maximum value and the minimum value of the heat treatment temperature in each time is within 30 ° C. The time of each heat treatment applied to the catalyst precursor is 1 to 30 hours, preferably 1 to 15 hours.

【0013】触媒前駆体に対し最後に行う熱処理を除
き、上記条件による各回の熱処理を施した後、一旦、2
50℃以下、好ましくは200℃以下の温度まで触媒前
駆体を冷却する必要がある。250℃以下に温度を維持
する時間は自由に決められるが、1時間から10時間の
範囲が好ましい。冷却手段としては特殊な方法に限定す
る必要はなく、加熱の中止による自然冷却、低温の流通
ガスの流通による冷却等、種々の方法で行うことができ
る。最後の熱処理を行った触媒は、反応前に冷却を行っ
ても行わなくてもよい。
Except for the last heat treatment performed on the catalyst precursor, after each heat treatment under the above conditions,
It is necessary to cool the catalyst precursor to a temperature of 50 ° C. or less, preferably 200 ° C. or less. The time for maintaining the temperature at 250 ° C. or lower can be freely determined, but is preferably in the range of 1 hour to 10 hours. The cooling means does not need to be limited to a special method, and can be performed by various methods such as natural cooling by stopping heating, cooling by flowing a low-temperature flowing gas, and the like. The catalyst that has been subjected to the final heat treatment may or may not be cooled before the reaction.

【0014】本発明は、特に下記一般式で示される組成
の触媒に対して好ましく適用される。 Pa Mob Vc Cud Xe Yf Zg Oh (ここで式中、P、Mo、V、Cu及びOはそれぞれ、
リン、モリブデン、バナジウム、銅及び酸素を示し、X
はアンチモン、ビスマス、砒素、ゲルマニウム、ジルコ
ニウム、テルル、銀、セレン、珪素、タングステン及び
ホウ素からなる群より選ばれた少なくとも1種類の元素
を、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、
コバルト、マンガン、バリウム、ガリウム、セリウム及
びランタンからなる群より選ばれた少なくとも1種の元
素を、Zはカリウム、ルビジウム、セシウム及びタリウ
ムからなる群より選ばれた少なくとも1種の元素をそれ
ぞれ示す。a、b、c、d、e、f、g及びhは各元素
の原子比率を示し、b=12のときa=0.5〜3、c
=0.01〜3、d=0.01〜2、e=0〜3、f=
0〜3、g=0.01〜3であり、hは前記各成分の原
子価を満足するのに必要な酸素の原子比率である。)
The present invention is particularly preferably applied to a catalyst having a composition represented by the following general formula. Pa Mob Vc Cud Xe Yf Zg Oh (where P, Mo, V, Cu and O are
Represents phosphorus, molybdenum, vanadium, copper and oxygen; X
Is at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron, and Y is iron, zinc, chromium, magnesium, tantalum,
Z represents at least one element selected from the group consisting of cobalt, manganese, barium, gallium, cerium and lanthanum, and Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, and h indicate the atomic ratio of each element, and when b = 12, a = 0.5-3, c
= 0.01-3, d = 0.01-2, e = 0-3, f =
0 to 3, g = 0.01 to 3, and h is an atomic ratio of oxygen necessary to satisfy the valence of each component. )

【0015】本発明の触媒は無担体でもよいが、シリ
カ、アルミナ、シリカ・アルミナ、シリコンカーバイト
等の不活性担体に担持、あるいはこれらで希釈したもの
であってもよい。
The catalyst of the present invention may be free of a carrier, or may be supported on an inert carrier such as silica, alumina, silica / alumina, silicon carbide, or diluted with such an inert carrier.

【0016】本発明の触媒を用いてメタクリル酸を製造
するに際し、原料ガス中のメタクロレインの濃度は、広
い範囲で変えることができるが、容量で1〜20%が適
当であり、特に3〜10%の範囲が好ましい。原料ガス
には低級飽和アルデヒド等の不純物を反応に実質的な影
響を与えない程度含んでいてもよい。
In producing methacrylic acid using the catalyst of the present invention, the concentration of methacrolein in the raw material gas can be varied in a wide range, but is suitably 1 to 20% by volume, and particularly preferably 3 to 20%. A range of 10% is preferred. The source gas may contain impurities such as a lower saturated aldehyde to such an extent that the reaction is not substantially affected.

【0017】原料ガス中には酸素が必要で、酸素源とし
ては空気を用いるのが経済的に有利であるが、必要なら
ば純酸素で富化した空気等も用いうる。原料ガス中の酸
素量はメタクロレインに対して0.3〜4倍モル、特に
0.4〜2.5倍モルの範囲が好ましい。原料ガスには
窒素、水蒸気、炭酸ガス等の不活性ガスが含まれていて
もよい。
Oxygen is required in the raw material gas, and it is economically advantageous to use air as the oxygen source. However, if necessary, air enriched with pure oxygen may be used. The amount of oxygen in the source gas is preferably in the range of 0.3 to 4 times mol, particularly 0.4 to 2.5 times mol of methacrolein. The source gas may contain an inert gas such as nitrogen, water vapor, or carbon dioxide.

【0018】メタクロレインからメタクリル酸を製造す
る反応の圧力は、常圧から数気圧までがよい。反応温度
は230〜450℃の範囲で選ぶことができ、特に25
0〜400℃が好ましい。反応は固定床でも流動床でも
行うことができる。
The pressure of the reaction for producing methacrylic acid from methacrolein is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 230 to 450 ° C.,
0-400 degreeC is preferable. The reaction can be carried out in a fixed bed or a fluidized bed.

【0019】[0019]

【実施例】以下、本発明を実施例、比較例を挙げて具体
的に説明する。説明中、メタクロレインの反応率、生成
するメタクリル酸の選択率及び単流収率は以下のように
定義される。また、説明中の「部」は重量部であり、原
料ガス及び生成ガスの分析はガスクロマトグラフィーに
より行った。
The present invention will be specifically described below with reference to examples and comparative examples. In the description, the conversion of methacrolein, the selectivity of methacrylic acid formed and the single-stream yield are defined as follows. “Parts” in the description are parts by weight, and the analysis of the raw material gas and the generated gas was performed by gas chromatography.

【0020】[0020]

【数1】 メタクロレインの反応率(%)=A/B×100 (Aは反応したメタクロレインのモル数、Bは供給した
メタクロレインのモル数を表す。)
## EQU00001 ## The reaction rate (%) of methacrolein = A / B.times.100 (A represents the number of moles of reacted methacrolein, and B represents the number of moles of supplied methacrolein.)

【数2】 メタクリル酸の選択率(%)=C/A×100 (Aは上記「数1」に同じ、Cは生成したメタクリル酸
のモル数を表す。)
## EQU00002 ## Selectivity (%) of methacrylic acid = C / A.times.100 (A is the same as the above "expression 1," and C represents the number of moles of methacrylic acid produced.)

【数3】 メタクリル酸の単流収率(%)=C/B×100 (Bは前記「数1」に同じ、Cは上記「数2」に同
じ。)
## EQU00003 ## Single-stream yield of methacrylic acid (%) = C / B.times.100 (B is the same as "Equation 1", and C is the same as "Equation 2")

【0021】[実施例1]パラモリブデン酸アンモニウ
ム100部、メタバナジン酸アンモニウム2.8部及び
硝酸セシウム9.2部を純水100部に溶解した。これ
に85重量%リン酸8.2部を純水30部に溶解した溶
液を加えた。次に、硝酸銅1.1部を純水30部に溶解
した溶液を加え、混合液を加熱攪拌しながら蒸発乾固し
た。得られた固形物を130℃で16時間乾燥後、加圧
成型し触媒前駆体を得た。この触媒前駆体を内径27.
5mm、長さ1mのステンレスパイプに充填し、その中
でSV1000h-1の空気流通下に380℃で3時間熱
処理した後、一旦、180℃まで冷却し、再度昇温して
SV1000h-1の空気流通下に380℃で3時間熱処
理して触媒を調製した。得られた触媒の酸素以外の元素
の組成は次式の通りであった。 Mo121.5 Cu0.10.5 Cs1
Example 1 100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved in 100 parts of pure water. To this was added a solution in which 8.2 parts of 85% by weight phosphoric acid was dissolved in 30 parts of pure water. Next, a solution prepared by dissolving 1.1 parts of copper nitrate in 30 parts of pure water was added, and the mixture was evaporated to dryness while heating and stirring. The obtained solid was dried at 130 ° C. for 16 hours and then molded under pressure to obtain a catalyst precursor. This catalyst precursor was treated with an inner diameter of 27.
A 5 mm, 1 m long stainless steel pipe was filled and heat-treated at 380 ° C. for 3 hours in an air flow of SV 1000 h −1 , then cooled to 180 ° C., and heated again to increase the air temperature to SV 1000 h −1 . The catalyst was prepared by heat treatment at 380 ° C. for 3 hours under circulation. The composition of elements other than oxygen in the obtained catalyst was as follows. Mo 12 P 1.5 Cu 0.1 V 0.5 Cs 1

【0022】この触媒を反応管に充填し、メタクロレイ
ン5%、酸素10%、水蒸気30%及び窒素55%(容
量%)の混合ガスを反応温度290℃、接触時間3.6
秒で通じた。生成物を捕集し、ガスクロマトグラフィー
で分析した。反応成績を表1に示す(以下同じ。)。
This catalyst was filled in a reaction tube, and a mixed gas of 5% methacrolein, 10% oxygen, 30% steam and 55% (volume%) nitrogen was reacted at a reaction temperature of 290 ° C. and a contact time of 3.6.
Seconds passed. The product was collected and analyzed by gas chromatography. The reaction results are shown in Table 1 (the same applies hereinafter).

【0023】[比較例1]実施例1において用いたもの
と同じ触媒前駆体をSV1000h-1の空気流通下に温
度380℃で6時間熱処理して触媒を調製し、実施例1
と同じ方法で反応を行った。
Comparative Example 1 A catalyst was prepared by heat-treating the same catalyst precursor used in Example 1 at a temperature of 380 ° C. for 6 hours under an air flow of SV 1000 h −1.
The reaction was performed in the same manner as described above.

【0024】[比較例2]実施例1において冷却温度を
260℃としたほかは、実施例1と同じ方法で触媒を調
製し、実施例1と同じ方法で反応を行った。
Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that the cooling temperature was changed to 260 ° C., and the reaction was carried out in the same manner as in Example 1.

【0025】[実施例2]実施例1において1回目の熱
処理時間を2時間、2回目の熱処理時間を5時間とした
ほかは、実施例1と同じ方法で触媒を調製し、実施例1
と同じ方法で反応を行った。
Example 2 A catalyst was prepared in the same manner as in Example 1, except that the first heat treatment time was changed to 2 hours and the second heat treatment time was changed to 5 hours.
The reaction was performed in the same manner as described above.

【0026】[実施例3]実施例1において1回目の熱
処理時間を4時間、2回目の熱処理時間を1.5時間と
したほかは、実施例1と同じ方法で触媒を調製し、実施
例1と同じ方法で反応を行った。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that the first heat treatment was performed for 4 hours and the second heat treatment was performed for 1.5 hours. Reaction was carried out in the same manner as 1.

【0027】[実施例4]実施例1において1回目の熱
処理温度を390℃、2回目の熱処理温度を370℃と
し、1回目の熱処理温度と2回目の熱処理温度差を20
℃としたほかは、実施例1と同じ方法で触媒を調製し、
実施例1と同じ方法で反応を行った。
Example 4 In Example 1, the first heat treatment temperature was 390 ° C., the second heat treatment temperature was 370 ° C., and the difference between the first heat treatment temperature and the second heat treatment temperature was 20.
A catalyst was prepared in the same manner as in Example 1 except that
The reaction was performed in the same manner as in Example 1.

【0028】[比較例3]実施例4において2回目の熱
処理温度を355℃、5時間とし、1回目の熱処理温度
と2回目の熱処理温度差を35℃としたほかは、実施例
1と同じ方法で触媒を調製し、実施例1と同じ方法で反
応を行った。
Comparative Example 3 Same as Example 1 except that the second heat treatment temperature was 355 ° C. for 5 hours and the difference between the first heat treatment temperature and the second heat treatment temperature was 35 ° C. A catalyst was prepared by the same method and reacted in the same manner as in Example 1.

【0029】[実施例5]三酸化モリブデン100部、
五酸化バナジウム2.6部及び85重量%リン酸6.7
部を純水800部に加え、100℃で6時間加熱還流し
た。これに硝酸銅1.1部を加え、更に100℃で3時
間加熱還流した。還流後、混合液温を40℃に冷却し、
純水100部に溶解した重炭酸セシウム11.2部を加
えた後、混合液を加熱して蒸発乾固した。得られた固形
物を130℃で16時間乾燥後、加圧成型し触媒前駆体
を得た。この触媒前駆体をメタクリル酸製造用反応管に
充填し、その中で、SV1000h-1の窒素流通下に4
20℃で4時間熱処理した後、一旦、180℃まで冷却
し、再度昇温してSV1000h-1の窒素流通下に42
0℃で4時間熱処理して触媒を調製した。得られた触媒
の酸素以外の元素の組成は次式の通りであった。 Mo121.0 Cu0.10.5 Cs1 この触媒を用い実施例1と同じ方法で反応を行った。
Example 5 100 parts of molybdenum trioxide
2.6 parts of vanadium pentoxide and 6.7 of 85% by weight phosphoric acid
Was added to 800 parts of pure water, and the mixture was heated and refluxed at 100 ° C. for 6 hours. To this was added 1.1 parts of copper nitrate, and the mixture was further heated and refluxed at 100 ° C. for 3 hours. After the reflux, the temperature of the mixture was cooled to 40 ° C.
After adding 11.2 parts of cesium bicarbonate dissolved in 100 parts of pure water, the mixture was heated and evaporated to dryness. The obtained solid was dried at 130 ° C. for 16 hours and then molded under pressure to obtain a catalyst precursor. The catalyst precursor was charged into a reaction tube for producing methacrylic acid, and the reaction was performed under a nitrogen flow of SV 1000 h -1.
After a heat treatment at 20 ° C. for 4 hours, the mixture was once cooled to 180 ° C., and heated again to 42 ° C. under a nitrogen flow of SV 1000 h −1.
A catalyst was prepared by heat treatment at 0 ° C. for 4 hours. The composition of elements other than oxygen in the obtained catalyst was as follows. Mo 12 P 1.0 Cu 0.1 V 0.5 Cs 1 Using this catalyst, a reaction was carried out in the same manner as in Example 1.

【0030】[比較例4]実施例5において用いたもの
と同じ触媒前駆体をSV1000h-1の窒素流通下に温
度430℃で8時間熱処理して触媒を調製し、実施例1
と同じ方法で反応を行った。
Comparative Example 4 The same catalyst precursor as used in Example 5 was heat-treated at a temperature of 430 ° C. for 8 hours under a nitrogen flow of SV 1000 h −1 to prepare a catalyst.
The reaction was performed in the same manner as described above.

【0031】[実施例6]実施例5において1回目の熱
処理をSV1000h-1の空気流通下に400℃で4時
間熱処理した後、一旦220℃まで冷却し、1回目の熱
処理温度と2回目の熱処理温度差を20℃としたほか
は、実施例5と同じ方法で触媒を調製し、実施例1と同
じ方法で反応を行った。
Example 6 In Example 5, the first heat treatment was performed at 400 ° C. for 4 hours under an air flow of SV 1000 h −1 , and then cooled to 220 ° C., and the first heat treatment temperature and the second heat treatment were performed. A catalyst was prepared in the same manner as in Example 5 except that the heat treatment temperature difference was changed to 20 ° C., and the reaction was carried out in the same manner as in Example 1.

【0032】[実施例7]実施例5において1回目の熱
処理を3時間とし、2回目の熱処理をSV1000h-1
の空気流通下に395℃で6時間熱処理し、1回目の熱
処理温度と2回目の熱処理温度差を25℃としたほか
は、実施例5と同じ方法で触媒を調製し、実施例1と同
じ方法で反応を行った。
[Example 7] In Example 5, the first heat treatment was performed for 3 hours, and the second heat treatment was performed at SV1000h -1.
A catalyst was prepared in the same manner as in Example 5 except that a heat treatment was performed at 395 ° C. for 6 hours under an air flow of 395 ° C., and the difference between the first heat treatment temperature and the second heat treatment temperature was set at 25 ° C. The reaction was performed in the manner described.

【0033】[実施例8]実施例7において1回目の熱
処理を5時間、2回目の熱処理時間を2時間としたほか
は、実施例5と同じ方法で触媒を調製し、実施例1と同
じ方法で反応を行った。
Example 8 A catalyst was prepared in the same manner as in Example 5, except that the first heat treatment was performed for 5 hours and the second heat treatment was performed for 2 hours. The reaction was performed in the manner described.

【0034】[比較例5]実施例7において1回目の熱
処理を4時間、2回目の熱処理を340℃で6時間と
し、1回目の熱処理温度と2回目の熱処理温度差を80
℃としたほかは、実施例5と同じ方法で触媒を調製し、
実施例1と同じ方法で反応を行った。
Comparative Example 5 In Example 7, the first heat treatment was performed for 4 hours, the second heat treatment was performed at 340 ° C. for 6 hours, and the difference between the first heat treatment temperature and the second heat treatment temperature was 80.
A catalyst was prepared in the same manner as in Example 5 except that
The reaction was performed in the same manner as in Example 1.

【0035】以上の各実施例、比較例における触媒調製
条件及び得られた触媒を用いた反応成績を一括して表1
に示した。
Table 1 summarizes the catalyst preparation conditions and the reaction results using the obtained catalysts in each of the above Examples and Comparative Examples.
It was shown to.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明の触媒は、メタクロレインを気相
接触酸化して、高収率でメタクリル酸を製造することが
できる。本発明の触媒の製造において、触媒前駆体の熱
処理をメタクリル酸製造用反応管に充填して行うと、触
媒製造工程が簡略化されるという効果を有する。
The catalyst of the present invention can produce methacrylic acid in high yield by subjecting methacrolein to gas-phase catalytic oxidation. In the production of the catalyst of the present invention, if the heat treatment of the catalyst precursor is performed by filling the reaction tube for producing methacrylic acid, there is an effect that the catalyst production process is simplified.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大北 求 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 Fターム(参考) 4G069 AA08 BC06B BC31B BC54A BC54B BC59A BC59B BD07A CB17 FB30 FC07 4H006 AA02 AC46 BA12 BA14 BA35 BA81 BC13 BE30 BS10 4H039 CA65 CC30  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Okutake No. 20-1, Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory F-term (reference) 4G069 AA08 BC06B BC31B BC54A BC54B BC59A BC59B BD07A CB17 FB30 FC07 4H006 AA02 AC46 BA12 BA14 BA35 BA81 BC13 BE30 BS10 4H039 CA65 CC30

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 メタクロレインを気相接触酸化してメタ
クリル酸を製造するのに用いられる少なくともモリブデ
ン、リン及びバナジウムを含む触媒を製造する際に、触
媒前駆体を少なくとも2回、ガス流通下に350〜50
0℃の温度で1〜30時間熱処理を行い、各回の熱処理
の間に触媒前駆体を250℃以下まで一旦冷却し、か
つ、各回の熱処理温度の差を30℃以内として製造した
メタクリル酸製造用触媒。
When producing a catalyst containing at least molybdenum, phosphorus and vanadium used for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation, a catalyst precursor is subjected to gas flow at least twice. 350-50
A heat treatment at a temperature of 0 ° C. for 1 to 30 hours, a catalyst precursor is once cooled to 250 ° C. or less during each heat treatment, and a difference in heat treatment temperature of each time is made within 30 ° C. for methacrylic acid production. catalyst.
【請求項2】 メタクロレインを気相接触酸化してメタ
クリル酸を製造するのに用いられる少なくともモリブデ
ン、リン及びバナジウムを含む触媒を製造する際に、触
媒前駆体を少なくとも2回、ガス流通下に350〜50
0℃の温度で1〜30時間熱処理を行い、各回の熱処理
の間に触媒前駆体を250℃以下まで一旦冷却し、か
つ、各回の熱処理温度の差を30℃以内とするメタクリ
ル酸製造用触媒の製造法。
2. When producing a catalyst containing at least molybdenum, phosphorus and vanadium used for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation, the catalyst precursor is subjected to gas flow at least twice. 350-50
Heat treatment at a temperature of 0 ° C. for 1 to 30 hours, a catalyst for methacrylic acid production wherein the catalyst precursor is once cooled to 250 ° C. or less during each heat treatment, and a difference in heat treatment temperature of each time is within 30 ° C. Manufacturing method.
【請求項3】 触媒前駆体の熱処理をメタクリル酸製造
用反応管に充填して行うことを特徴とする請求項2記載
の触媒の製造法。
3. The method for producing a catalyst according to claim 2, wherein the heat treatment of the catalyst precursor is carried out by filling the reaction tube for producing methacrylic acid.
【請求項4】 請求項1記載の触媒を用いてメタクロレ
インを気相接触酸化するメタクリル酸の製造法。
4. A method for producing methacrylic acid, comprising subjecting methacrolein to gas-phase catalytic oxidation using the catalyst according to claim 1.
JP04339199A 1998-11-16 1999-02-22 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst Expired - Lifetime JP3581038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04339199A JP3581038B2 (en) 1998-11-16 1999-02-22 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-341187 1998-11-16
JP34118798 1998-11-16
JP04339199A JP3581038B2 (en) 1998-11-16 1999-02-22 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst

Publications (2)

Publication Number Publication Date
JP2000210566A true JP2000210566A (en) 2000-08-02
JP3581038B2 JP3581038B2 (en) 2004-10-27

Family

ID=26383150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04339199A Expired - Lifetime JP3581038B2 (en) 1998-11-16 1999-02-22 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP3581038B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207068A (en) * 2007-02-23 2008-09-11 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, method for producing the catalyst and method for producing unsaturated carboxylic acid
JP2009213969A (en) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd Catalyst for unsaturated carboxylic acid synthesis, method for manufacturing the same, and method for manufacturing unsaturated carboxylic acid using this catalyst
JP2011224509A (en) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst, and method of manufacturing methacrylic acid
WO2022163727A1 (en) 2021-01-27 2022-08-04 日本化薬株式会社 Catalyst, and method for producing unsaturated carboxylic acid using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188955A1 (en) 2018-03-28 2019-10-03 日本化薬株式会社 Catalyst for manufacturing unsaturated carboxylic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207068A (en) * 2007-02-23 2008-09-11 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, method for producing the catalyst and method for producing unsaturated carboxylic acid
JP2009213969A (en) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd Catalyst for unsaturated carboxylic acid synthesis, method for manufacturing the same, and method for manufacturing unsaturated carboxylic acid using this catalyst
JP2011224509A (en) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst, and method of manufacturing methacrylic acid
WO2022163727A1 (en) 2021-01-27 2022-08-04 日本化薬株式会社 Catalyst, and method for producing unsaturated carboxylic acid using same
KR20230137338A (en) 2021-01-27 2023-10-04 닛뽄 가야쿠 가부시키가이샤 Catalyst and method for producing unsaturated carboxylic acid using the same

Also Published As

Publication number Publication date
JP3581038B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
JP4058270B2 (en) Method for producing methacrylic acid
JP3101821B2 (en) Preparation of catalyst for methacrylic acid production
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JP2002193871A (en) Method for producing methacrylic acid
JP3581038B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP2002356450A (en) Method for manufacturing methacrolein and methacrylic acid
JP4824871B2 (en) Method for producing acrolein and acrylic acid
JPH05237388A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JPH0479697B2 (en)
JP4248163B2 (en) Method for producing methacrylic acid
JPH05253480A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH11226412A (en) Production of catalyst for production of methacrylic acid and production of methacrylic acid
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JPH0975740A (en) Catalyst for production of methacrylic acid and production of methacrylic acid using the same
JPH06374A (en) Preparation of catalyst for producing unsaturated carboxylic acid
JP3764805B2 (en) Method for preparing catalyst for production of methacrylic acid and method for producing methacrylic acid
JPH03167152A (en) Production of methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term