JP2000206300A - X-ray interference microscope and method for testing x-ray reflecting mirror - Google Patents

X-ray interference microscope and method for testing x-ray reflecting mirror

Info

Publication number
JP2000206300A
JP2000206300A JP11006423A JP642399A JP2000206300A JP 2000206300 A JP2000206300 A JP 2000206300A JP 11006423 A JP11006423 A JP 11006423A JP 642399 A JP642399 A JP 642399A JP 2000206300 A JP2000206300 A JP 2000206300A
Authority
JP
Japan
Prior art keywords
ray
reflecting mirror
optical system
sample
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11006423A
Other languages
Japanese (ja)
Other versions
JP3527118B2 (en
Inventor
Tsuneyuki Haga
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP00642399A priority Critical patent/JP3527118B2/en
Publication of JP2000206300A publication Critical patent/JP2000206300A/en
Application granted granted Critical
Publication of JP3527118B2 publication Critical patent/JP3527118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To dramatically improve the sensitivity of microscope observation in an X-ray range. SOLUTION: A reflecting mirror 4 is located between an X-ray image- formation optical system 1 and an X-ray image pick-up element 3 placed on an image surface S2, a point light source P1 is located in a mirror image position to the image surface S2 with respect to the reflecting mirror 4 and a sample 2 placed on a surface S1 of an object is irradiated and illuminated through a part 1-3 of an opening of the X-ray image-formation optical system 1 through the medium of the reflecting mirror 4 by the point light source P1. The inside of the opening 1-3 of the X-ray image-formation optical system 1 is coherently illuminated by using quasi-monochrome X rays for the point light source 1 and limiting the size of it in terms of space with a pinhole 5. Moreover, the phase change of the X rays due to the sample 2 is allowed to emerge on the X-ray image pick-up element 3 as interference contrast by locating a reflection standard 7 in a symmetrical position to the surface S1 of the object with respect to a beam splitter 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、生体試料の顕微
鏡観察を通して生物/医学分野への応用が可能な、また
半導体の製造技術など広い分野で応用が可能なX線干渉
顕微鏡、およびこのX線干渉顕微鏡を使用してのX線リ
ソグラフィ等で用いられるX線反射鏡の検査方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray interference microscope which can be applied to the biological / medical field through microscopic observation of a biological sample and which can be applied in a wide range of fields such as semiconductor manufacturing technology, and an X-ray interference microscope. The present invention relates to a method for inspecting an X-ray reflector used in X-ray lithography or the like using an interference microscope.

【0002】[0002]

【従来の技術】X線顕微鏡は、可視光に比べ短波長であ
る分高解像度が期待でき、かつ、試料を構成する元素の
X線吸収の違いによりコントラストが得られるため、顕
微分析に利用可能であるなどの特徴を持つ。
2. Description of the Related Art X-ray microscopes can be used for microanalysis because they can be expected to have higher resolution because of the shorter wavelength than visible light, and can obtain contrast due to the difference in X-ray absorption of the elements constituting the sample. It has such features as

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
X線顕微鏡では、X線領域での顕微鏡用光学系を構成す
るためのX線光学素子等の製作が困難であるため、一部
研究用に用いられる程度であった。また、従来のX線顕
微鏡では試料を透過照明(試料の裏面側から照明)する
方式を採用しており、試料を透過照明するためにはX線
の吸収による損失を避けるため非常に薄い薄膜(メンブ
レン等)で試料を支持しなければならず、試料の支持が
困難であった。さらに、従来のX線顕微鏡では、試料に
よるX線の吸収の違いによりコントラストを得ており、
位相変化の情報を得ることは不可能であった。
However, in the conventional X-ray microscope, it is difficult to manufacture an X-ray optical element or the like for constituting a microscope optical system in the X-ray region. It was used. Further, the conventional X-ray microscope employs a method of transmitting illumination of the sample (illuminating from the back side of the sample). In order to transmit and illuminate the sample, a very thin thin film ( The sample must be supported by a membrane or the like, which makes it difficult to support the sample. Further, in a conventional X-ray microscope, contrast is obtained by a difference in X-ray absorption by a sample,
It was impossible to obtain information on the phase change.

【0004】また、将来の半導体製造技術として期待さ
れるX線縮小投影露光に用いられる多層膜反射鏡等のX
線反射鏡において、反射面の微小な凹凸によるX線の位
相差が位相型欠陥として転写されてしまうという問題が
あった(参考文献:K.B.Nguyenet.al.,J.Vac.Sci.Techn
ol.B12(6),3833-3840(1994).)。位相型欠陥は、X線の
波長の1/4(3〜4nm)という極めて小さな段差に
よっても欠陥となり得るが、従来の可視光を用いた欠陥
検査装置ではこのような極めて微小な段差を検出するこ
とは不可能であった。
Further, X-rays such as multilayer reflectors used for X-ray reduction projection exposure, which are expected as a future semiconductor manufacturing technology, will be described.
In a X-ray mirror, there is a problem that a phase difference of X-rays due to minute unevenness of a reflection surface is transferred as a phase-type defect (Reference: KBNguyenet.al., J.Vac.Sci.Techn.
ol.B12 (6), 3833-3840 (1994).). A phase-type defect can become a defect even with an extremely small step of 1/4 (3 to 4 nm) of the wavelength of X-rays, but a conventional defect inspection apparatus using visible light detects such an extremely small step. That was impossible.

【0005】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、一部研究用
にとどまることのない、また試料の支持にメンブレン等
の脆弱な薄膜を用いなくてもよい、さらに位相変化の情
報を得てX線領域での顕微鏡観察の感度を飛躍的に向上
することの可能なX線干渉顕微鏡を提供することにあ
る。また、このX線干渉顕微鏡を用いることにより、X
線反射鏡の反射面における微小段差に伴う位相型欠陥を
検出することのできるX線反射鏡の検査方法を提供する
ことにある。
The present invention has been made in order to solve such a problem, and an object of the present invention is to use a fragile thin film such as a membrane for supporting a sample, which is not limited to a part for research. An object of the present invention is to provide an X-ray interference microscope which does not need to be provided, and which can obtain information on a phase change and dramatically improve the sensitivity of microscopic observation in an X-ray region. By using this X-ray interference microscope,
An object of the present invention is to provide a method of inspecting an X-ray reflecting mirror capable of detecting a phase-type defect due to a minute step on a reflecting surface of the X-ray reflecting mirror.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明のX線干渉顕微鏡は、X線結像光学系
と像面に配置されたX線撮像素子との間に反射鏡を配置
し、この反射鏡に関して像面と鏡像の位置に点光源を配
置し、この点光源により反射鏡を介しX線結像光学系の
開口の一部を通して物体面に配置された試料を落射照明
(試料の表面側から照明)するようにしたものである。
この発明によれば、点光源によりX線反射鏡に配置した
試料を落射照明することにより、あるいは試料であるX
線反射鏡を落射照明することにより、試料をメンブレン
等の脆弱な薄膜で保持する必要がなくなる。なお、例え
ば、点光源には準単色X線を用いかつ点光源の大きさを
ピンホール等を用いて空間的に制限することにより、顕
微鏡の視野内(X線結像光学系の開口内)をコヒーレン
トに照明する。
In order to achieve the above object, an X-ray interference microscope according to the present invention comprises a reflection optical system between an X-ray imaging optical system and an X-ray image pickup device arranged on an image plane. A mirror is disposed, and a point light source is disposed at an image plane and a mirror image position with respect to the reflecting mirror, and the point light source allows the sample placed on the object plane through a part of the opening of the X-ray imaging optical system via the reflecting mirror. Epi-illumination (illumination from the surface side of the sample) is performed.
According to the present invention, the sample placed on the X-ray reflecting mirror is illuminated with incident light by a point light source,
By epi-illuminating the line reflector, there is no need to hold the sample with a fragile thin film such as a membrane. Note that, for example, a quasi-monochromatic X-ray is used as a point light source and the size of the point light source is spatially limited using a pinhole or the like, so as to be within the field of view of the microscope (in the aperture of the X-ray imaging optical system). Is coherently illuminated.

【0007】また、本発明のX線干渉顕微鏡は、上述し
た構成において、X線結像光学系と物体面との間にビー
ムスプリッタを配置し、このビームスプリッタに関して
物体面と対称の位置に反射原器を配置し、このビームス
プリッタと反射原器とでマッハツェンダー型の干渉計を
構成し、試料によるX線の位相変化がX線撮像素子上に
干渉コントラストとして現れるようにしたものである。
この発明によれば、試料と反射原器が落射照明により空
間的なコヒーレンスを保持して同時に照明されるため、
試料によるX線の位相変化がX線撮像素子上に干渉コン
トラストとして現れる。これにより、試料のX線の吸収
の違いによるコントラストではなく、試料によるX線の
位相変化が干渉コントラストとして可視化され、試料に
よるX線の微小な位相変化を非常に大きなコントラスト
の違いとして観察することが可能となる。
In the X-ray interference microscope according to the present invention, the beam splitter is disposed between the X-ray imaging optical system and the object plane in the above-described configuration, and the beam is reflected at a position symmetrical to the object plane with respect to the beam splitter. A prototype is arranged, and a Mach-Zehnder interferometer is configured by the beam splitter and the reflective prototype so that a phase change of an X-ray due to a sample appears as an interference contrast on an X-ray imaging device.
According to the present invention, since the sample and the reflecting prototype are simultaneously illuminated while maintaining spatial coherence by epi-illumination,
The phase change of the X-ray due to the sample appears as interference contrast on the X-ray imaging device. As a result, the phase change of the X-ray due to the sample is visualized as an interference contrast instead of the contrast due to the difference in the absorption of the X-ray of the sample, and the minute phase change of the X-ray due to the sample is observed as a very large contrast difference. Becomes possible.

【0008】また、本発明のX線反射鏡の検査方法は、
上述したX線干渉顕微鏡の物体面に試料としてX線反射
鏡を配置し、X線干渉顕微鏡の反射原器あるいはビーム
スプリッタを光軸方向へ微小移動することにより、X線
反射鏡の反射面における欠陥を検出するようにしたもの
である。この発明によれば、反射原器あるいはビームス
プリッタを微小移動させることにより、顕微鏡の結像関
係を維持したまま、試料によるX線の位相変化がX線撮
像素子上に干渉の変化によるコントラストとして現れ、
このコントラストの変化などからX線反射鏡の反射面に
おける欠陥を検出することができる。この場合、X線の
位相変化を干渉として可視化するためX線干渉顕微鏡の
分解能は非常に高く、X線の波長以下の極めて小さな段
差を検出可能である。また、欠陥検出を顕微鏡観察と同
時に行うため、検出可能な欠陥の大きさはX線干渉顕微
鏡の分解能の恩恵を受け、100nm以下の空間分解能
が期待できる。さらに、X線反射鏡の部分欠落やパーテ
ィクルの付着等による欠陥(振幅欠陥、あるいは黒欠
陥)と微小な段差による位相欠陥を区別して検出が可能
である。
Further, the inspection method of the X-ray reflector according to the present invention
An X-ray reflecting mirror is arranged as a sample on the object surface of the X-ray interference microscope described above, and the reflection base or beam splitter of the X-ray interference microscope is slightly moved in the optical axis direction, so that the reflection surface of the X-ray reflecting mirror is This is to detect a defect. According to the present invention, the phase change of the X-ray caused by the sample appears as a contrast due to the change of the interference on the X-ray imaging device while the imaging relationship of the microscope is maintained by slightly moving the reflection prototype or the beam splitter. ,
A defect on the reflection surface of the X-ray reflecting mirror can be detected from the change in contrast or the like. In this case, since the phase change of the X-ray is visualized as interference, the resolution of the X-ray interference microscope is very high, and it is possible to detect an extremely small step below the X-ray wavelength. Further, since the defect detection is performed simultaneously with the microscopic observation, the size of the detectable defect benefits from the resolution of the X-ray interference microscope, and a spatial resolution of 100 nm or less can be expected. Further, it is possible to distinguish and detect a defect (amplitude defect or black defect) due to a partial omission of the X-ray reflecting mirror or adhesion of particles and a phase defect due to a minute step.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施の形態に基づ
き詳細に説明する。 〔X線干渉顕微鏡〕図1は本発明に係るX線干渉顕微鏡
の一実施の形態の要部を示す図である。同図において、
1はX線結像光学系、2は物体面S1に配置された試
料、3は像面S2に配置されたX線撮像素子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. [X-ray Interference Microscope] FIG. 1 is a view showing a main part of an embodiment of an X-ray interference microscope according to the present invention. In the figure,
1 is an X-ray imaging optical system, 2 is a sample arranged on the object plane S1, and 3 is an X-ray image sensor arranged on the image plane S2.

【0010】この実施の形態では、X線結像光学系1し
て、球面鏡1−1,1−2に多層膜反射鏡等の反射コー
ティングを施した反射型のシュバルツシルト光学系を用
いている。多層膜反射鏡としては、波長13nmのX線
用に対して高い反射率が得られる多層膜の組み合わせと
して広く用いられているMo/Si多層膜などを用い
る。
In this embodiment, a reflective Schwarzschild optical system in which spherical mirrors 1-1 and 1-2 are provided with a reflective coating such as a multilayer film reflective mirror is used as the X-ray imaging optical system 1. . As the multilayer film reflecting mirror, a Mo / Si multilayer film widely used as a combination of multilayer films capable of obtaining a high reflectance for X-rays with a wavelength of 13 nm is used.

【0011】X線結像光学系1に関しては、他のシュバ
ルツシルト光学系以外のミラー構成による反射型光学
系、ウォルター型光学系等の全反射光学系、あるいは、
フレネルゾーンプレートレンズ等、X線領域において所
望の解像度を得られる光学系であれば、いかなるX線結
像光学系を用いても、その効果はなんら変わらない。ま
た、X線撮像素子3に関しては、X線の二次元像を所望
の解像度で観察できるものであれば、X線用CCD、あ
るいは蛍光面を可視のカメラで観察する等の方法を用い
ることが可能である。
Regarding the X-ray imaging optical system 1, a total reflection optical system such as a reflection type optical system using a mirror configuration other than the other Schwarzschild optical system, a Walter type optical system, or the like, or
As long as an optical system such as a Fresnel zone plate lens which can obtain a desired resolution in the X-ray region, the effect is not changed even if any X-ray imaging optical system is used. Further, as for the X-ray imaging element 3, if a two-dimensional image of X-rays can be observed at a desired resolution, a method of observing an X-ray CCD or a fluorescent screen with a visible camera may be used. It is possible.

【0012】図1において、4は反射鏡であり、X線結
像光学系1と像面S2との間に配置されている。5は点
光源あるいは疑似点光源(以下、単に点光源と言う)P
1を得るためのピンホールであり、反射鏡4に関して像
面S2と鏡像の位置に配置されている。
In FIG. 1, reference numeral 4 denotes a reflecting mirror, which is arranged between the X-ray imaging optical system 1 and an image plane S2. 5 is a point light source or a pseudo point light source (hereinafter simply referred to as a point light source) P
1 and is located at the position of the image plane S2 and the mirror image with respect to the reflecting mirror 4.

【0013】点光源P1からの光は、反射鏡4で反射
し、X線結像光学系1の開口の一部1−3を通して物体
面S1に配置された試料2に照射される。すなわち、本
実施の形態では、点光源P1により反射鏡4を介しX線
結像光学系1の開口の一部1−3を通して物体面S1に
配置された試料2を落射照明するようにしている。
The light from the point light source P1 is reflected by the reflecting mirror 4, and irradiates the sample 2 arranged on the object plane S1 through a part 1-3 of the aperture of the X-ray imaging optical system 1. That is, in the present embodiment, the point light source P1 illuminates the sample 2 arranged on the object plane S1 through the reflecting mirror 4 through the part 1-3 of the aperture of the X-ray imaging optical system 1 to perform incident illumination. .

【0014】6はX線用のビームスプリッタ、7は反射
原器(参照原器:反射鏡)である。。反射原器7はビー
ムスプリッタ6に関して物体面S1と対称の位置に配置
されている。このビームスプリッタ6と反射原器7とで
マッハツェンダー型の干渉計が構成されている。
Reference numeral 6 denotes a beam splitter for X-rays, and reference numeral 7 denotes a reflection prototype (reference prototype: reflecting mirror). . The reflection prototype 7 is disposed at a position symmetrical to the object plane S1 with respect to the beam splitter 6. The beam splitter 6 and the reflection standard 7 constitute a Mach-Zehnder interferometer.

【0015】反射原器7の像と試料2の像はビームスプ
リッタ6により重ね合わされて干渉し、試料2によるX
線の位相変化が反射原器7によるX線の位相との相対変
化として、すなわち干渉の違いによるコントラストとし
て、X線撮像素子3上に結像される。
The image of the reflection standard 7 and the image of the sample 2 are superposed by the beam splitter 6 and interfere with each other.
The phase change of the line is imaged on the X-ray image sensor 3 as a relative change with respect to the phase of the X-ray by the reflection standard 7, that is, as a contrast due to a difference in interference.

【0016】マッハツェンダー型の干渉計を構成する反
射原器7あるいはビームスプリッタ6を光軸方向へ微小
移動することにより、干渉の違いによるコントラストを
変えることができる。この干渉の違いによるコントラス
トは、例えば反射原器7を微小移動させる場合、用いる
X線の波長の約1/4程度の移動量で反転する。
By slightly moving the reflection standard 7 or the beam splitter 6 constituting the Mach-Zehnder type interferometer in the direction of the optical axis, the contrast due to the difference in interference can be changed. The contrast due to the difference in the interference is inverted by a movement amount of about 1 / of the wavelength of the X-ray used when, for example, the reflection prototype 7 is slightly moved.

【0017】X線結像光学系1の焦点深度はλ/2NA
2 で与えられ、NAが0.1の光学系であれば焦点深度
は波長の50倍以上(波長13nmで0.65μm)と
なるため、この移動量は焦点深度に比べればはるかに小
さく、結像状態を保ったまま、位相差によるコントラス
トを変化させることが可能である。
The depth of focus of the X-ray imaging optical system 1 is λ / 2NA
In the case of an optical system having a numerical aperture of 0.1 and an NA of 0.1, the depth of focus is 50 times or more the wavelength (0.65 μm at a wavelength of 13 nm). It is possible to change the contrast by the phase difference while maintaining the image state.

【0018】点光源P1としては準単色化したX線を用
いる。ここで、点光源P1の単色性は可干渉距離とし
て、マッハツェンダー型の干渉計のアライメント精度と
微動範囲を制限する。また、点光源P1の大きさは、空
間的なコヒーレンスとして、干渉コントラストの見え方
に影響する。
As the point light source P1, quasi-monochromatic X-rays are used. Here, the monochromaticity of the point light source P1 limits the alignment accuracy and the fine movement range of the Mach-Zehnder interferometer as the coherence distance. The size of the point light source P1 affects the appearance of interference contrast as spatial coherence.

【0019】X線結像光学系1の開口1−3内をコヒー
レントに照明するためにはバン(van Cittert-Zemike)
の定理より、図2に示すようなインコヒーレントな円形
光源(角直径α=ρ/R)でほぼコヒーレントに照明さ
れる円形領域の直径dは、d=0.16Rλ/ρで与え
られ、dが0.16Rλ/ρで完全にインコヒーレント
になる。
In order to coherently illuminate the inside of the aperture 1-3 of the X-ray imaging optical system 1, a van Cittert-Zemike is used.
According to the theorem, the diameter d of a circular region that is almost coherently illuminated by an incoherent circular light source (angular diameter α = ρ / R) as shown in FIG. 2 is given by d = 0.16Rλ / ρ, and d Becomes completely incoherent at 0.16 Rλ / ρ.

【0020】NAが0.1程度のX線結像光学系1を対
象とする場合、全面をほぼコヒーレントに照明するため
に必要な光源の大きさは、NA=d/2Rなので、ρ=
0.16Rλ/dより、2ρ=O.16λ/NA〜21
nm程度のピンホールが必要になる。ピンホールを物体
面側に置く場合は縮小率倍になり、縮小率が1/20の
場合は2ρ=420nm程度となる。
In the case of the X-ray imaging optical system 1 having an NA of about 0.1, the size of the light source required to illuminate the entire surface almost coherently is NA = d / 2R.
From 0.16 Rλ / d, 2ρ = O. 16λ / NA ~ 21
A pinhole of about nm is required. When the pinhole is placed on the object plane side, the reduction ratio becomes twice, and when the reduction ratio is 1/20, it becomes about 2ρ = 420 nm.

【0021】〔X線反射鏡の検査〕本実施の形態のX線
干渉顕微鏡を用いてX線反射鏡の欠陥検査を行う場合に
は、試料2としてX線反射鏡、例えばX線縮小投影露光
用反射型マスク等を配置し、試料(以下、X線反射鏡)
2の反射面の位置を調整して、X線撮像素子3上に結像
するようにする。
[Inspection of X-ray Reflecting Mirror] When inspecting defects of the X-ray reflecting mirror using the X-ray interference microscope of the present embodiment, an X-ray reflecting mirror such as an X-ray reduction projection exposure is used as the sample 2. Sample (hereinafter, X-ray reflector)
The position of the reflection surface 2 is adjusted so that an image is formed on the X-ray image sensor 3.

【0022】この際、X線結像光学系1として多層膜反
射鏡をコーティングした反射型光学系を用いる場合は、
観察するX線反射鏡2と波長マッチングをとらなければ
ならない。また、X線結像光学系1としてフレネルゾー
ンプレートレンズを用いる場合は、観察するX線反射鏡
2の最適波長において色収差が出ないよう光学系の配置
を最適化する必要がある。
At this time, when a reflection type optical system coated with a multilayer reflecting mirror is used as the X-ray imaging optical system 1,
It is necessary to match the wavelength with the X-ray reflecting mirror 2 to be observed. When a Fresnel zone plate lens is used as the X-ray imaging optical system 1, it is necessary to optimize the arrangement of the optical system so that chromatic aberration does not occur at the optimum wavelength of the X-ray reflecting mirror 2 to be observed.

【0023】X線反射鏡2の反射面がX線撮像素子3上
に結像するように調整した状態で、本実施の形態のX線
干渉顕微鏡は落射照明方式の顕微鏡として、X線反射鏡
2の反射面を明視野観察することができる。
The X-ray interference microscope according to the present embodiment is an epi-illumination type microscope in a state where the reflection surface of the X-ray reflection mirror 2 is adjusted so as to form an image on the X-ray imaging device 3. The second reflective surface can be observed in a bright field.

【0024】次に、反射原器7の位置を調整して、反射
原器7がX線撮像素子3上に結像するように調整する。
焦点調整においては、X線反射鏡2ならびに反射原器7
上にあらかじめ配置した焦点合わせパタンを用いて焦点
調整を行うとよい。さらに、焦点調整の利便性を向上す
るために、光路を遮るシャッター8を配置してもよい。
Next, the position of the reflection prototype 7 is adjusted so that the reflection prototype 7 forms an image on the X-ray imaging device 3.
In the focus adjustment, the X-ray reflecting mirror 2 and the reflecting prototype 7 are used.
It is advisable to perform focus adjustment using a focusing pattern previously arranged above. Further, a shutter 8 that blocks an optical path may be provided to improve the convenience of focus adjustment.

【0025】X線反射鏡2と反射原器7の両方の像がビ
ームスプリッタ6で重ね合わされて、X線撮像素子3で
観察されるように調整した状態で、ビームスプリッタ6
の位置及び傾きを調整し、視野内に干渉縞が見えるよう
にする。この状態で、干渉顕微鏡として、X線反射鏡2
と反射原器7の相対的なX線の位相差を観察することが
できる。
In a state where the images of both the X-ray reflecting mirror 2 and the reflection standard 7 are superimposed on each other by the beam splitter 6 and adjusted so as to be observed by the X-ray imaging device 3, the beam splitter 6 is adjusted.
Is adjusted so that interference fringes can be seen in the field of view. In this state, the X-ray reflecting mirror 2 is used as an interference microscope.
And the relative X-ray phase difference between the reflection standard 7 and the reflection standard 7 can be observed.

【0026】反射原器7(あるいはビームスプリッタ
6)を光軸方向に往復微動させれば、マッハツェンダー
干渉計の光路が変化し、干渉縞の移動あるいはコントラ
スト変化が往復微動に伴って生じる。X線反射鏡2の欠
陥を検査するには、干渉顕微鏡の状態で、X線反射鏡2
を2次元にスキャンする。
If the reflecting prototype 7 (or the beam splitter 6) is finely reciprocated in the optical axis direction, the optical path of the Mach-Zehnder interferometer changes, and the movement of the interference fringes or the change in contrast occurs with the fine reciprocation. In order to inspect the X-ray reflector 2 for defects, the X-ray reflector 2 is inspected in the state of an interference microscope.
Is scanned two-dimensionally.

【0027】欠陥は、コントラストの違いとして検出さ
れ、X線反射鏡2の反射面上の付着粒子、反射面の部分
欠落等欠陥は、反射原器7(あるいはビームスプリッタ
6)の往復微動に拘わらずコントラストが変化しない黒
欠陥として観察され、反射面下に埋め込まれた微小段差
等による位相型欠陥は、反射原器7(あるいはビームス
プリッタ6)の往復微動に伴ってコントラストが変化す
る欠陥として観察される。
Defects are detected as differences in contrast. Defects such as adhered particles on the reflecting surface of the X-ray reflecting mirror 2 and partial omissions of the reflecting surface are caused by the reciprocating fine movement of the reflecting prototype 7 (or the beam splitter 6). A phase type defect caused by a minute step or the like embedded under the reflecting surface is observed as a defect whose contrast changes due to the reciprocating fine movement of the reflection prototype 7 (or the beam splitter 6). Is done.

【0028】従って、X線反射鏡2の反射面のいかなる
種類の欠陥も検出でき、かつ、λ/2NA2 で与えられ
るX線干渉顕微鏡の解像度は、NAが0.1の光学系で
あれば焦点深度は波長の5倍(波長13nmで65n
m)となり、X線干渉顕微鏡の有する非常に高い空間分
解能で観察することができる。
Accordingly, any kind of defect on the reflecting surface of the X-ray reflecting mirror 2 can be detected, and the resolution of the X-ray interference microscope given by λ / 2NA 2 is as long as the optical system has NA of 0.1. Depth of focus is 5 times the wavelength (65n at 13nm)
m), and can be observed with a very high spatial resolution of the X-ray interference microscope.

【0029】[0029]

【発明の効果】以上説明したことから明らかなように本
発明のX線干渉顕微鏡によれば、点光源により試料を落
射照明することにより、試料をメンブレン等の脆弱な薄
膜で保持する必要がなく、試料の保持が簡単となり、光
学系も簡単となることから、一部研究用にとどまること
なく、各種の分野での普及を図ることができる。また、
本発明のX線干渉顕微鏡によれば、試料のX線吸収の違
いによるコントラストではなく、試料によるX線の位相
変化がX線撮像素子上に干渉コントラストして現れるた
め、試料による微小なX線の位相変化を非常に大きなコ
ントラストの違いとして観察可能となり、X線領域での
顕微鏡観察の感度を飛躍的に向上することが可能とな
る。また、本発明のX線反射鏡の検査方法によれば、上
述したX線干渉顕微鏡をX線反射鏡の欠陥検査に使用す
ることにより、反射面の微小な凹凸によるX線の位相変
化を極めて高い分解能で検出可能であるため、従来検出
不可能だった位相型欠陥の検出を非常に高い感度で行う
ことが可能となる。
As described above, according to the X-ray interference microscope of the present invention, it is not necessary to hold the sample with a fragile thin film such as a membrane by illuminating the sample with a point light source. Since the sample is easily held and the optical system is also simple, it can be spread in various fields without being limited to a part for research. Also,
According to the X-ray interference microscope of the present invention, not the contrast due to the difference in the X-ray absorption of the sample, but the phase change of the X-ray due to the sample appears as an interference contrast on the X-ray imaging device. Can be observed as a very large contrast difference, and the sensitivity of microscope observation in the X-ray region can be dramatically improved. According to the inspection method of the X-ray reflector of the present invention, the X-ray interference microscope described above is used for the defect inspection of the X-ray reflector, so that the phase change of the X-ray due to the minute unevenness of the reflection surface is extremely reduced. Since it is possible to detect with a high resolution, it is possible to detect a phase-type defect, which cannot be detected conventionally, with very high sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るX線干渉顕微鏡の一実施の形態
の要部を示す図である。
FIG. 1 is a diagram showing a main part of an embodiment of an X-ray interference microscope according to the present invention.

【図2】 バン(van Cittert-Zemike)の定理を説明す
る図である。
FIG. 2 is a diagram illustrating the van (Cittert-Zemike) theorem.

【符号の説明】[Explanation of symbols]

1…X線結像光学系、1−1,1−2…球面鏡、1−3
…開口の一部、2…試料(X線反射鏡)、S1…物体
面、S2…像面、3…X線撮像素子、4…反射鏡、5…
ピンホール、P1…点光源あるいは擬似点光源、6…ビ
ームスプリッタ、7…反射原器(参照原器:反射鏡)、
8…シャッター。
1. X-ray imaging optical system, 1-1, 1-2 ... spherical mirror, 1-3
... Part of the aperture, 2... Sample (X-ray reflecting mirror), S1... Object plane, S2.
Pinhole, P1: point light source or pseudo point light source, 6: beam splitter, 7: reflective prototype (reference prototype: reflective mirror),
8 ... Shutter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 X線結像光学系と像面に配置されたX線
撮像素子との間に配置された反射鏡と、 この反射鏡に関して前記像面と鏡像の位置に配置され、
前記反射鏡を介し前記X線結像光学系の開口の一部を通
して物体面に配置された試料を落射照明する点光源とを
備えたことを特徴とするX線干渉顕微鏡。
A reflecting mirror disposed between an X-ray imaging optical system and an X-ray imaging device disposed on an image plane; and a reflecting mirror disposed at a position of the image plane and a mirror image with respect to the reflecting mirror.
An X-ray interference microscope, comprising: a point light source configured to illuminate a sample disposed on an object plane through a part of an opening of the X-ray imaging optical system through the reflecting mirror.
【請求項2】 請求項1において、前記X線結像光学系
と前記物体面との間に配置されたビームスプリッタと、
このビームスプリッタに関して前記物体面と対称の位置
に配置された反射原器とを備え、前記ビームスプリッタ
と前記反射原器とでマッハツェンダー型の干渉計が構成
され、前記試料によるX線の位相変化が前記X線撮像素
子上に干渉コントラストとして現れることを特徴とする
X線干渉顕微鏡。
2. The beam splitter according to claim 1, wherein the beam splitter is disposed between the X-ray imaging optical system and the object plane.
A reflection prototype disposed at a position symmetrical with respect to the object plane with respect to the beam splitter; a Mach-Zehnder interferometer is configured by the beam splitter and the reflection prototype; and a phase change of X-rays caused by the sample. Appears as interference contrast on the X-ray image sensor.
【請求項3】 請求項2記載のX線干渉顕微鏡の物体面
に試料としてX線反射鏡を配置し、前記X線干渉顕微鏡
の反射原器あるいはビームスプリッタを光軸方向へ微小
移動することにより、前記X線反射鏡の反射面における
欠陥を検出するようにしたことを特徴とするX線反射鏡
の検査方法。
3. An X-ray interference microscope according to claim 2, wherein an X-ray reflection mirror is arranged as a sample on the object surface, and the reflection base or beam splitter of said X-ray interference microscope is slightly moved in the optical axis direction. An inspection method of the X-ray reflector, wherein a defect on a reflection surface of the X-ray reflector is detected.
JP00642399A 1999-01-13 1999-01-13 Inspection method for X-ray interference microscope and X-ray reflector Expired - Fee Related JP3527118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00642399A JP3527118B2 (en) 1999-01-13 1999-01-13 Inspection method for X-ray interference microscope and X-ray reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00642399A JP3527118B2 (en) 1999-01-13 1999-01-13 Inspection method for X-ray interference microscope and X-ray reflector

Publications (2)

Publication Number Publication Date
JP2000206300A true JP2000206300A (en) 2000-07-28
JP3527118B2 JP3527118B2 (en) 2004-05-17

Family

ID=11637979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00642399A Expired - Fee Related JP3527118B2 (en) 1999-01-13 1999-01-13 Inspection method for X-ray interference microscope and X-ray reflector

Country Status (1)

Country Link
JP (1) JP3527118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200010770A (en) * 2018-07-23 2020-01-31 광주과학기술원 Target protein tracing equipment using in laser inducing X-ray

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200010770A (en) * 2018-07-23 2020-01-31 광주과학기술원 Target protein tracing equipment using in laser inducing X-ray
KR102113217B1 (en) * 2018-07-23 2020-05-21 광주과학기술원 Target protein tracing equipment using in laser inducing X-ray

Also Published As

Publication number Publication date
JP3527118B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US7982950B2 (en) Measuring system for structures on a substrate for semiconductor manufacture
US10451402B2 (en) Single shot full-field reflection phase microscopy
JP6132838B2 (en) Lighting control
US5835217A (en) Phase-shifting point diffraction interferometer
US7388696B2 (en) Diffuser, wavefront source, wavefront sensor and projection exposure apparatus
US20120081684A1 (en) Object Inspection Systems and Methods
US20120140243A1 (en) Non-contact surface characterization using modulated illumination
JP2004538451A (en) Method and device for obtaining a sample by three-dimensional microscopy
US9482968B2 (en) Measuring system
JP6895768B2 (en) Defect inspection equipment and defect inspection method
US7088458B1 (en) Apparatus and method for measuring an optical imaging system, and detector unit
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JP2015505039A (en) Non-contact surface shape evaluation using modulated light
JP2005265736A (en) Mask flaw inspection device
CN113758901B (en) Diffraction tomography microscopic imaging system and method
US6650421B2 (en) Method and apparatus for inspecting optical device
JP4117585B2 (en) Optical apparatus inspection method and apparatus, exposure apparatus, and exposure apparatus manufacturing method
US7042577B1 (en) Architectures for high-resolution photomask phase metrology
JP3527118B2 (en) Inspection method for X-ray interference microscope and X-ray reflector
JPH03189545A (en) Defect inspecting device
JP2002296020A (en) Surface shape measuring instrument
JP2012042218A (en) Defect inspection device
JP4555925B2 (en) 3D shape measuring device
TWI769545B (en) Method for measuring a reflectivity of an object for measurement light and metrology system for carrying out the method
Feldkhun et al. DEEP-dome: towards long-working-distance aberration-free synthetic aperture microscopy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees