JP2000208475A - Method and apparatus for chemical treatment - Google Patents

Method and apparatus for chemical treatment

Info

Publication number
JP2000208475A
JP2000208475A JP549399A JP549399A JP2000208475A JP 2000208475 A JP2000208475 A JP 2000208475A JP 549399 A JP549399 A JP 549399A JP 549399 A JP549399 A JP 549399A JP 2000208475 A JP2000208475 A JP 2000208475A
Authority
JP
Japan
Prior art keywords
chemical
processing
reaction
semiconductor substrate
chemical solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP549399A
Other languages
Japanese (ja)
Other versions
JP3216125B2 (en
Inventor
Kenichi Yamamoto
賢一 山本
Akinobu Nakamura
彰信 中村
Ushio Hase
潮 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP549399A priority Critical patent/JP3216125B2/en
Publication of JP2000208475A publication Critical patent/JP2000208475A/en
Application granted granted Critical
Publication of JP3216125B2 publication Critical patent/JP3216125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for chemical treatment that can significantly reduce time and labor required to set the chemical agent treatment conditions and appropriately and precisely regulate the treating performance of a chemical. SOLUTION: Each chemical reaction between the chemical and a semiconductor substrate surface is analyzed from the relationship between the concentration of chemical species dissolved in the chemical agent and the semiconductor substrate surface. The proportion of each chemical reaction contributing to the entire chemical reactions is obtained from the reaction speed ratio. This proportion is used as a parameter to set or regulate the chemical treatment conditions so that preferable chemical reactions are caused for the semiconductor substrate or an object to be treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置等の製
造プロセスにおいて、薬液により半導体基板表面あるい
は半導体基板表面に形成された材料のエッチングまたは
洗浄を行う薬液処理方法および薬液処理装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical processing method and a chemical processing apparatus for etching or cleaning a semiconductor substrate surface or a material formed on a semiconductor substrate surface with a chemical in a manufacturing process of a semiconductor device or the like. .

【0002】[0002]

【従来の技術】半導体基板のエッチングや洗浄プロセス
では、薬品を使ったウェット処理が主流である。洗浄プ
ロセスでは、対象となる処理物に対して数種類の薬液が
使い分けられる。半導体基板の表面に付着したパーティ
クルには、アンモニアと過酸化水素を含有した薬液(ア
ンモニア−過酸化水素薬液:APM)が、半導体基板の
表面の金属には、塩酸と過酸化水素を含有した薬液(塩
酸−過酸化水素薬液:HPM)が使用される。
2. Description of the Related Art In etching and cleaning processes for semiconductor substrates, wet processing using chemicals is mainly used. In the cleaning process, several types of chemicals are properly used for a target processing object. A chemical solution containing ammonia and hydrogen peroxide (ammonia-hydrogen peroxide chemical solution: APM) is applied to particles attached to the surface of the semiconductor substrate, and a chemical solution containing hydrochloric acid and hydrogen peroxide is applied to the metal on the surface of the semiconductor substrate. (Hydrochloric acid-hydrogen peroxide solution: HPM) is used.

【0003】近年、薬液を用いた半導体基板の処理で
は、半導体装置の高集積化に伴い、薬液の処理性能の厳
密な制御が重要な課題となっている。例えば、APMに
よる半導体基板の洗浄では、半導体基板に付着したパー
ティクルが、基板表面のエッチングによる脱離と、その
後に生じる基板表面との静電反発で除去されるが、エッ
チングによる基板表面のダメージ(例えば、表面マイク
ロラフネス)は、半導体装置自体の特性を劣化させた
り、また、成膜不良などの製造プロセスに関わる問題を
引き起こし、最終的な製品の歩留まりを低下させる原因
となる。このように、薬液による半導体基板の処理で
は、薬液と半導体基板表面との化学反応の制御が重要と
なる。
In recent years, in the processing of a semiconductor substrate using a chemical, strict control of the processing performance of the chemical has become an important issue with the high integration of semiconductor devices. For example, in the cleaning of a semiconductor substrate by APM, particles attached to the semiconductor substrate are removed by etching of the substrate surface and then removed by electrostatic repulsion with the substrate surface. For example, surface micro-roughness degrades the characteristics of the semiconductor device itself, causes problems related to the manufacturing process such as defective film formation, and reduces the yield of final products. As described above, in the treatment of a semiconductor substrate with a chemical, it is important to control the chemical reaction between the chemical and the surface of the semiconductor substrate.

【0004】そこで、APMの洗浄性能を制御する技術
として、特開平7−142435号公報には、一定のエ
ッチング速度が得られるように、アンモニア濃度が3.
5から2.5重量%の範囲内で、APMを制御する洗浄
方法が開示されている。また、特開平4−107922
号公報には、基板のエッチング量を低減するため、過酸
化水素水の容量比率が、アンモニア水の容量比率から計
算式を用いて算出した領域に収まるように、APMを制
御する方法が開示されている。また、特開平10−18
3185には、APMの処理時間を短縮するため、アン
モニア濃度、過酸化水素濃度、処理液温度、処理時間を
代入して得られた数式の値が所定の値以上になるよう
に、APMを制御する方法が開示されている。
Therefore, as a technique for controlling the cleaning performance of APM, Japanese Patent Application Laid-Open No. Hei 7-142435 discloses that the ammonia concentration is set to 3.
Cleaning methods for controlling APM in the range of 5 to 2.5% by weight are disclosed. Also, Japanese Patent Application Laid-Open No. 4-107922
In order to reduce the amount of etching of the substrate, Japanese Patent Application Laid-Open Publication No. 2002-214,055 discloses a method of controlling the APM such that the volume ratio of the hydrogen peroxide solution falls within a region calculated from the volume ratio of the ammonia water using a calculation formula. ing. Also, JP-A-10-18
In order to shorten the APM processing time, the APM is controlled so that the value of the equation obtained by substituting the ammonia concentration, the hydrogen peroxide concentration, the processing solution temperature, and the processing time becomes a predetermined value or more. A method for doing so is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
7−142435号公報に開示された方法では、APM
の温度と過酸化水素濃度が固定されており、変更可能な
パラメータがアンモニア濃度に限定されるため、APM
の洗浄性を管理する方法として汎用性がなく、厳密な制
御ができないという問題があった。また、特開平4−1
07922号公報に開示された方法では、過酸化水素水
の容量比率の温度変化が考慮されておらず、算出式が特
定の温度でしか成り立たないという問題があった。ま
た、特開平10−183185号公報に開示された方法
では、限られた実験結果に基づき、複数のパラメータ
(アンモニア濃度、過酸化水素水濃度、処理液温度、処
理時間)を1つの経験式に組み込んだため、経験式に汎
用性がなく、適用範囲が実験結果を補償する濃度領域に
限定されるという問題があった。
However, according to the method disclosed in Japanese Patent Application Laid-Open No. Hei 7-142435, the APM
Temperature and hydrogen peroxide concentration are fixed, and the parameters that can be changed are limited to ammonia concentration.
There is a problem that versatility is not achieved as a method for managing the cleaning property of the varnish, and strict control cannot be performed. Also, Japanese Patent Application Laid-Open No. 4-1
In the method disclosed in Japanese Patent Application Laid-Open No. 07922, there is a problem that the temperature change of the volume ratio of the hydrogen peroxide solution is not taken into account, and the calculation formula can be established only at a specific temperature. Further, according to the method disclosed in Japanese Patent Application Laid-Open No. 10-183185, a plurality of parameters (ammonia concentration, hydrogen peroxide solution concentration, treatment liquid temperature, treatment time) are converted into one empirical formula based on limited experimental results. Since the empirical formula was incorporated, there was a problem that the empirical formula had no versatility, and the applicable range was limited to a concentration range that compensated for the experimental results.

【0006】APM洗浄では、半導体基板に付着したパ
ーティクルが、基板表面のエッチングによる脱離と、そ
の後に生じる基板表面との静電反発で除去される。この
ため、APMの洗浄性は、薬液と半導体基板表面との化
学反応に基づくパラメータで制御すべきである。しかし
ながら、前記の従来技術では、薬液の成分濃度による間
接的な制御に留まっており、この手法では薬液の洗浄性
の厳密な制御は困難であった。
In the APM cleaning, particles attached to a semiconductor substrate are removed by desorption of the substrate surface by etching and subsequent electrostatic repulsion with the substrate surface. For this reason, the cleaning properties of APM should be controlled by parameters based on the chemical reaction between the chemical solution and the semiconductor substrate surface. However, in the above-mentioned conventional technology, only indirect control based on the component concentration of the chemical solution is performed, and it is difficult to strictly control the cleaning property of the chemical solution by this method.

【0007】本発明は、前記事情に鑑みてなされたもの
で、半導体基板の薬液処理において、薬液の処理条件の
設定に必要な時間と労力を大幅に短縮することができ、
また、薬液の処理性能をより適確かつ厳密に制御するこ
とができる薬液処理方法およびその方法を実行する薬液
処理装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and in a chemical treatment of a semiconductor substrate, the time and labor required for setting treatment conditions of the chemical can be greatly reduced.
It is another object of the present invention to provide a chemical processing method capable of more accurately and strictly controlling the processing performance of a chemical, and a chemical processing apparatus for executing the method.

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成するため、下記(1)〜(8)の薬液処理方法及び
(9)〜(13)の薬液処理装置を提供する。
The present invention provides the following chemical liquid processing methods (1) to (8) and chemical liquid processing apparatuses (9) to (13) in order to achieve the above object.

【0009】(1)半導体基板の薬液処理において、薬
液中に溶存する化学種の濃度と半導体基板表面との関係
から、薬液と半導体基板表面との各化学反応を解析し、
各化学反応が全化学反応に寄与する比率を反応速度の比
から求め、半導体基板あるいは処理対象物に対して望ま
しい化学反応が起きるように、当該比率をパラメータと
して、基板処理中の薬液処理条件の制御あるいは基板処
理前の薬液処理条件の予測に用いることを特徴とする薬
液処理方法。
(1) In the chemical treatment of a semiconductor substrate, each chemical reaction between the chemical and the surface of the semiconductor substrate is analyzed from the relationship between the concentration of the chemical species dissolved in the chemical and the surface of the semiconductor substrate.
The ratio of each chemical reaction that contributes to the total chemical reaction is determined from the ratio of the reaction rates, and the ratio is used as a parameter to determine the chemical solution processing conditions during substrate processing so that the desired chemical reaction occurs on the semiconductor substrate or the object to be processed. A chemical processing method used for control or prediction of chemical processing conditions before substrate processing.

【0010】(2)前記比率をパラメータとして含む化
学反応の関係式を用い、薬液中に溶存する化学種と半導
体基板表面との化学反応で発生あるいは変化する化学物
質量を求め、前記化学物質量が所定の領域内に収まるよ
うに、基板処理中の薬液処理条件の制御あるいは基板処
理前の薬液処理条件の予測を行うことを特徴とする薬液
処理方法。
(2) The amount of a chemical substance generated or changed by the chemical reaction between the chemical species dissolved in the chemical solution and the surface of the semiconductor substrate is obtained using a relational expression of the chemical reaction containing the ratio as a parameter. Controlling the chemical processing conditions during the substrate processing or predicting the chemical processing conditions before the substrate processing so that the value falls within a predetermined area.

【0011】(3)前記比率をパラメータとして含む化
学反応の関係式を用い、薬液が半導体基板に対して必要
十分な処理能力を有する薬液の濃度領域を求め、薬液の
使用量ができるだけ少なくなる様に、基板処理中の薬液
処理条件の制御あるいは基板処理前の薬液処理条件の予
測を行うことを特徴とする薬液処理方法。
(3) Using a chemical reaction relational expression including the above ratio as a parameter, a concentration region of the chemical solution in which the chemical solution has a necessary and sufficient processing capability with respect to the semiconductor substrate is obtained, and the amount of the chemical solution used is minimized. And controlling the chemical processing conditions during the substrate processing or predicting the chemical processing conditions before the substrate processing.

【0012】(4)半導体基板あるいは処理対象物に対
して望ましい化学反応が、半導体基板表面に形成された
材料の構造、組成又は電気特性にダメージを与えない化
学反応であること特徴とする(1)の薬液処理方法。
(4) The chemical reaction desired for the semiconductor substrate or the object to be processed is a chemical reaction that does not damage the structure, composition or electrical properties of the material formed on the surface of the semiconductor substrate. ) Chemical treatment method.

【0013】(5)半導体基板の薬液処理の目的が、基
板表面に形成された材料の全体的もしくは部分的なエッ
チング、または基板表面に形成された材料に付着した汚
染物の除去であることを特徴とする(1)〜(4)の薬
液処理方法。
(5) The purpose of the chemical treatment of the semiconductor substrate is to completely or partially etch the material formed on the substrate surface or to remove contaminants attached to the material formed on the substrate surface. The chemical solution treatment method according to any one of (1) to (4).

【0014】(6)薬液がエッチング剤と酸化剤を含
み、表面にSi面が全面あるいは部分的に露出した半導
体基板が処理対象物であり、前記薬液処理が当該表面の
エッチング反応を利用した処理であることを特徴とする
(1)〜(5)の薬液処理方法。
(6) The chemical solution contains an etching agent and an oxidizing agent, and the semiconductor substrate whose Si surface is entirely or partially exposed on the surface is the object to be treated, and the chemical solution treatment uses an etching reaction on the surface. The chemical liquid treatment method according to any one of (1) to (5), wherein

【0015】(7)前記薬液のエッチング剤が弗化水素
酸、アンモニア水または電気分解で得られるカソード水
であり、酸化剤が過酸化水素水、硫酸、硝酸、酸素また
はオゾンであることを特徴とする(6)の薬液処理方
法。
(7) The etching solution of the chemical solution is hydrofluoric acid, ammonia water or cathode water obtained by electrolysis, and the oxidizing agent is hydrogen peroxide solution, sulfuric acid, nitric acid, oxygen or ozone. (6) The chemical treatment method according to (6).

【0016】(8)前記薬液がアンモニアと過酸化水素
を含む水溶液であり、該薬液によるシリコン基板の処理
において、薬液中でエッチング作用のある化学種がOH
-、酸化作用のある化学種がHO2 -であり、シリコン基
板のエッチングが、SiがOH -により直接溶解される
反応経路と、SiがHO2 -で酸化された後OH-により
溶解する反応経路の2つの反応経路からなり、全反応に
対してSiがOH-により直接溶解される反応経路の寄
与する比率を0.001未満、あるいは全反応に対して
SiがHO2 -で酸化された後OH-により溶解する反応
経路の比率を0.999以上にするように、基板処理中
の薬液処理条件の制御あるいは基板処理前の薬液処理条
件の予測を行うことを特徴とする(7)の薬液処理方
法。
(8) The chemical is ammonia and hydrogen peroxide
And treating a silicon substrate with the chemical solution.
In, the chemical species having an etching action in the chemical solution is OH
-, The oxidizing species is HOTwo -And silicon based
When the plate is etched, Si is OH -Directly dissolved by
Reaction path and Si is HOTwo -OH after being oxidized by-By
It consists of two dissolution reaction paths,
On the other hand, Si is OH-Of the reaction pathway directly dissolved by
The ratio given is less than 0.001, or for all reactions
Si is HOTwo -OH after being oxidized by-Dissolution reaction by
During substrate processing so that the ratio of paths is 0.999 or more
Control of chemical processing conditions or chemical processing conditions before substrate processing
(7) Chemical solution treatment method, wherein
Law.

【0017】(9)前記(1)〜(8)の薬液処理方法
を実行する薬液処理装置であって、薬液の成分濃度と温
度を間欠的あるいは連続的に計測する計測装置と、前記
計測装置により得られたデータから予め実験的に求めた
関係式を用いて全化学反応に対する各化学反応の寄与す
る比率を算出する機能、および決定された前記比率に従
って薬液の成分濃度と温度を制御する機能を有する制御
装置とを具備することを特徴とする半導体基板の薬液処
理装置。
(9) A chemical processing apparatus for performing the chemical processing method according to any one of (1) to (8), wherein the measuring apparatus intermittently or continuously measures the component concentration and the temperature of the chemical, and the measuring apparatus A function of calculating the ratio of each chemical reaction to the total chemical reaction by using a relational expression previously obtained from the data obtained by the experiment, and a function of controlling the component concentration and the temperature of the chemical solution according to the determined ratio. And a control device having the following.

【0018】(10)半導体基板が内部に設置され薬液
処理が行われる処理槽と、該処理槽の周囲を囲むように
設置されたオーバーフロー槽と、該オーバーフロー槽に
連通した循環ポンプとを有し、前記オーバーフロー槽に
は、薬液に含まれる所定成分を補充するための供給管と
超純水を供給するための供給管とが設けられ、前記循環
ポンプの下流側にパーティクル成分を除去するためのろ
過装置が設けられ、前記循環ポンプにより、前記所定成
分が前記処理槽に循環供給されるようになっていること
を特徴とする(9)の半導体基板の薬液処理装置。
(10) It has a processing tank in which a semiconductor substrate is installed and in which chemical liquid processing is performed, an overflow tank installed so as to surround the processing tank, and a circulating pump connected to the overflow tank. The overflow tank is provided with a supply pipe for replenishing predetermined components contained in the chemical solution and a supply pipe for supplying ultrapure water, and for removing particle components on the downstream side of the circulation pump. (9) The semiconductor substrate chemical treatment apparatus according to (9), wherein a filtration device is provided, and the predetermined component is circulated and supplied to the treatment tank by the circulation pump.

【0019】(11)半導体基板を吸引保持して所定の
回転数で回転させる機能を有する支持台と、該支持台に
保持した基板表面に薬液を流下させる薬液ノズルとを有
し、該薬液ノズルは、薬液の混合槽を備え、前記混合槽
には、薬液に含まれる所定成分を供給するための供給管
と超純水を供給するための供給管とが設けられ、当該混
合槽は送液ポンプに連通し、前記送液ポンプの下流側に
パーティクル成分を除去するためのろ過装置が設けら
れ、前記混合槽で調製された薬液が送液ポンプにより薬
液ノズルから、前記支持台に保持して回転中の基板表面
に供給されるようになっていることを特徴とする(9)
又は(10)の半導体基板の薬液処理装置。
(11) A support base having a function of sucking and holding the semiconductor substrate and rotating the semiconductor substrate at a predetermined number of rotations, and a chemical liquid nozzle for flowing a chemical liquid onto the surface of the substrate held by the support base, wherein the chemical liquid nozzle Has a mixing tank for a chemical solution, and the mixing tank is provided with a supply pipe for supplying a predetermined component contained in the chemical liquid and a supply pipe for supplying ultrapure water, A filtration device for removing particle components is provided on the downstream side of the liquid sending pump, which is connected to a pump, and the chemical solution prepared in the mixing tank is held by the liquid solution pump from the chemical solution nozzle on the support base. (9) being supplied to the surface of the rotating substrate.
Alternatively, the semiconductor substrate chemical treatment apparatus according to (10).

【0020】(12)薬液ノズルから半導体基板に供給
された薬液が基板処理後に処理槽のドレインから送液ポ
ンプで回収槽に回収され、回収槽内で薬液成分濃度と薬
液温度と溶解成分がモニタされ、(1)〜(8)の薬液
処理方法により薬液成分の補充あるいはヒータによる調
温が行われ、前記回収槽で再生できない薬液は該回収槽
のドレインから排出され、前記回収槽で再調製され所定
の処理性能を有する薬液は該回収槽に連通する送液ポン
プにより、薬液ノズルから支持台に保持して回転中の基
板表面に供給されるようになっていることを特徴とする
(11)の半導体基板の薬液処理装置。
(12) The chemical solution supplied to the semiconductor substrate from the chemical solution nozzle is collected in the collection tank by the liquid sending pump from the drain of the processing tank after the substrate processing, and the concentration of the chemical component, the temperature of the chemical solution, and the dissolved component are monitored in the collection tank. Replenishment of a chemical component or temperature control by a heater is performed according to the chemical treatment methods (1) to (8), and a chemical that cannot be regenerated in the recovery tank is discharged from a drain of the recovery tank and re-prepared in the recovery tank. The chemical solution having a predetermined processing performance is supplied to the rotating substrate surface while being held on the support table from the chemical solution nozzle by a liquid feed pump communicating with the recovery tank (11). A) Chemical liquid processing apparatus for semiconductor substrates.

【0021】(13)半導体装置の構造もしくは組成の
状態または半導体装置の汚染状態を実測する機能を組み
合わせ、実測データを基板処理中の薬液処理条件の制御
あるいは基板処理前の薬液処理条件の予測に利用するこ
とを特徴とする(9)〜(12)の半導体基板の薬液処
理装置。
(13) The function of actually measuring the state of the structure or composition of the semiconductor device or the state of contamination of the semiconductor device is combined, and the actually measured data is used to control chemical processing conditions during substrate processing or to predict chemical processing conditions before substrate processing. (9) The semiconductor substrate chemical treatment apparatus according to any one of (9) to (12).

【0022】[0022]

【発明の実施の形態】以下に、本発明の実施の形態を示
す。薬液による半導体基板の処理における、薬液と半導
体基板との各化学反応の全化学反応に寄与する比率(寄
与率)による薬液の処理性能の制御方法を説明する。
Embodiments of the present invention will be described below. A description will be given of a method of controlling the processing performance of a chemical solution by a ratio (contribution ratio) of each chemical reaction between the chemical solution and the semiconductor substrate that contributes to all chemical reactions in the processing of the semiconductor substrate with the chemical solution.

【0023】薬液による半導体基板表面の化学反応は複
数の化学反応からなる反応経路1,2,3,…,Xで進
行する(化1)。全化学反応に対する各反応経路の寄与
率(α1,α2,α3,…,αX)は各化学反応の反応速度
(v1,v2,…,vX)の相対比で決定される。例え
ば、化2に示すように、反応経路1の寄与率はα1、反
応経路2の寄与率はα2で表される。全化学反応の反応
速度は各反応経路の反応速度の和であるから、薬液によ
る半導体基板の反応速度vTotalは各化学反応の反応速
度を用いて化3のように表される。各反応経路の反応速
度は、その反応に固有の反応速度定数と、薬液中の反応
に関わる溶存化学種の濃度(活量)から求められる(化
4)。なお、薬液中の各溶存化学種濃度(活量)は、特
開平9−203405号公報に開示されている解析方法
を用いて算出できる。化1〜化4の関係に基づき、コン
ピュータを用いれば、薬液の成分濃度と温度から、各反
応経路の寄与率を求めることができる。逆に、予め各反
応経路の寄与率を設定し、その寄与率が得られるような
薬液の成分濃度と温度を求めることも可能である。
The chemical reaction on the surface of the semiconductor substrate by the chemical proceeds along reaction paths 1, 2, 3,..., X composed of a plurality of chemical reactions. The contribution ratio (α 1 , α 2 , α 3 ,..., Α X ) of each reaction path to the total chemical reaction is determined by the relative ratio of the reaction rates (v 1 , v 2 ,..., V X ) of each chemical reaction. You. For example, as shown in Chemical formula 2, the contribution rate of reaction path 1 is represented by α 1 , and the contribution rate of reaction path 2 is represented by α 2 . Since the reaction rate of all the chemical reactions is the sum of the reaction rates of the respective reaction paths, the reaction rate v Total of the semiconductor substrate by the chemical solution is expressed as shown in Formula 3 using the reaction rate of each chemical reaction. The reaction rate of each reaction path is obtained from the reaction rate constant specific to the reaction and the concentration (activity) of the dissolved chemical species involved in the reaction in the chemical solution (Chem. 4). The concentration (activity) of each dissolved chemical species in the drug solution can be calculated using an analysis method disclosed in Japanese Patent Application Laid-Open No. 9-203405. Using a computer based on the relationships of Chemical Formulas 1 to 4, the contribution rate of each reaction path can be obtained from the component concentration and temperature of the chemical solution. Conversely, it is also possible to set the contribution ratio of each reaction path in advance, and obtain the component concentration and the temperature of the chemical solution so as to obtain the contribution ratio.

【0024】[0024]

【化1】 Embedded image

【化2】 Embedded image

【化3】 Embedded image

【化4】 Embedded image

【0025】薬液による半導体基板の処理では、半導体
基板にできるだけダメージを与えず、基板自体あるいは
基板表面に形成された材料を短時間で効率よく処理する
ことが理想である。各反応経路の中には、前記条件に適
合する反応経路と適合しない反応経路がある。前記条件
に適合する反応経路の寄与率をできるだけ大きくし、か
つ、適合しない反応経路の寄与率ができるだけ小さくな
るような処理条件を選択すれば、最適な処理を行うこと
ができる。
In the treatment of a semiconductor substrate with a chemical solution, it is ideal that the substrate itself or the material formed on the substrate surface is efficiently treated in a short time without damaging the semiconductor substrate as much as possible. Among the reaction paths, there are reaction paths that meet the above conditions and reaction paths that do not. Optimal processing can be performed by selecting a processing condition that maximizes the contribution rate of a reaction path that meets the above conditions and minimizes the contribution rate of a reaction path that does not conform to the above conditions.

【0026】(第1の実施の形態)本発明の第1の実施
の形態について、基板処理前の薬液処理条件の設定方法
の一例をフローチャートで図1に示す。この例では、各
化学反応の寄与率と基板処理量の許容範囲から、薬液処
理条件である薬液の成分濃度、薬液温度、薬液処理時間
を決定する。
(First Embodiment) FIG. 1 is a flowchart showing an example of a method for setting chemical solution processing conditions before substrate processing according to a first embodiment of the present invention. In this example, the chemical solution component concentration, the chemical solution temperature, and the chemical solution processing time, which are the chemical solution processing conditions, are determined from the contribution ratio of each chemical reaction and the allowable range of the substrate processing amount.

【0027】本発明の薬液制御方法では、薬液の洗浄性
を制御するために、全化学反応に対する各反応経路の寄
与率を指標として利用する。薬液と半導体基板表面の化
学反応を直接制御することになるため、薬液濃度を管理
する従来の間接的な制御方法に比べ、薬液処理条件の適
確な設定や薬液の洗浄性の厳密な制御が可能となる。ま
た、装置立ち上げやプロセス変更の度毎に必要な処理条
件の初期設定にかかる時間と労力が大幅に短縮される。
In the chemical liquid control method of the present invention, the contribution of each reaction path to all chemical reactions is used as an index in order to control the cleaning properties of the chemical liquid. Since the chemical reaction between the chemical and the surface of the semiconductor substrate is directly controlled, the precise setting of the chemical processing conditions and the strict control of the cleaning properties of the chemical are compared to the conventional indirect control method for managing the chemical concentration. It becomes possible. Further, the time and labor required for initial setting of processing conditions required every time the apparatus is started or the process is changed are greatly reduced.

【0028】化学反応の寄与率と基板処理量の許容範囲
を設定する(S100)。初期値として薬液の成分濃度
と薬液温度を設定し(S101)、当該成分濃度と温度
から溶存する化学種濃度を算出する(S102)。前記
化学種濃度と温度から各化学反応の反応速度を算出する
(S103)。前記反応速度から各化学反応の寄与率を
求める(S104)。前記寄与率の評価(S105)に
おいて、前記寄与率が許容範囲から外れる場合は、薬液
の成分濃度と薬液温度の補正を行い(S106)、再
び、化学種濃度の算出(S102)から化学反応の寄与
率の評価(S105)までを行う。前記寄与率の評価
(S105)において、当該寄与率が許容範囲内の場合
は、薬液処理時間を設定し(S107)、当該処理時間
と反応速度から得られる基板処理量を算出する(S10
8)。前記処理量の評価(S109)において、前記処
理量が許容範囲から外れる場合、薬液処理時間の評価
(S110)を行い、当該処理時間が許容範囲内で変更
可能ならば、薬液処理時間の設定(S107)から基板
処理量の評価(S109)までを行う。前記処理時間が
許容範囲内で変更不可能ならば、薬液の成分濃度と薬液
温度を補正し(S106)、再び、化学種濃度の算出
(S102)から行う。前記処理量の評価(S109)
において、前記処理量が許容範囲内の場合、得られた薬
液の成分濃度、薬液温度、薬液処理時間を薬液処理条件
として決定する(S111)。
An allowable range of the contribution rate of the chemical reaction and the substrate processing amount is set (S100). The concentration of the chemical component and the temperature of the chemical solution are set as initial values (S101), and the concentration of the dissolved chemical species is calculated from the component concentration and the temperature (S102). The reaction rate of each chemical reaction is calculated from the chemical species concentration and the temperature (S103). The contribution rate of each chemical reaction is determined from the reaction rate (S104). In the evaluation of the contribution rate (S105), when the contribution rate is out of the allowable range, the component concentration of the chemical solution and the temperature of the chemical solution are corrected (S106), and the chemical species concentration is calculated again from the chemical species concentration calculation (S102). The evaluation up to the contribution ratio (S105) is performed. In the evaluation of the contribution rate (S105), if the contribution rate is within the allowable range, a chemical solution processing time is set (S107), and a substrate processing amount obtained from the processing time and the reaction speed is calculated (S10).
8). In the evaluation of the processing amount (S109), if the processing amount is out of the allowable range, the chemical processing time is evaluated (S110). If the processing time can be changed within the allowable range, the chemical processing time is set ( From S107) to the evaluation of the substrate throughput (S109) are performed. If the processing time cannot be changed within the allowable range, the component concentration of the chemical solution and the temperature of the chemical solution are corrected (S106), and the calculation is performed again from the calculation of the chemical species concentration (S102). Evaluation of the processing amount (S109)
In step (1), when the processing amount is within the allowable range, the component concentration of the obtained chemical, the temperature of the chemical, and the chemical processing time are determined as the chemical processing conditions (S111).

【0029】(第2の実施の形態)本発明の第2の実施
の形態について、基板処理中の薬液処理条件の制御方法
の一例をフローチャートで図2に示す。この例では、薬
液に溶存する化学種の濃度と薬液温度をモニタし、算出
した各化学反応の反応速度に基づき、各化学反応の寄与
率と基板処理量が許容範囲に入るように、薬液の成分濃
度、薬液温度、薬液処理時間を制御する。
(Second Embodiment) FIG. 2 is a flowchart showing an example of a method for controlling chemical solution processing conditions during substrate processing according to a second embodiment of the present invention. In this example, the concentration of the chemical species dissolved in the chemical solution and the temperature of the chemical solution are monitored, and based on the calculated reaction rate of each chemical reaction, the chemical solution is adjusted so that the contribution rate of each chemical reaction and the substrate processing amount fall within an allowable range. Controls component concentration, chemical temperature, and chemical treatment time.

【0030】基板処理量は基板表面自体あるいは基板表
面に形成された材料(薄膜など)を示す。例えば、薬液
で半導体基板表面に形成された薄膜を処理する場合、当
該薄膜の膜厚の変化量を正確に把握して処理することが
できるので、膜厚の必要以上の変化で発生する製品の性
能劣化や製品の歩留まり低下を未然に防ぐことができ
る。また、薄膜の変化量のデータを積極的に利用し、成
膜時の膜厚のばらつきを薬液の処理時間で補正すること
もできる。
The substrate processing amount indicates the substrate surface itself or a material (such as a thin film) formed on the substrate surface. For example, when processing a thin film formed on a semiconductor substrate surface with a chemical solution, the amount of change in the film thickness of the thin film can be accurately grasped and processed. It is possible to prevent performance deterioration and product yield reduction. In addition, the data on the amount of change in the thin film can be positively used, and the variation in the film thickness during film formation can be corrected by the processing time of the chemical solution.

【0031】化学反応の寄与率と基板処理量の許容範囲
を設定する(S200)。薬液の成分濃度と薬液温度を
モニタし(S201)、当該成分濃度と温度から溶存す
る化学種濃度を算出する(S202)。前記化学種濃度
と温度から各化学反応の反応速度を算出する(S20
3)。前記反応速度から全反応に対する各化学反応の寄
与率を求める(S204)。前記寄与率の評価(S20
5)において、前記寄与率が許容範囲から外れる場合
は、薬液の成分濃度と薬液温度の補正を行い(S20
7)、薬液成分濃度と薬液温度のモニタ(S201)か
ら化学反応の寄与率の評価(S205)までを行う。前
記寄与率の評価(S205)において、当該寄与率が許
容範囲内の場合は、薬液処理時間を設定し(S20
6)、当該処理時間と反応速度から得られる基板処理量
を算出する(S208)。前記処理量の評価(S20
9)において、前記処理量が許容範囲から外れる場合、
薬液処理時間の評価を行い(S210)、当該処理時間
が許容範囲内で変更可能ならば、薬液処理時間の設定
(S206)から基板処理量の評価(S209)までを
行う。前記処理時間が許容範囲内で変更不可能ならば、
薬液の成分濃度と薬液温度を補正し(S207)、再
び、薬液成分濃度と薬液温度のモニタ(S201)から
行う。前記処理量の評価(S209)において、前記処
理量が許容範囲内の場合、薬液による半導体基板の処理
と薬液の処理条件の制御(S201からS209まで)
を同時に行う。半導体基板の処理中および待機中に係わ
らず、薬液の処理性能が常に一定に保たれるように薬液
の処理条件を制御する。
The allowable range of the contribution rate of the chemical reaction and the substrate throughput is set (S200). The component concentration of the chemical solution and the temperature of the chemical solution are monitored (S201), and the concentration of the dissolved chemical species is calculated from the component concentration and the temperature (S202). The reaction rate of each chemical reaction is calculated from the chemical species concentration and the temperature (S20).
3). The contribution rate of each chemical reaction to the total reaction is determined from the reaction rate (S204). Evaluation of the contribution rate (S20
In 5), when the contribution ratio is out of the allowable range, the component concentration of the chemical and the temperature of the chemical are corrected (S20).
7) From the monitoring of the chemical component concentration and the chemical temperature (S201) to the evaluation of the contribution rate of the chemical reaction (S205). In the evaluation of the contribution rate (S205), when the contribution rate is within the allowable range, a chemical solution processing time is set (S20).
6), a substrate processing amount obtained from the processing time and the reaction speed is calculated (S208). Evaluation of the processing amount (S20
In 9), when the processing amount is out of the allowable range,
The chemical processing time is evaluated (S210). If the processing time can be changed within an allowable range, the processing from setting of the chemical processing time (S206) to evaluation of the substrate processing amount (S209) is performed. If the processing time cannot be changed within an allowable range,
The concentration of the chemical solution and the temperature of the chemical solution are corrected (S207), and the monitoring is again performed from the concentration of the chemical solution component and the temperature of the chemical solution (S201). In the evaluation of the processing amount (S209), when the processing amount is within the allowable range, the processing of the semiconductor substrate with the chemical and the control of the processing conditions of the chemical (S201 to S209)
At the same time. The processing conditions of the chemical solution are controlled so that the processing performance of the chemical solution is always kept constant irrespective of whether the semiconductor substrate is being processed or on standby.

【0032】図3は、図2に記載された本発明の薬液処
理条件の制御方法を組み込んだ半導体基板の薬液処理装
置の一実施形態の構成図である。薬液処理装置は、薬液
成分Aの貯留槽15と、薬液成分Bの貯留槽16と、超
純水の貯留槽17とを有し、貯留槽15、16、17か
ら薬液成分A、薬液成分B、超純水を、送液ポンプ1
8、19、20の駆動により必要な量だけオーバーフロ
ー槽2を介して処理槽1へ供給し、処理槽1内で半導体
基板4の処理を行う。薬液3は、循環ポンプ13の駆動
により、フィルタ14を通過するように循環され、処理
槽1内の薬液3にパーティクルが蓄積されるのを防いで
いる。
FIG. 3 is a configuration diagram of an embodiment of a semiconductor substrate chemical solution processing apparatus incorporating the chemical solution processing condition control method of the present invention described in FIG. The chemical processing apparatus has a reservoir 15 for the chemical component A, a reservoir 16 for the chemical component B, and a reservoir 17 for ultrapure water, and the chemical components A, B from the reservoirs 15, 16, and 17. , Ultrapure water, liquid pump 1
A necessary amount is supplied to the processing tank 1 via the overflow tank 2 by driving of 8, 19, and 20, and the semiconductor substrate 4 is processed in the processing tank 1. The chemical solution 3 is circulated so as to pass through the filter 14 by the driving of the circulation pump 13 to prevent particles from being accumulated in the chemical solution 3 in the processing tank 1.

【0033】化学反応の寄与率と基板処理量の許容範囲
を設定し(S200)、薬液3の薬液成分Aの濃度と薬
液成分Bの濃度は濃度コントローラ11で、薬液温度は
温度コントローラ7で、薬液3の水位(薬液量)は水位
コントローラ10でそれぞれモニタする(S201)。
各コントローラで得られた薬液成分濃度と薬液温度に基
づき、解析装置12により、溶存する化学種濃度の算出
(S202)、各化学反応の反応速度の算出(S20
3)、化学反応の寄与率の算出(S204)を行う。解
析装置12で前記寄与率の評価(S205)を行い、前
記寄与率が許容範囲から外れる場合は、解析装置12か
ら指示を送り、送液ポンプ18、19、20による薬液
成分A、薬液成分B、超純水の補充あるいはヒータ8に
よる調温を行う(S207)。解析装置12で前記寄与
率の評価を行い(S205)、当該寄与率が許容範囲内
の場合は、薬液処理時間を設定し(S206)、当該処
理時間と反応速度から得られる基板処理量を算出する
(S208)。解析装置12で前記処理量の評価を行い
(S209)、前記処理量が許容範囲から外れる場合、
薬液処理時間の評価を行い(S210)、当該処理時間
が許容範囲内で変更可能ならば薬液処理時間の設定(S
206)から基板処理量の評価(S209)までを行
う。解析装置12で前記処理量の評価を行い(S20
9)、前記処理時間が許容範囲内で変更不可能ならば、
薬液の成分濃度と薬液温度を補正し(S207)、再
び、薬液成分濃度と薬液温度のモニタ(S201)から
行う。解析装置12で前記処理量の評価を行い(S20
9)、前記処理量が許容範囲内の場合、薬液による半導
体基板の処理と薬液の処理条件の制御(S201からS
209まで)を同時に行う。半導体基板の処理中および
待機中に係わらず、薬液の処理性能が常に一定に保たれ
る。
The contribution ratio of the chemical reaction and the allowable range of the substrate processing amount are set (S200). The concentration of the chemical component A and the concentration of the chemical component B of the chemical 3 are controlled by the concentration controller 11, and the temperature of the chemical is controlled by the temperature controller 7. The water level (chemical liquid amount) of the chemical liquid 3 is monitored by the water level controller 10 (S201).
Based on the chemical component concentration and the chemical temperature obtained by each controller, the analyzer 12 calculates the concentration of the dissolved chemical species (S202), and calculates the reaction speed of each chemical reaction (S20).
3), the contribution rate of the chemical reaction is calculated (S204). The analysis unit 12 evaluates the contribution ratio (S205). If the contribution ratio is out of the allowable range, an instruction is sent from the analysis unit 12, and the liquid component A and the liquid component B by the liquid feed pumps 18, 19, and 20 are sent. Then, replenishment of ultrapure water or temperature adjustment by the heater 8 is performed (S207). The analysis device 12 evaluates the contribution ratio (S205). If the contribution ratio is within the allowable range, a chemical solution processing time is set (S206), and a substrate processing amount obtained from the processing time and the reaction speed is calculated. (S208). The analysis unit 12 evaluates the processing amount (S209), and when the processing amount is out of the allowable range,
The chemical processing time is evaluated (S210), and if the processing time can be changed within an allowable range, the chemical processing time is set (S210).
206) to the evaluation of the substrate processing amount (S209). The processing amount is evaluated by the analyzer 12 (S20).
9) If the processing time cannot be changed within an allowable range,
The concentration of the chemical solution and the temperature of the chemical solution are corrected (S207), and the monitoring is again performed from the concentration of the chemical solution component and the temperature of the chemical solution (S201). The processing amount is evaluated by the analyzer 12 (S20).
9) If the processing amount is within the allowable range, processing of the semiconductor substrate with the chemical and control of the processing conditions of the chemical (S201 to S201)
209) at the same time. Regardless of whether the semiconductor substrate is being processed or is on standby, the processing performance of the chemical solution is always kept constant.

【0034】(第3の実施の形態)本発明の第3の実施
の形態について、基板処理前の薬液処理条件の設定方法
の一例をフローチャートで図4に示す。この例では、薬
液に溶存する化学種の濃度と薬液温度から各化学反応の
反応速度を算出し、各化学反応の寄与率が所定範囲に入
るように、薬液成分の濃度領域を求める。さらに、前記
濃度領域において、薬液成分濃度の変動幅が所定範囲に
入り、かつ、使用する薬液量が必要最小限になるよう
に、薬液の成分濃度、薬液温度、薬液処理時間を決定す
る。
(Third Embodiment) FIG. 4 is a flowchart showing an example of a method for setting chemical solution processing conditions before substrate processing according to a third embodiment of the present invention. In this example, the reaction speed of each chemical reaction is calculated from the concentration of the chemical species dissolved in the chemical solution and the temperature of the chemical solution, and the concentration region of the chemical component is determined so that the contribution rate of each chemical reaction falls within a predetermined range. Further, in the concentration region, the component concentration of the chemical solution, the chemical solution temperature, and the chemical solution processing time are determined so that the variation range of the chemical solution component concentration falls within a predetermined range and the amount of the chemical solution used is minimized.

【0035】本発明の薬液処理方法では、同一の処理能
力を持つ複数の薬液処理条件を選択することができる。
薬液による半導体基板の処理において、必要最小限の薬
液成分濃度を選択することで、薬液使用量を大幅に削減
することができる。
In the chemical processing method of the present invention, a plurality of chemical processing conditions having the same processing capability can be selected.
In the treatment of the semiconductor substrate with the chemical solution, by selecting the minimum necessary chemical solution component concentration, the amount of the chemical solution used can be significantly reduced.

【0036】薬液成分濃度の変動幅と薬液処理量の許容
範囲を設定する(S300)。初期値として現在使用中
あるいは使用予定の薬液の成分濃度と薬液温度を設定し
(S301)、当該成分濃度と温度から溶存する化学種
濃度を算出する(S302)。前記化学種濃度と温度か
ら各化学反応の反応速度を算出する(S303)。前記
反応速度から全反応に対する各化学反応の寄与率を求め
る(S304)。前記寄与率の評価(S305)におい
て、前記寄与率が許容範囲から外れる場合は、薬液の成
分濃度と薬液温度の補正を行い(S306)、溶存する
化学種濃度の算出(S302)から化学反応の寄与率の
評価(S305)までを行う。前記寄与率の評価(S3
05)において、当該寄与率が許容範囲内の場合は、寄
与率が当該寄与率と同一であり、かつ、基板処理量が許
容範囲内である薬液成分の濃度領域を算出する(S30
7)。薬液成分濃度の低減率を設定し(S308)、薬
液成分濃度を算出する(S309)。前記薬液成分濃度
の評価(S310)において、当該薬液成分が前記濃度
領域から外れる場合は、成分濃度の低減率の補正を行い
(S311)、再び、成分濃度の算出(S309)から
薬液成分濃度の評価(S310)までを行う。前記薬液
成分濃度の評価(S310)において、当該薬液成分が
前記濃度領域内の場合は、薬液成分濃度の変動幅を算出
する(S312)。前記変動幅の評価(S313)にお
いて、当該変動幅が許容範囲内の場合、設定した低い薬
液成分濃度を用い、低減率の設定(S308)から薬液
成分濃度の変動幅の評価(S313)までを行う。前記
操作を繰り返し、薬液成分濃度の変動幅の評価(S31
3)において、当該変動幅が許容範囲から外れる場合、
前回評価した薬液成分濃度、薬液温度、薬液処理時間を
薬液処理条件として決定する(S314)。
The variation range of the concentration of the chemical component and the allowable range of the amount of the chemical solution to be processed are set (S300). As the initial values, the component concentration of the chemical solution currently used or to be used and the temperature of the chemical solution are set (S301), and the dissolved chemical species concentration is calculated from the component concentration and the temperature (S302). The reaction rate of each chemical reaction is calculated from the chemical species concentration and the temperature (S303). The contribution rate of each chemical reaction to the total reaction is determined from the reaction rate (S304). In the evaluation of the contribution rate (S305), when the contribution rate is out of the allowable range, the component concentration of the chemical solution and the temperature of the chemical solution are corrected (S306), and the concentration of the dissolved chemical species is calculated (S302). The evaluation up to the contribution rate (S305) is performed. Evaluation of the contribution rate (S3
In step 05), when the contribution rate is within the allowable range, the concentration area of the chemical component in which the contribution rate is the same as the contribution rate and the substrate processing amount is within the allowable range is calculated (S30).
7). A reduction rate of the chemical component concentration is set (S308), and the chemical component concentration is calculated (S309). In the evaluation of the concentration of the chemical component (S310), if the chemical component falls outside the concentration range, the reduction rate of the component concentration is corrected (S311), and the calculation of the component concentration is again performed from the calculation of the component concentration (S309). Evaluation (S310) is performed. In the evaluation of the chemical component concentration (S310), when the chemical component is within the concentration range, the fluctuation range of the chemical component concentration is calculated (S312). In the evaluation of the fluctuation range (S313), when the fluctuation range is within the allowable range, the set low chemical solution component concentration is used, and from the setting of the reduction rate (S308) to the evaluation of the fluctuation range of the chemical solution component concentration (S313). Do. The above operation is repeated to evaluate the fluctuation range of the chemical component concentration (S31
In 3), if the fluctuation range is out of the allowable range,
The chemical component concentration, the chemical temperature, and the chemical processing time evaluated last time are determined as chemical processing conditions (S314).

【0037】本発明の薬液処理条件の制御方法は、図3
に記載された従来型バッチ式の薬液処理装置はもちろん
であるが、今後、半導体基板の大口径化に対応して使用
されると予想される枚葉式の薬液処理装置でより効果的
な薬液の運用を実現できる。通常、枚葉式の薬液処理装
置は1つの処理槽で構成され、半導体基板を処理した薬
液は1回のみの使用で廃棄される。薬液は使い捨てであ
る。薬液の使い捨ては、薬品の使用量を増大させ、廃液
の処理費用を含めると製造コストの大幅な上昇を引き起
こす原因となる。薬液を使い捨てする場合、薬品の使用
量を抑えるため、薬液は正常な処理ができる最低の濃度
に設定すべきである。従来の制御方法では、このような
薬液濃度の制御はできない。
FIG. 3 shows a method for controlling chemical treatment conditions according to the present invention.
In addition to the conventional batch-type chemical processing equipment described in (1), more effective chemicals will be used in the single-wafer-type chemical processing equipment that is expected to be used in response to the increase in diameter of semiconductor substrates in the future. Operation can be realized. Normally, a single-wafer type chemical processing apparatus is constituted by one processing tank, and a chemical obtained by processing a semiconductor substrate is discarded only once. The chemical is disposable. Disposable chemicals increase the amount of chemicals used and cause a significant increase in manufacturing costs, including the cost of treating waste liquids. When disposing of chemicals, the chemicals should be set to the lowest concentration that allows normal processing in order to reduce the amount of chemicals used. The conventional control method cannot control such a chemical concentration.

【0038】しかし、本発明の方法を用いれば、寄与率
が同じ(薬液の洗浄性が同じ)である薬液成分濃度の複
数の組み合わせを選択できる。1回のみの使用では、基
板処理中の薬液条件の変動は僅かであるため、半導体基
板を処理する時には、寄与率が同じである薬液成分濃度
の組み合わせの内、各薬液成分濃度が最も低くなる組み
合わせを選択すれば良い。これにより、枚葉式の薬液処
理装置において、薬液使用量の削減が実現できる。
However, by using the method of the present invention, it is possible to select a plurality of combinations of the chemical component concentrations having the same contribution rate (the same cleaning performance of the chemical solution). When the semiconductor substrate is processed only once, since the fluctuation of the chemical solution condition during the substrate processing is slight, the concentration of each chemical solution component is the lowest among the combinations of the chemical solution component concentrations having the same contribution rate when processing the semiconductor substrate. All you have to do is select a combination. This makes it possible to reduce the amount of chemical used in a single-wafer type chemical processing apparatus.

【0039】図5は、図4に記載された本発明の薬液処
理条件の設定方法を組み込んだ半導体基板の薬液処理装
置の一実施形態の構成図である。本発明の薬液処理装置
は、薬液成分Aの貯留槽15と、薬液成分Bの貯留槽1
6と、超純水の貯留槽17とを有し、貯留槽15、1
6、17から薬液成分A、薬液成分B、超純水を、送液
ポンプ18、19、20の駆動により予備槽25に供給
して攪拌器27で混合、ヒータ26で調温した後、送液
ポンプ30の駆動によりフィルタ31を通して薬液ノズ
ル24から支持台21に吸引保持して回転器22で回転
させた半導体基板4へ供給して処理を行う。半導体基板
4を処理した薬液はドレインから排出される。なお、薬
液調製部32を処理する薬液あるいは超純水の数だけ用
意すれば、処理槽23で複数の薬液処理あるいは超純水
処理が行える。予備槽25での薬液の調製時には、図4
に記載された本発明の薬液処理条件の設定が解析装置1
2で実施される。
FIG. 5 is a block diagram of an embodiment of a semiconductor substrate chemical solution processing apparatus incorporating the method for setting chemical solution processing conditions of the present invention shown in FIG. The chemical processing apparatus of the present invention includes a storage tank 15 for a chemical component A and a storage tank 1 for a chemical component B.
6 and a storage tank 17 of ultrapure water.
The chemical solution components A, B, and ultrapure water from 6, 17 are supplied to the preliminary tank 25 by driving the liquid feed pumps 18, 19, 20, mixed by the stirrer 27, temperature-controlled by the heater 26, and then sent. When the liquid pump 30 is driven, the liquid is supplied from the chemical liquid nozzle 24 to the support base 21 through the filter 31 by suction and is supplied to the semiconductor substrate 4 rotated by the rotator 22 for processing. The chemical that has processed the semiconductor substrate 4 is discharged from the drain. If the number of chemicals or ultrapure water to be treated in the chemical preparation section 32 is prepared, a plurality of chemical treatments or ultrapure water treatment can be performed in the treatment tank 23. At the time of preparing the chemical solution in the preliminary tank 25, FIG.
The setting of the chemical treatment conditions of the present invention described in the above is performed by the analyzer 1.
2 is performed.

【0040】また、図5に記載された薬液洗浄装置にお
いて、図2に記載された薬液処理条件の制御方法を用い
れば、廃棄される薬液の再生循環使用が可能になる。
Further, in the chemical liquid cleaning apparatus shown in FIG. 5, if the method for controlling the chemical liquid processing conditions shown in FIG. 2 is used, it is possible to recycle and reuse the disposed chemical liquid.

【0041】図6は本発明の半導体基板の薬液処理装置
の一実施形態の構成図である。本発明の薬液処理装置
は、薬液成分Aの貯留槽15と、薬液成分Bの貯留槽1
6と、超純水の貯留槽17とを有し、貯留槽15、1
6、17から薬液成分A、薬液成分B、超純水を、送液
ポンプ18、19、20の駆動により予備槽25に供給
して攪拌器27で混合、ヒータ26で調温した後、送液
ポンプ30の駆動によりフィルタ31を通して薬液ノズ
ル24から支持台21に吸引保持して回転器22で回転
させた半導体基板4へ供給して処理を行う。半導体基板
4を処理した薬液は送液ポンプ38の駆動により回収槽
33へ送られる。回収槽33の薬液は濃度コントローラ
11と温度コントローラ37でモニタされ、解析装置1
2で算出した寄与率が許容範囲内の場合、そのまま薬液
をフィルタ40に通して処理槽23へ戻し、次の半導体
基板4の処理を行う。解析装置12で算出した寄与率が
許容範囲から外れる場合は、寄与率が許容範囲内の値に
なるように、貯留槽15、16、17からの必要最低限
の薬品補充とヒータ34による調温を行った後、薬液を
フィルターに通して処理槽23へ戻し、次の半導体基板
4の処理を行う。上記の操作を繰り返し、最小の薬品量
で半導体基板の処理を進める。予備槽25での薬液の調
製には図4に記載された薬液処理条件の設定方法が、回
収槽33での薬液の調製には図2に記載された薬液処理
条件の制御方法が適用される。
FIG. 6 is a block diagram of one embodiment of the semiconductor substrate chemical solution treatment apparatus of the present invention. The chemical processing apparatus of the present invention includes a storage tank 15 for a chemical component A and a storage tank 1 for a chemical component B.
6 and a storage tank 17 of ultrapure water.
The chemical solution components A, B, and ultrapure water from 6, 17 are supplied to the preliminary tank 25 by driving the liquid feed pumps 18, 19, 20, mixed by the stirrer 27, temperature-controlled by the heater 26, and then sent. When the liquid pump 30 is driven, the liquid is supplied from the chemical liquid nozzle 24 to the support base 21 through the filter 31 by suction and is supplied to the semiconductor substrate 4 rotated by the rotator 22 for processing. The chemical that has processed the semiconductor substrate 4 is sent to the collection tank 33 by driving the liquid sending pump 38. The chemical in the recovery tank 33 is monitored by the concentration controller 11 and the temperature controller 37, and is analyzed by the analyzer 1.
If the contribution rate calculated in step 2 is within the allowable range, the chemical solution is passed through the filter 40 and returned to the processing tank 23, and the next processing of the semiconductor substrate 4 is performed. When the contribution rate calculated by the analyzer 12 is out of the allowable range, the minimum necessary amount of chemical replenishment from the storage tanks 15, 16, and 17 and the temperature control by the heater 34 are performed so that the contribution rate is within the allowable range. After that, the chemical solution is passed through the filter and returned to the processing tank 23, and the next processing of the semiconductor substrate 4 is performed. The above operation is repeated to advance the processing of the semiconductor substrate with the minimum amount of chemical. For the preparation of the chemical in the preliminary tank 25, the method for setting the chemical processing conditions described in FIG. 4 is applied, and for the preparation of the chemical in the recovery tank 33, the control method for the chemical processing conditions described in FIG. .

【0042】また、図5に記載された薬液洗浄装置に、
半導体装置の構造や組成の状態あるいは半導体装置の汚
染状態を実測する機能を組み合わせることで、より精度
の高い薬液処理を行うことができる。例えば、実測する
データとして、半導体基板に形成された薄膜の膜厚や構
成元素の濃度あるいは表面に残留する不純物の形態や濃
度などが挙げられる。測定装置では、測定の目的に合わ
せて市販の測定装置を用いることができる。
Further, in the chemical cleaning device shown in FIG.
By combining the function of actually measuring the state of the structure and composition of the semiconductor device or the state of contamination of the semiconductor device, it is possible to perform a chemical treatment with higher precision. For example, data to be measured include the thickness of a thin film formed on a semiconductor substrate, the concentration of constituent elements, and the form and concentration of impurities remaining on the surface. In the measuring device, a commercially available measuring device can be used according to the purpose of the measurement.

【0043】図7は本発明の半導体基板の薬液処理装置
の一実施形態の構成図である。本発明の薬液処理装置
は、薬液成分Aの貯留槽15と、薬液成分Bの貯留槽1
6と、超純水の貯留槽17とを有し、貯留槽15、1
6、17から薬液成分A、薬液成分B、超純水を、送液
ポンプ18、19、20の駆動により予備槽25に供給
して攪拌器27で混合、ヒータ26で調温した後、送液
ポンプ30の駆動によりフィルタ31を通して薬液ノズ
ル24から支持台21に吸引保持して回転器22で回転
させた半導体基板4へ供給して処理を行う。半導体基板
を処理した薬液はドレインから排出される。なお、使用
済みの薬液は、図6で示すように回収機能を有する装置
構成にすれば再利用も可能である。半導体基板4は、測
定装置41により所定の測定が実施され、測定装置36
で得られた実測データに基づき、図4に記載された薬液
処理条件の設定方法が実施される。半導体基板4は常時
複数枚をクリーンケース42内に溜めておき、処理槽2
3で半導体基板4の処理が行われている間に、クリーン
ケース42から測定装置41へ半導体基板4を搬送し、
所定の測定を実施することで、スループットの低下を抑
えることができる。
FIG. 7 is a block diagram of an embodiment of a semiconductor substrate chemical solution treatment apparatus according to the present invention. The chemical processing apparatus of the present invention includes a storage tank 15 for a chemical component A and a storage tank 1 for a chemical component B.
6 and a storage tank 17 of ultrapure water.
The chemical solution components A, B, and ultrapure water from 6, 17 are supplied to the preliminary tank 25 by driving the liquid feed pumps 18, 19, 20, mixed by the stirrer 27, temperature-controlled by the heater 26, and then sent. When the liquid pump 30 is driven, the liquid is supplied from the chemical liquid nozzle 24 to the support base 21 through the filter 31 by suction and is supplied to the semiconductor substrate 4 rotated by the rotator 22 for processing. The chemical that has processed the semiconductor substrate is discharged from the drain. It is to be noted that the used chemical liquid can be reused if the apparatus is configured to have a collecting function as shown in FIG. The semiconductor substrate 4 is subjected to a predetermined measurement by the measuring device 41 and the measuring device 36
Based on the actual measurement data obtained in step (1), the method for setting the chemical processing conditions described in FIG. 4 is performed. A plurality of semiconductor substrates 4 are always stored in the clean case 42 and the processing tank 2
While the processing of the semiconductor substrate 4 is being performed in 3, the semiconductor substrate 4 is transported from the clean case 42 to the measuring device 41,
By performing the predetermined measurement, a decrease in throughput can be suppressed.

【0044】[0044]

【実施例】(実施例1)APMによるシリコン基板表面
の洗浄処理を例にとり、APMの洗浄性の制御方法を説
明する。APM中の溶存化学種、NH3、NH4 +、H2
2、HO2 -、H+、OH-の各濃度(活量)は、特開平9
−203405号公報に開示されている解析方法を用い
て算出できる。
(Embodiment 1) A method of controlling the cleaning property of APM will be described by taking as an example a cleaning process of a silicon substrate surface by APM. Dissolved species in APM, NH 3 , NH 4 + , H 2 O
2, HO 2 -, H + , OH - each concentration (activity) of the Patent 9
It can be calculated using the analysis method disclosed in -203405.

【0045】APMによるシリコン基板表面のエッチン
グ反応は、APM中の溶存化学種濃度とエッチング速度
の実測値の関係から、2つの反応経路で進行することを
確認した(化5)。1つはSiがOH2 -により酸化(反
応速度v1a)され、さらにOH-で溶解(反応速度
1b)される反応経路1であり、もう1つは、SiがO
-により直接溶解(反応速度v2)される反応経路2で
ある。全エッチング反応に対する反応経路1の寄与率は
α1、全エッチング反応に対する反応経路2の寄与率は
α2で表される(化6)。APMによる基板のエッチン
グ速度Erは各素反応の反応速度を用いて表される(化
7)。
It has been confirmed that the etching reaction of the silicon substrate surface by APM proceeds in two reaction paths from the relationship between the concentration of the dissolved species in APM and the measured value of the etching rate (Chem. 5). One Si is OH 2 - is oxidized (reaction rate v 1a) by further OH - a reaction pathway is dissolved (reaction rate v 1b) at 1, and one, Si is O
H - is a reaction pathway 2, which is directly dissolved (reaction rate v 2) by. The contribution rate of the reaction path 1 to the total etching reaction is represented by α 1 , and the contribution rate of the reaction path 2 to the total etching reaction is represented by α 2 (Formula 6). The etching rate Er of the substrate by APM is expressed using the reaction rate of each elementary reaction (Chem. 7).

【0046】[0046]

【化5】 Embedded image

【化6】 Embedded image

【化7】 Embedded image

【0047】反応経路1は、親水性の高い酸化膜を形成
し、その酸化膜をエッチングする反応であるので、パー
ティクルと基板の界面への薬液の浸透性を高め、パーテ
ィクルの除去性を向上させる。一方、反応経路2は、酸
化膜を形成しない異方性のエッチング反応であり、基板
表面のマイクロラフネス(凹凸)を増大させる。シリコ
ン基板のAPM洗浄では、基板表面のパーティクルをエ
ッチングで脱離させなければならない。これには、ある
量のエッチングが必要であるが、反応経路2のエッチン
グでは急激なエッチング速度の上昇、マイクロラフネス
の増加、パーティクル除去性の低下を引き起こすため、
正常なAPM洗浄を行うためには、反応経路1の反応の
寄与が大きく、また、反応経路2の寄与ができるだけ小
さくなる条件でシリコン基板を処理することが必要であ
る。
Reaction path 1 is a reaction for forming an oxide film having high hydrophilicity and etching the oxide film. Therefore, the permeability of the chemical solution to the interface between the particles and the substrate is increased, and the removability of the particles is improved. . On the other hand, reaction path 2 is an anisotropic etching reaction that does not form an oxide film, and increases micro-roughness (irregularities) on the substrate surface. In APM cleaning of a silicon substrate, particles on the substrate surface must be removed by etching. This requires a certain amount of etching, but the etching of reaction path 2 causes a sharp increase in etching rate, an increase in micro roughness, and a decrease in particle removal properties.
In order to perform normal APM cleaning, it is necessary to treat the silicon substrate under the condition that the contribution of the reaction path 1 is large and the contribution of the reaction path 2 is as small as possible.

【0048】図3に記載の薬液処理装置を用い、全エッ
チング反応に対する反応経路1の寄与率α1を指標とし
てシリコン基板のAPM洗浄を行った場合における、A
PMの洗浄性の制御結果を説明する。
In the case where APM cleaning of the silicon substrate was performed using the chemical processing apparatus shown in FIG. 3 and the contribution rate α 1 of the reaction path 1 to the entire etching reaction as an index,
The control result of the PM cleanability will be described.

【0049】APMによるシリコン基板のエッチング速
度と寄与率α1との関係を図8に、APMによるシリコ
ン基板表面のマイクロラフネス(凹凸)と寄与率α1
の関係を図9に示す(温度:80℃、OH-濃度:2×
10-3mol/l)。また、APMによるシリコン基板
に付着したパーティクル(約5000個/基板)の除去
率と寄与率α1との関係を図10に示す(温度:80
℃、エッチング深さ:2nm)。寄与率α1の低下で、
エッチング速度とマイクロラフネスは急増し、パーティ
クルの除去率は低下した。APMでシリコン基板を洗浄
する場合、シリコン基板のダメージを抑えて高いパーテ
ィクル除去率を得るためには、反応経路1の寄与率α1
を指標として、α1値が0.999以上になるように洗
浄条件を制御すれば良い。α1値が0.999以上にな
るように、薬液成分濃度と薬液温度と薬液処理時間を制
御したところ、薬液で処理した半導体装置の形状あるい
は電気特性の劣化は見られず、歩留まりも大きく向上す
ることが確認できた。
[0049] The relationship between the etching rate of the silicon substrate and the contribution ratio alpha 1 by the APM in FIG 8 shows the relationship between the micro-roughness of the silicon substrate surface by APM (irregularities) and contribution ratio alpha 1 in FIG. 9 (Temperature: 80 ° C., OH - concentration: 2 ×
10 −3 mol / l). FIG. 10 shows the relationship between the removal rate of particles (approximately 5000 particles / substrate) adhered to the silicon substrate by APM and the contribution rate α 1 (temperature: 80
° C, etching depth: 2 nm). In the reduction of the contribution rate α 1,
The etching rate and micro-roughness increased sharply, and the particle removal rate decreased. When cleaning a silicon substrate with APM, in order to suppress damage to the silicon substrate and obtain a high particle removal rate, the contribution rate α 1 of the reaction path 1 is required.
The washing condition may be controlled so that the α 1 value becomes 0.999 or more using the index as an index. As alpha 1 value is equal to or greater than 0.999, it was controlled chemical component concentrations and chemical temperature and chemical treatment time, the deterioration of the shape or the electrical characteristic of the semiconductor device treated with chemical was not seen, the yield is also greatly improved I was able to confirm.

【0050】(実施例2)APMによるシリコン基板表
面の洗浄処理を例にとり、実施例1で示したのと同様の
薬液の処理条件で、予め薬液温度と薬液処理時間(半導
体基板表面の処理量)とを設定した場合の薬液成分濃度
の制御方法を説明する。実施例1で示した通り、正常な
薬液処理が行える反応経路1の寄与率α1は0.999
以上とした。薬液温度が80℃、薬液処理時間が10分
間(半導体基板表面の処理量:4.5〜5.0nm)の
場合、反応経路1の寄与率α1が0.999以上になる
ように算出したAPM中のアンモニアと過酸化水素の濃
度領域を図11に示す。黒塗り領域が利用可能な濃度領
域である。なお、利用可能な濃度領域は、薬液温度ある
いは薬液処理時間で変化する。実際、図4に記載した薬
液処理装置において、シリコン基板をAPM洗浄する場
合、アンモニア濃度と過酸化水素濃度の組み合わせが、
図11の黒塗り領域に入るように制御すれば良い。アン
モニア濃度と過酸化水素濃度の組み合わせが黒塗り領域
内であれば、寄与率α1が0.999以上になり、いず
れの組み合せでも同等の洗浄性能が得られる。APMの
連続使用では、アンモニア濃度、過酸化水素濃度、温度
を常時モニタし、前記パラメータから解析装置で算出さ
れる寄与率α1が0.999以上になっていることを確
認し、寄与率α1が0.999を下回る場合は、アンモ
ニア濃度と過酸化水素濃度の組み合わせが、図11の黒
塗り領域に入るように、薬液の補充を行えば、正常なA
PM処理を維持できる。
(Example 2) Taking the cleaning treatment of the silicon substrate surface by APM as an example, under the same chemical treatment conditions as shown in Embodiment 1, the chemical solution temperature and the chemical solution treatment time (the amount of the semiconductor substrate surface treatment) ) Will be described below. As shown in Example 1, the contribution rate α 1 of the reaction route 1 in which normal chemical treatment can be performed is 0.999.
It was above. When the temperature of the chemical solution was 80 ° C. and the time of the chemical solution treatment was 10 minutes (the processing amount of the semiconductor substrate surface: 4.5 to 5.0 nm), the contribution α 1 of the reaction path 1 was calculated to be 0.999 or more. FIG. 11 shows the concentration ranges of ammonia and hydrogen peroxide in APM. The black area is the available density area. Note that the available concentration range changes depending on the temperature of the chemical or the processing time of the chemical. Actually, when the silicon substrate is subjected to APM cleaning in the chemical solution processing apparatus shown in FIG. 4, the combination of the ammonia concentration and the hydrogen peroxide concentration is
What is necessary is just to control so that it may enter into the black area | region of FIG. If the combination is black region of ammonia concentration and hydrogen peroxide concentration, the contribution rate alpha 1 becomes more than 0.999, any combination even comparable cleaning performance is obtained. In the continuous use of APM, the concentration of ammonia, the concentration of hydrogen peroxide, and the temperature were constantly monitored, and it was confirmed that the contribution rate α 1 calculated by the analyzer from the above parameters was 0.999 or more. When 1 is less than 0.999, if the replenishment of the chemical solution is performed so that the combination of the ammonia concentration and the hydrogen peroxide concentration enters the black region in FIG.
PM processing can be maintained.

【0051】(実施例3)APMによるシリコン基板表
面の洗浄処理を例にとり、実施例2で示したのと同様の
薬液の処理条件で、本発明の薬液処理方法を用いた薬液
使用量の低減を説明する。実施例2で示した通り、正常
な薬液処理が行える反応経路1の寄与率α 1は0.99
9以上とした。シリコン基板をAPM処理する場合、ア
ンモニア濃度と過酸化水素濃度の組み合わせが図11に
示す黒塗り領域内であれば、いずれの組み合わせでも同
等のAPM処理が行えるが、薬液使用量の低減の観点か
ら、アンモニア濃度と過酸化水素濃度の組み合わせをお
互いの濃度が低くなるように選択すれば、APMの低濃
度化が実現できる。例えば、RCA洗浄(RCA Revie
w,W. Kern et al.,1970)で一般的に使用される
容量比のAPM(NH3:H22:H2O=1:1:5,
80℃)を図11に当てはめた場合、アンモニア濃度と
過酸化水素濃度を共に1/20にまで低下させることが
できる(NH3濃度:29重量%、H22濃度:30重
量%)。
(Example 3) Table of silicon substrate by APM
Taking the surface cleaning process as an example, the same
Chemical solution using the chemical solution treatment method of the present invention under chemical solution treatment conditions
The reduction in the amount used will be described. Normal as shown in Example 2
Α of reaction route 1 that can perform various chemical treatments 1Is 0.99
9 or more. When performing APM processing on a silicon substrate,
Figure 11 shows the combination of the concentration of ammonia and the concentration of hydrogen peroxide.
Any combination within the black area shown
APM treatment, etc. can be performed.
The combination of ammonia concentration and hydrogen peroxide concentration.
If they are selected so that their concentrations are low, the low concentration of APM
Accuracy can be realized. For example, RCA cleaning (RCA Revie
w, W. Kern et al., 1970)
APM (NHThree: HTwoOTwo: HTwoO = 1: 1: 5
80 ° C.) in FIG. 11, the ammonia concentration and
Both hydrogen peroxide concentrations can be reduced to 1/20
Yes (NHThreeConcentration: 29% by weight, HTwoOTwoConcentration: 30 layers
amount%).

【0052】[0052]

【発明の効果】以上説明したように、本発明の薬液の処
理方法によれば、薬液中に溶存する化学種の濃度と半導
体基板表面との関係から、各化学反応が全化学反応に寄
与する比率を解析し、当該比率を指標として、薬液処理
の制御あるいは処理条件の設定に使用するため、従来の
薬液の成分濃度による間接的な制御に比べ、処理条件の
初期設定に必要な時間と労力を大幅に短縮でき、また、
薬液の処理性能をより厳密に制御することができる。ま
た、上記薬液の処理方法によれば、最適な洗浄条件の設
定、特に薬液の低濃度領域での条件設定が可能となり、
薬液使用量の低減によるコスト削減が実現できる。
As described above, according to the method for treating a chemical solution of the present invention, each chemical reaction contributes to the entire chemical reaction from the relationship between the concentration of the chemical species dissolved in the chemical solution and the surface of the semiconductor substrate. Since the ratio is analyzed and the ratio is used as an index to control chemical solution processing or to set processing conditions, the time and effort required for initial setting of processing conditions are lower than conventional indirect control based on the component concentration of chemical solutions. Can be greatly reduced, and
The processing performance of the chemical solution can be more strictly controlled. Further, according to the method for treating a chemical solution, it is possible to set optimal cleaning conditions, particularly in a low-concentration region of the chemical solution.
Cost reduction can be realized by reducing the amount of chemical solution used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体基板の薬液処理方法の一例のフ
ローチャートである。
FIG. 1 is a flowchart of an example of a method for treating a semiconductor substrate with a chemical solution according to the present invention.

【図2】本発明の半導体基板の薬液処理方法の一例のフ
ローチャートである。
FIG. 2 is a flowchart of an example of a method for treating a semiconductor substrate with a chemical solution according to the present invention.

【図3】本発明の半導体基板の薬液処理装置の一実施形
態の構成図である。
FIG. 3 is a configuration diagram of one embodiment of a semiconductor substrate chemical solution treatment apparatus of the present invention.

【図4】本発明の半導体基板の薬液処理方法の一例のフ
ローチャートである。
FIG. 4 is a flowchart of an example of a method for treating a semiconductor substrate with a chemical solution according to the present invention.

【図5】本発明の半導体基板の薬液処理装置の一実施形
態の構成図である。
FIG. 5 is a configuration diagram of one embodiment of a semiconductor substrate chemical solution treatment apparatus of the present invention.

【図6】本発明の半導体基板の薬液処理装置の一実施形
態の構成図である。
FIG. 6 is a configuration diagram of one embodiment of a semiconductor substrate chemical solution treatment apparatus of the present invention.

【図7】本発明の半導体基板の薬液処理装置の一実施形
態の構成図である。
FIG. 7 is a configuration diagram of one embodiment of a semiconductor substrate chemical solution treatment apparatus of the present invention.

【図8】本発明の薬液処理装置を用いたシリコン基板の
APM処理において、反応経路1の寄与率α1とエッチ
ング速度の関係の一事例を示す図である。
FIG. 8 is a diagram showing an example of the relationship between the contribution rate α1 of the reaction path 1 and the etching rate in APM processing of a silicon substrate using the chemical processing apparatus of the present invention.

【図9】本発明の薬液処理装置を用いたシリコン基板の
APM処理において、反応経路1の寄与率α1と基板の
表面マイクロラフネスの関係の一事例を示す図である。
FIG. 9 is a diagram showing an example of the relationship between the contribution ratio α 1 of the reaction path 1 and the surface micro-roughness of a substrate in APM processing of a silicon substrate using the chemical solution processing apparatus of the present invention.

【図10】本発明の薬液処理装置を用いたシリコン基板
のAPM処理において、反応経路1の寄与率α1と基板
表面に付着したパーティクルの除去率の関係の一事例を
示す図である。
FIG. 10 is a diagram showing an example of the relationship between the contribution rate α1 of the reaction path 1 and the removal rate of particles attached to the substrate surface in APM processing of a silicon substrate using the chemical processing apparatus of the present invention.

【図11】本発明の薬液処理装置を用いたシリコン基板
のAPM処理において、反応経路1の寄与率α1が0.
999以上であるアンモニアと過酸化水素の濃度領域を
示す図である。
FIG. 11 is a graph showing that the contribution rate α 1 of the reaction path 1 is 0.
It is a figure which shows the concentration area | region of ammonia and hydrogen peroxide which are 999 or more.

【符号の説明】[Explanation of symbols]

1 処理槽 2 オーバーフロー槽 3 薬液 4 半導体基板 5 キャリア 6,28,36 温度センサ 7,29,37 温度コントローラ 8,26,34 ヒータ 9 水位センサ 10 水位コントーラ 11 濃度コントローラ 12 解析装置 13 循環ポンプ 14,31,40 フィルタ 15,16,17 貯留槽 18,19,20,30,38,39 送液ポンプ 25 混合槽 27,35 攪拌器 32 薬液調製部 33 回収槽 41 測定装置 42 クリーンケース DESCRIPTION OF SYMBOLS 1 Processing tank 2 Overflow tank 3 Chemical solution 4 Semiconductor substrate 5 Carrier 6, 28, 36 Temperature sensor 7, 29, 37 Temperature controller 8, 26, 34 Heater 9 Water level sensor 10 Water level controller 11 Concentration controller 12 Analysis device 13 Circulation pump 14, 31, 40 Filter 15, 16, 17 Storage tank 18, 19, 20, 30, 38, 39 Liquid feed pump 25 Mixing tank 27, 35 Stirrer 32 Chemical liquid preparation unit 33 Recovery tank 41 Measuring device 42 Clean case

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/304 647 H01L 21/304 648F 648 21/30 569Z 21/306 R (72)発明者 長谷 潮 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 2H096 AA25 GA30 HA19 HA20 5F043 AA02 BB02 BB30 DD13 DD30 EE07 EE08 EE12 EE22 EE23 EE24 EE25 EE31 EE33 EE40 GG10 5F046 LA01 LA14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/304 647 H01L 21/304 648F 648 21/30 569Z 21/306 R (72) Inventor Shio Hase Tokyo 5-7-1 Shiba, Tokyo Minato-ku F-term in NEC Corporation (reference) 2H096 AA25 GA30 HA19 HA20 5F043 AA02 BB02 BB30 DD13 DD30 EE07 EE08 EE12 EE22 EE23 EE24 EE25 EE31 EE33 EE40 GG10 5F046 LA01 LA14

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の薬液処理において、薬液中
に溶存する化学種の濃度と半導体基板表面との関係か
ら、薬液と半導体基板表面との各化学反応を解析し、各
化学反応が全化学反応に寄与する比率を反応速度の比か
ら求め、半導体基板あるいは処理対象物に対して望まし
い化学反応が起きるように、当該比率をパラメータとし
て、基板処理中の薬液処理条件の制御あるいは基板処理
前の薬液処理条件の予測に用いることを特徴とする薬液
処理方法。
In a chemical treatment of a semiconductor substrate, each chemical reaction between the chemical and the surface of the semiconductor substrate is analyzed from a relationship between the concentration of a chemical species dissolved in the chemical and the surface of the semiconductor substrate, and each chemical reaction is analyzed by a total chemical reaction. The ratio contributing to the reaction is determined from the ratio of the reaction rates, and the ratio is used as a parameter to control chemical solution processing conditions during substrate processing or to control chemical solution processing before substrate processing so that a desired chemical reaction occurs on the semiconductor substrate or the object to be processed. A chemical treatment method used for predicting chemical treatment conditions.
【請求項2】 半導体基板の薬液処理において、薬液中
に溶存する化学種の濃度と半導体基板表面との関係か
ら、薬液と半導体基板表面との各化学反応を解析し、各
化学反応が全化学反応に寄与する比率を反応速度の比か
ら求めるとともに、前記比率をパラメータとして含む化
学反応の関係式を用い、薬液中に溶存する化学種と半導
体基板表面との化学反応で発生あるいは変化する化学物
質量を求め、前記化学物質量が所定の領域内に収まるよ
うに、基板処理中の薬液処理条件の制御あるいは基板処
理前の薬液処理条件の予測を行うことを特徴とする薬液
処理方法。
2. In the chemical treatment of a semiconductor substrate, each chemical reaction between the chemical and the surface of the semiconductor substrate is analyzed based on the relationship between the concentration of the chemical species dissolved in the chemical and the surface of the semiconductor substrate, and each of the chemical reactions is determined by the total chemical reaction. A chemical substance generated or changed by a chemical reaction between a chemical species dissolved in a chemical solution and a semiconductor substrate surface, using a relational expression of a chemical reaction containing the ratio as a parameter, while obtaining a ratio contributing to the reaction from a reaction speed ratio. A chemical solution processing method comprising: determining an amount and controlling a chemical solution processing condition during substrate processing or predicting a chemical solution processing condition before substrate processing so that the chemical substance amount falls within a predetermined region.
【請求項3】 半導体基板の薬液処理において、薬液中
に溶存する化学種の濃度と半導体基板表面との関係か
ら、薬液と半導体基板表面との各化学反応を解析し、各
化学反応が全化学反応に寄与する比率を反応速度の比か
ら求めるとともに、前記比率をパラメータとして含む化
学反応の関係式を用い、薬液が半導体基板に対して必要
十分な処理能力を有する薬液の濃度領域を求め、薬液の
使用量ができるだけ少なくなる様に、基板処理中の薬液
処理条件の制御あるいは基板処理前の薬液処理条件の予
測を行うことを特徴とする薬液処理方法。
3. In the chemical treatment of a semiconductor substrate, each chemical reaction between the chemical and the surface of the semiconductor substrate is analyzed based on the relationship between the concentration of the chemical species dissolved in the chemical and the surface of the semiconductor substrate. The ratio contributing to the reaction is determined from the ratio of the reaction rates, and the concentration range of the chemical having the necessary and sufficient processing capability for the semiconductor substrate is determined by using the chemical reaction relational expression including the ratio as a parameter. A chemical solution processing method for controlling chemical solution processing conditions during substrate processing or predicting chemical solution processing conditions before substrate processing so as to minimize the amount of used.
【請求項4】 半導体基板あるいは処理対象物に対して
望ましい化学反応が、半導体基板表面に形成された材料
の構造、組成又は電気特性にダメージを与えない化学反
応であること特徴とする請求項1に記載の薬液処理方
法。
4. The chemical reaction desired for the semiconductor substrate or the object to be processed is a chemical reaction that does not damage the structure, composition or electrical characteristics of the material formed on the surface of the semiconductor substrate. The method for treating a chemical solution according to item 1.
【請求項5】 半導体基板の薬液処理の目的が、基板表
面に形成された材料の全体的もしくは部分的なエッチン
グ、または基板表面に形成された材料に付着した汚染物
の除去であることを特徴とする請求項1〜4のいずれか
1項に記載の薬液処理方法。
5. The object of the chemical treatment of a semiconductor substrate is to completely or partially etch a material formed on the substrate surface or to remove contaminants attached to the material formed on the substrate surface. The chemical solution treatment method according to any one of claims 1 to 4, wherein
【請求項6】 薬液がエッチング剤と酸化剤を含み、表
面にSi面が全面あるいは部分的に露出した半導体基板
が処理対象物であり、前記薬液処理が当該表面のエッチ
ング反応を利用した処理であることを特徴とする請求項
1〜5のいずれか1項に記載の薬液処理方法。
6. A semiconductor substrate in which a chemical solution contains an etching agent and an oxidizing agent, and a semiconductor substrate having a Si surface entirely or partially exposed on a surface is an object to be processed, and the chemical solution process is a process utilizing an etching reaction on the surface. The chemical solution treatment method according to claim 1, wherein:
【請求項7】 前記薬液のエッチング剤が弗化水素酸、
アンモニア水または電気分解で得られるカソード水であ
り、酸化剤が過酸化水素水、硫酸、硝酸、酸素またはオ
ゾンであることを特徴とする請求項6に記載の薬液処理
方法。
7. The etching solution of the chemical solution is hydrofluoric acid,
7. The chemical solution treatment method according to claim 6, wherein the aqueous solution is ammonia water or cathode water obtained by electrolysis, and the oxidizing agent is hydrogen peroxide solution, sulfuric acid, nitric acid, oxygen or ozone.
【請求項8】 前記薬液がアンモニアと過酸化水素を含
む水溶液であり、該薬液によるシリコン基板の処理にお
いて、薬液中でエッチング作用のある化学種がOH-
酸化作用のある化学種がHO2 -であり、シリコン基板の
エッチングが、SiがOH-により直接溶解される反応
経路と、SiがHO2 -で酸化された後OH-により溶解
する反応経路の2つの反応経路からなり、全反応に対し
てSiがOH-により直接溶解される反応経路の寄与す
る比率を0.001未満、あるいは全反応に対してSi
がHO2 -で酸化された後OH-により溶解する反応経路
の比率を0.999以上にするように、基板処理中の薬
液処理条件の制御あるいは基板処理前の薬液処理条件の
予測を行うことを特徴とする請求項7に記載の薬液処理
方法。
8. The chemical solution is an aqueous solution containing ammonia and hydrogen peroxide, and in the treatment of the silicon substrate with the chemical solution, chemical species having an etching action in the chemical solution are OH ,
Species with oxidation action is HO 2 - and is, etching of the silicon substrate, Si is OH - by a reaction pathway directly dissolved, Si is HO 2 - reaction pathway that dissolves by - OH after being oxidized in consists of two reaction routes, Si relative to the total reaction OH - by contributing ratio less than 0.001 of the reaction pathway is dissolved directly, or Si relative to the total reaction
Control of chemical processing conditions during substrate processing or prediction of chemical processing conditions before substrate processing so that the ratio of the reaction path that is oxidized by HO 2 and then dissolved by OH is 0.999 or more. The chemical solution treatment method according to claim 7, wherein:
【請求項9】 請求項1〜8のいずれか1項に記載の薬
液処理方法を実行する薬液処理装置であって、薬液の成
分濃度と温度を間欠的あるいは連続的に計測する計測装
置と、前記計測装置により得られたデータから予め実験
的に求めた関係式を用いて全化学反応に対する各化学反
応の寄与する比率を算出する機能、および決定された前
記比率に従って薬液の成分濃度と温度を制御する機能を
有する制御装置とを具備することを特徴とする半導体基
板の薬液処理装置。
9. A chemical solution processing apparatus for performing the chemical solution processing method according to claim 1, wherein the measuring apparatus measures the component concentration and the temperature of the chemical solution intermittently or continuously. The function of calculating the ratio of each chemical reaction to the total chemical reaction using a relational expression obtained experimentally in advance from the data obtained by the measurement device, and the component concentration and temperature of the chemical solution according to the determined ratio. And a control device having a control function.
【請求項10】 半導体基板が内部に設置され薬液処理
が行われる処理槽と、該処理槽の周囲を囲むように設置
されたオーバーフロー槽と、該オーバーフロー槽に連通
した循環ポンプとを有し、前記オーバーフロー槽には、
薬液に含まれる所定成分を補充するための供給管と超純
水を供給するための供給管とが設けられ、前記循環ポン
プの下流側にパーティクル成分を除去するためのろ過装
置が設けられ、前記循環ポンプにより、前記所定成分が
前記処理槽に循環供給されるようになっていることを特
徴とする請求項9に記載の半導体基板の薬液処理装置。
10. A semiconductor device, comprising: a processing tank in which a semiconductor substrate is installed and a chemical solution processing is performed; an overflow tank installed to surround a periphery of the processing tank; and a circulation pump communicating with the overflow tank. In the overflow tank,
A supply pipe for replenishing a predetermined component contained in the chemical solution and a supply pipe for supplying ultrapure water are provided, and a filtration device for removing particle components is provided downstream of the circulation pump, 10. The semiconductor substrate chemical treatment apparatus according to claim 9, wherein the predetermined component is circulated and supplied to the processing tank by a circulation pump.
【請求項11】 半導体基板を吸引保持して所定の回転
数で回転させる機能を有する支持台と、該支持台に保持
した基板表面に薬液を流下させる薬液ノズルとを有し、
該薬液ノズルは、薬液の混合槽を備え、前記混合槽に
は、薬液に含まれる所定成分を供給するための供給管と
超純水を供給するための供給管とが設けられ、当該混合
槽は送液ポンプに連通し、前記送液ポンプの下流側にパ
ーティクル成分を除去するためのろ過装置が設けられ、
前記混合槽で調製された薬液が送液ポンプにより薬液ノ
ズルから、前記支持台に保持して回転中の基板表面に供
給されるようになっていることを特徴とする請求項9又
は10に記載の半導体基板の薬液処理装置。
11. A supporting base having a function of sucking and holding a semiconductor substrate and rotating the semiconductor substrate at a predetermined number of revolutions, and a chemical liquid nozzle for flowing a chemical liquid onto a surface of the substrate held by the supporting base,
The chemical liquid nozzle includes a chemical liquid mixing tank, and the mixing tank is provided with a supply pipe for supplying a predetermined component contained in the chemical liquid and a supply pipe for supplying ultrapure water. Is connected to a liquid sending pump, a filtration device for removing particle components is provided downstream of the liquid sending pump,
The chemical solution prepared in the mixing tank is supplied from a chemical solution nozzle to a rotating substrate surface while being held on the support table by a solution sending pump. 11. Semiconductor substrate chemical treatment equipment.
【請求項12】 薬液ノズルから半導体基板に供給され
た薬液が基板処理後に処理槽のドレインから送液ポンプ
で回収槽に回収され、回収槽内で薬液成分濃度と薬液温
度と溶解成分がモニタされ、請求項1〜8のいずれか1
項に記載の薬液処理方法により薬液成分の補充あるいは
ヒータによる調温が行われ、前記回収槽で再生できない
薬液は該回収槽のドレインから排出され、前記回収槽で
再調製され所定の処理性能を有する薬液は該回収槽に連
通する送液ポンプにより、薬液ノズルから支持台に保持
して回転中の基板表面に供給されるようになっているこ
とを特徴とする請求項11に記載の半導体基板の薬液処
理装置。
12. A chemical solution supplied to a semiconductor substrate from a chemical solution nozzle is collected in a recovery tank by a liquid sending pump from a drain of the processing tank after substrate processing, and a concentration of a chemical component, a temperature of the chemical solution, and a dissolved component are monitored in the recovery tank. , Any one of claims 1 to 8
The replenishment of the chemical component or the temperature adjustment by the heater is performed by the chemical treatment method according to the item, and the chemical that cannot be regenerated in the recovery tank is discharged from the drain of the recovery tank, re-prepared in the recovery tank, and has a predetermined processing performance. 12. The semiconductor substrate according to claim 11, wherein the chemical having the chemical is supplied to a rotating substrate surface while being held on a support base from a chemical nozzle by a liquid sending pump communicating with the recovery tank. Chemical processing equipment.
【請求項13】 半導体装置の構造もしくは組成の状態
または半導体装置の汚染状態を実測する機能を組み合わ
せ、実測データを基板処理中の薬液処理条件の制御ある
いは基板処理前の薬液処理条件の予測に利用することを
特徴とする請求項9〜12のいずれか1項に記載の半導
体基板の薬液処理装置。
13. A combination of a function of actually measuring the state of the structure or composition of a semiconductor device or the state of contamination of a semiconductor device, and using measured data to control chemical processing conditions during substrate processing or to predict chemical processing conditions before substrate processing. The chemical liquid processing apparatus for a semiconductor substrate according to claim 9, wherein:
JP549399A 1999-01-12 1999-01-12 Chemical treatment method and chemical treatment device Expired - Fee Related JP3216125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP549399A JP3216125B2 (en) 1999-01-12 1999-01-12 Chemical treatment method and chemical treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP549399A JP3216125B2 (en) 1999-01-12 1999-01-12 Chemical treatment method and chemical treatment device

Publications (2)

Publication Number Publication Date
JP2000208475A true JP2000208475A (en) 2000-07-28
JP3216125B2 JP3216125B2 (en) 2001-10-09

Family

ID=11612774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP549399A Expired - Fee Related JP3216125B2 (en) 1999-01-12 1999-01-12 Chemical treatment method and chemical treatment device

Country Status (1)

Country Link
JP (1) JP3216125B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353186A (en) * 2001-05-30 2002-12-06 Ses Co Ltd Liquid chemical recycling system for sheet substrate- cleaning device and sheet substrate-cleaning device
JP2010214275A (en) * 2009-03-16 2010-09-30 Sumitomo Chemical Co Ltd Method for cleaning apparatus for producing liquid crystalline polyester
KR20180109671A (en) * 2017-03-27 2018-10-08 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
WO2023032497A1 (en) * 2021-09-06 2023-03-09 信越半導体株式会社 Silicon wafer cleaning method and production method, method for evaluating concentration of hydrogen peroxide in cleaning fluid, and method for managing hydrogen peroxide concentration in cleaning fluid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353186A (en) * 2001-05-30 2002-12-06 Ses Co Ltd Liquid chemical recycling system for sheet substrate- cleaning device and sheet substrate-cleaning device
JP2010214275A (en) * 2009-03-16 2010-09-30 Sumitomo Chemical Co Ltd Method for cleaning apparatus for producing liquid crystalline polyester
KR20180109671A (en) * 2017-03-27 2018-10-08 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
CN108666235A (en) * 2017-03-27 2018-10-16 株式会社斯库林集团 Substrate board treatment and substrate processing method using same
KR102086214B1 (en) * 2017-03-27 2020-03-06 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
CN108666235B (en) * 2017-03-27 2022-03-08 株式会社斯库林集团 Substrate processing apparatus and substrate processing method
WO2023032497A1 (en) * 2021-09-06 2023-03-09 信越半導体株式会社 Silicon wafer cleaning method and production method, method for evaluating concentration of hydrogen peroxide in cleaning fluid, and method for managing hydrogen peroxide concentration in cleaning fluid

Also Published As

Publication number Publication date
JP3216125B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US6513538B2 (en) Method of removing contaminants from integrated circuit substrates using cleaning solutions
JP3690619B2 (en) Cleaning method and cleaning device
KR100396955B1 (en) Wet treatment method
JP2012074601A (en) Substrate processing apparatus and substrate processing method
KR101809927B1 (en) Method for cleaning metal gate semiconductor
JPH11233486A (en) Method and device for etching dielectric layer on semiconductor substrate
WO1992006489A1 (en) Method of removing organic coating
JP3216125B2 (en) Chemical treatment method and chemical treatment device
JP2002261062A (en) Method and device for removing particle on semiconductor wafer
US20030116174A1 (en) Semiconductor wafer cleaning apparatus and cleaning method using the same
JPH10116809A (en) Method and system for washing
JP3473063B2 (en) Cleaning method for silicon substrate
JP3426208B2 (en) Method of regenerating silicon single crystal wafer with copper film and reclaimed wafer
US6752897B2 (en) Wet etch system with overflow particle removing feature
Kashkoush et al. Photoresist stripping using ozone/deionized water chemistry
JP4831216B2 (en) Wafer surface treatment method
US20030209259A1 (en) Method for decreasing wafer scrap rate for a chemical treatment apparatus
KR20080015477A (en) Cleaning apparatus and method of cleaning
US20020179112A1 (en) Method of cleaning electronic device
JP3575854B2 (en) Method and apparatus for cleaning silicon single crystal wafer
JP3473662B2 (en) Wet cleaning equipment
JP3615951B2 (en) Substrate cleaning method
JPH11265867A (en) Treatment of substrate and substrate treating device
JP3459719B2 (en) Silicon wafer processing equipment
WO2023248860A1 (en) Device for treating substrate and method for treating substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees