JP2000205020A - Fuel injection control device for engine - Google Patents

Fuel injection control device for engine

Info

Publication number
JP2000205020A
JP2000205020A JP11010887A JP1088799A JP2000205020A JP 2000205020 A JP2000205020 A JP 2000205020A JP 11010887 A JP11010887 A JP 11010887A JP 1088799 A JP1088799 A JP 1088799A JP 2000205020 A JP2000205020 A JP 2000205020A
Authority
JP
Japan
Prior art keywords
region
fuel injection
engine
injection control
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11010887A
Other languages
Japanese (ja)
Other versions
JP3829514B2 (en
Inventor
Kiyotaka Mamiya
清孝 間宮
Michihiro Imada
道宏 今田
Masayuki Tetsuno
雅之 鐵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP01088799A priority Critical patent/JP3829514B2/en
Publication of JP2000205020A publication Critical patent/JP2000205020A/en
Application granted granted Critical
Publication of JP3829514B2 publication Critical patent/JP3829514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively suppress deterioration of combustibility by injecting fuel dividedly into plural times in one cycle when an operating region is shifted from a first operating region to a second operating region in which an EGR rate target value lower than that set in the first operating region is set. SOLUTION: In an ECU 40 for inputting output signals of an aero flow sensor 26, a throttle sensor 28, an engine rotating speed sensor 37, and the like, it is judged by operating condition judging means 42 which of a region A for carrying out a stratified burning operation at the time of a low and intermediate rotation and low load operation having few a fuel injection rate, a region B of a load higher than the region A in a low rotation region, and an intermediate and high rotation and a high load region and a low load and high rotation region C is a present operating condition. In the case where the region C is judged, homogenous combustion operation is carried out, and the operation is carried out by means of partial injection without batch injection. Namely, after only a part of fuel is injected in an early stage (first half of an intake stroke), the rest of fuel is injected in a latter period (latter half of the intake stroke).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス還流機能
を備えたエンジンの燃料噴射制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an engine having an exhaust gas recirculation function.

【0002】[0002]

【従来の技術】従来のエンジンの中には、要求燃料噴射
量の少ない低回転運転領域において、いわゆるリーン燃
焼を行いながら安定した運転を図るようにしたものが知
られている。例えば特開平8−189405号公報に
は、燃焼室内に直接燃料を噴射する、いわゆる直噴式エ
ンジンにおいて、低回転低負荷領域では、圧縮行程後半
に点火プラグ近傍の領域に燃料を噴射し、この領域を囲
む領域をリーン状態にして成層燃焼を行うようにしたも
のが開示されている。
2. Description of the Related Art Some conventional engines are designed to perform stable operation while performing so-called lean combustion in a low-speed operation region where a required fuel injection amount is small. For example, Japanese Patent Application Laid-Open No. 8-189405 discloses that in a so-called direct injection engine in which fuel is directly injected into a combustion chamber, in a low-speed low-load region, fuel is injected into a region near an ignition plug in the latter half of a compression stroke. Is disclosed in which a region surrounding a region is made lean to perform stratified combustion.

【0003】また一方、エンジンの排気ガス中に含まれ
る窒素酸化物(NOx)を低減する手段としては、例え
ば特開平6−229322号公報に示されるように、排
気ガスの一部を吸気系に還流させるEGRを行うものが
広く知られるに至っている。
On the other hand, as means for reducing nitrogen oxides (NOx) contained in exhaust gas of an engine, for example, as shown in Japanese Patent Application Laid-Open No. 6-229322, a part of the exhaust gas is supplied to an intake system. Devices that perform EGR for recirculation have become widely known.

【0004】このようなEGRを行う場合、そのEGR
率をあまり高く設定しすぎると燃焼性が著しく低下する
ため、EGR率を上げるには限界がある。しかし、前記
のような成層燃焼運転を行う領域では、燃焼室内で点火
プラグ周囲に燃料が偏在していてその外側は非常に燃料
リーンな領域となっており、この領域にEGRガスを多
く充填しても燃焼性に悪影響を及ぼしにくい状態となっ
ている。そこで近年は、特に前記成層燃焼運転領域で他
の領域(均一燃焼領域)よりも排気ガス還流量を増やす
といったEGR制御を行う装置が開発されるに至ってい
る。
When such EGR is performed, the EGR
If the rate is set too high, the flammability is significantly reduced, and there is a limit to increasing the EGR rate. However, in the region where the above-described stratified charge combustion operation is performed, fuel is unevenly distributed around the ignition plug in the combustion chamber, and the outside thereof is a very fuel-lean region. However, it is in a state where the flammability is not adversely affected. Therefore, in recent years, a device for performing EGR control such as increasing the exhaust gas recirculation amount in the stratified combustion operation region more than in other regions (uniform combustion region) has been developed.

【0005】[0005]

【発明が解決しようとする課題】前記のように成層燃焼
運転領域と均一燃焼運転領域とでEGR量を変えるエン
ジンでは、例えば加速時のように成層燃焼運転領域から
均一燃焼運転領域へ移行する際、その移行に伴ってEG
R弁を絞り、EGR量を速やかに低減させる必要があ
る。しかし、EGR弁の開度を減少させてから実際に筒
内のEGRガスが十分に減少するまでにはかなりの応答
遅れがあるため、その遅れ時間中は既に均一燃焼運転が
始まっているにもかかわらず多量のEGR量が筒内に存
する状態となり、この期間で燃焼性が著しく低下する不
都合がある。このような不都合は、前記成層燃焼運転領
域から均一燃焼運転領域への移行時に限られず、比較的
許容EGR量の大きい運転領域から小さい運転領域への
移行時に起こり得るものである。
As described above, in an engine in which the EGR amount is changed between the stratified combustion operation region and the uniform combustion operation region, when the engine shifts from the stratified combustion operation region to the uniform combustion operation region, for example, during acceleration. , Along with the transition
It is necessary to throttle the R valve to quickly reduce the EGR amount. However, since there is a considerable response delay between the time the EGR valve opening is reduced and the time the EGR gas in the cylinder is actually sufficiently reduced, even if the uniform combustion operation has already started during the delay time. Regardless, a large amount of EGR remains in the cylinder, and there is a disadvantage that the combustibility is significantly reduced during this period. Such an inconvenience is not limited to the transition from the stratified combustion operation region to the uniform combustion operation region, but may occur at the transition from the operation region with a relatively large allowable EGR amount to a small operation region.

【0006】また近年は、前記成層燃焼運転のようなリ
ーン運転が行われる時にも排気ガス中のNOxを低減さ
せる手段として、排気ガスの空気過剰率が大きいリーン
状態では当該排気ガス中のNOxを吸着し、当該空気過
剰率の小さいリッチ状態で前記吸着をしたNOxを放出
するリーンNOx触媒を排気通路に配置したものが知ら
れているが、このリーンNOx触媒のNOx浄化機能
は、排気温度が限られた温度範囲を逸脱すると著しく低
下するため、当該リーンNOx触媒を用いる場合には排
気ガス温度を好適な範囲に維持する必要がある。
In recent years, as a means for reducing NOx in exhaust gas even when a lean operation such as the above-described stratified charge combustion operation is performed, NOx in the exhaust gas is reduced in a lean state where the excess air ratio of the exhaust gas is large. It is known that a lean NOx catalyst that adsorbs and releases the adsorbed NOx in a rich state with a small excess air ratio is arranged in an exhaust passage. If the temperature deviates from the limited temperature range, the temperature significantly decreases. Therefore, when the lean NOx catalyst is used, it is necessary to maintain the exhaust gas temperature in a suitable range.

【0007】本発明は、このような事情に鑑み、EGR
量目標値の高い運転領域から低い運転領域へ移行する際
の燃焼性低下を有効に抑止できるエンジンの燃料噴射制
御装置を提供することを目的とし、さらに、排気通路に
リーン状態でNOxを吸収するNOx吸収材を設ける場
合に、そのNOx吸収性能を高く維持できる範囲内に排
気温度を維持しながら前記燃焼性低下の抑止を達成でき
るエンジンの燃料噴射制御装置を提供することを目的と
する。
[0007] In view of such circumstances, the present invention provides an EGR
It is an object of the present invention to provide an engine fuel injection control device capable of effectively suppressing a decrease in flammability when shifting from an operation region with a high target value to a low operation region, and further absorbs NOx in a lean state in an exhaust passage. An object of the present invention is to provide a fuel injection control device for an engine capable of achieving the suppression of the decrease in combustibility while maintaining the exhaust temperature within a range where the NOx absorption performance can be maintained high when the NOx absorbent is provided.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、第1の運転領域と、この第1の
運転領域に隣接し、当該第1の運転領域で設定されるE
GR量目標値よりも低いEGR量目標値が設定された第
2の運転領域とをもつエンジンの燃料噴射制御装置であ
って、前記第1の運転領域から第2の運転領域への移行
時に1サイクル中燃料を複数回に分けて噴射する分割噴
射を行わせる燃料噴射制御手段を備えたものである。
According to the present invention, as a means for solving the above-mentioned problems, a first operation region and a region adjacent to the first operation region and set in the first operation region are set. E
A fuel injection control device for an engine having a second operation region in which an EGR amount target value lower than the GR amount target value is set, wherein the first operation region is shifted from the first operation region to the second operation region. The fuel injection control device is provided with fuel injection control means for performing split injection in which fuel is injected in a plurality of times during a cycle.

【0009】この構成によれば、第1の運転領域から第
2の運転領域への移行時に分割噴射が行われる。この分
割噴射では、まず一部の燃料のみが早期噴射されて十分
に拡散してから残りの燃料が後期噴射されるため、全燃
料が一度に噴射される一括噴射に比べ、燃焼室内にはよ
り均一な混合気が形成され、高い燃焼性が確保される。
従って、このような分割噴射が前記第1の運転領域(す
なわちEGR目標値が高い領域)から第2の領域(EG
R目標値が低い領域)への移行時に行われることによ
り、当該移行時における実際のEGR量減少の応答遅れ
に起因する燃焼性の悪化が有効に抑止されることとな
る。
According to this configuration, split injection is performed at the time of transition from the first operation region to the second operation region. In this split injection, only part of the fuel is injected early and diffuses sufficiently before the remaining fuel is injected in the latter period. A uniform air-fuel mixture is formed, and high flammability is ensured.
Therefore, such split injection is performed from the first operation region (that is, the region where the EGR target value is high) to the second region (EG
By performing the shift at the time of shifting to the region where the R target value is low), the deterioration of the combustibility due to the response delay of the actual decrease in the EGR amount at the time of the shift is effectively suppressed.

【0010】前記第1の運転領域及び第2の運転領域
は、相対的にEGR量目標値の異なる領域であればよ
い。例えば、低負荷領域で成層燃焼運転が行われ、高負
荷領域で均一燃焼運転が行われる場合、前記低負荷領域
(成層燃焼運転領域)では、高負荷領域(均一燃焼運転
領域)よりもEGRの許容度が高く、より高いEGR量
目標値が設定できるので、当該低負荷領域を前記第1の
運転領域、高負荷領域を前記第2の運転領域とすればよ
い。
The first operating region and the second operating region may be regions where the EGR amount target values are relatively different. For example, when the stratified combustion operation is performed in the low load region and the uniform combustion operation is performed in the high load region, the EGR of the low load region (stratified combustion operation region) is higher than that of the high load region (uniform combustion operation region). Since the tolerance is high and a higher EGR amount target value can be set, the low load region may be set as the first operation region and the high load region may be set as the second operation region.

【0011】本発明にかかる装置は、吸気弁手前の吸気
ポートに燃料が噴射されるポート噴射式エンジンにも適
用が可能であるが、燃焼室内に直接燃料が噴射される筒
内噴射式エンジンに適用すれば、より有効である。
The apparatus according to the present invention can be applied to a port injection type engine in which fuel is injected into an intake port in front of an intake valve, but is applicable to a direct injection type engine in which fuel is directly injected into a combustion chamber. It is more effective if applied.

【0012】この場合、前記分割噴射としては、吸気行
程中に複数回燃料噴射を行わせるようにしてもよいし、
吸気行程と圧縮行程とに分けて燃料噴射を行わせるよう
にしてもよい。
In this case, the divided injection may be performed a plurality of times during the intake stroke.
The fuel injection may be performed separately for the intake stroke and the compression stroke.

【0013】また本発明は、低負荷領域であって成層燃
焼運転が行われる成層燃焼運転領域と、この成層燃焼運
転領域よりも高負荷側の領域であって、均一燃焼運転が
行われ、かつ、前記成層燃焼運転領域で設定される排気
ガス還流量目標値よりも低い排気ガス還流量目標値が設
定された均一燃焼運転領域とを有するとともに、排気通
路に排気ガス中の空気過剰率が大きい時にNOxを吸収
するNOx吸収材が設けられたエンジンの燃料噴射制御
装置であって、前記均一燃焼運転領域のうちエンジン回
転数が所定値以上の高回転領域では1サイクル中燃料を
複数回に分けて噴射する第1の分割噴射を行わせ、エン
ジン回転数が前記所定値未満の低回転領域では前記成層
燃焼運転領域から均一燃焼運転領域への移行時にのみ1
サイクル中燃料を複数回に分けて噴射する第2の分割噴
射を行わせる燃料噴射制御手段を備えたものである。
Further, the present invention provides a stratified charge combustion operation region in which the stratified charge combustion operation is performed in a low load region, and a load region higher than the stratified charge combustion operation region, in which a uniform combustion operation is performed. A uniform combustion operation region in which an exhaust gas recirculation amount target value lower than the exhaust gas recirculation amount target value set in the stratified combustion operation region is set, and the excess air ratio in the exhaust gas in the exhaust passage is large. A fuel injection control device for an engine provided with a NOx absorbent that absorbs NOx at times, wherein the fuel is divided into a plurality of times during one cycle in a high rotation region where the engine speed is equal to or higher than a predetermined value in the uniform combustion operation region. In the low rotation region where the engine speed is lower than the predetermined value, the first split injection is performed only when shifting from the stratified combustion operation region to the uniform combustion operation region.
The fuel injection control device is provided with a fuel injection control means for performing a second split injection in which fuel is injected a plurality of times during a cycle.

【0014】この構成によれば、同じ均一燃焼運転が行
われる領域であっても、そのうち、排気温度が比較的高
い高回転領域では、1サイクル中燃料を複数回に分けて
噴射する第1の分割噴射が行われることにより、一括噴
射の場合よりも燃焼速度及び燃焼効率が高められ、その
分排気温度が下げられる。従って、この排気温度がNO
x吸収材に好都合な温度範囲よりも高くなることが防が
れる。
According to this configuration, even in the region where the same uniform combustion operation is performed, in the high rotation region where the exhaust gas temperature is relatively high, the first injection of the fuel divided into a plurality of times during one cycle is performed. By performing the split injection, the combustion speed and the combustion efficiency are increased as compared with the case of the batch injection, and the exhaust gas temperature is reduced accordingly. Therefore, this exhaust temperature is NO
It is prevented from being higher than the temperature range favorable for the x-absorber.

【0015】逆に、排気温度の比較的低い低回転領域で
は、原則的に分割噴射が行われず、一括噴射が行われる
ため、分割噴射の実行によって排気温度がNOx吸収材
に好都合な温度範囲よりも低くなることが防がれる。し
かも、EGR量目標値の高い成層燃焼運転領域からEG
R量目標値の低い均一燃焼運転領域への移行時には、第
2の分割噴射が行われることにより、前記と同様に、E
GR量減少の応答遅れに起因する燃焼性の悪化が有効に
抑止される。この第2の分割噴射は、成層燃焼運転領域
から均一燃焼運転領域への移行時にのみ行われる一時的
なものであるので、当該分割噴射に起因して排気温度が
下がりすぎる(すなわちNOx吸収材に好都合な温度範
囲よりも低くなる)ことは避けられる。
Conversely, in the low rotation region where the exhaust gas temperature is relatively low, split injection is not performed in principle, but collective injection is performed. Therefore, the execution of the split injection lowers the exhaust gas temperature from a temperature range favorable for the NOx absorbent. Is also prevented from lowering. In addition, from the stratified combustion operation region where the EGR amount target value is high, the EG
At the time of shifting to the uniform combustion operation region where the R amount target value is low, the second split injection is performed, so that E
Deterioration of flammability due to a response delay of the GR amount decrease is effectively suppressed. Since the second split injection is a temporary one that is performed only at the time of shifting from the stratified combustion operation region to the uniform combustion operation region, the exhaust gas temperature is excessively lowered due to the split injection (that is, the NOx absorbing material is not used). Lower than the convenient temperature range) is avoided.

【0016】ここで、「前記成層燃焼運転領域から均一
燃焼運転領域への移行時にのみ第2の分割噴射を行わせ
る」手段としては、例えば、前記成層燃焼運転領域から
均一燃焼運転領域に切換わった時点から所定時間が経過
するまで前記第2の分割噴射を行わせるようにすればよ
い。
The means for "performing the second split injection only at the time of transition from the stratified combustion operation region to the uniform combustion operation region" includes, for example, switching from the stratified combustion operation region to the uniform combustion operation region. The second split injection may be performed until a predetermined time elapses from the time when the injection is performed.

【0017】この発明にかかる装置も、吸気弁手前の吸
気ポートに燃料が噴射されるポート噴射式エンジンに適
用が可能であるが、燃焼室内に直接燃料が噴射される筒
内噴射式エンジンに適用すれば、より有効である。
The device according to the present invention is also applicable to a port injection type engine in which fuel is injected into an intake port before an intake valve, but is applied to a direct injection type engine in which fuel is directly injected into a combustion chamber. It will be more effective.

【0018】この場合も、前記第2の分割噴射として
は、吸気行程中に複数回燃料噴射を行わせるようにして
もよいし、吸気行程と圧縮行程とに分けて燃料噴射を行
わせるようにしてもよい。
Also in this case, the second split injection may be such that fuel injection is performed a plurality of times during the intake stroke, or the fuel injection is performed separately in the intake stroke and the compression stroke. You may.

【0019】また、前記NOx吸収材と三元触媒とを併
用する場合、三元触媒に都合のよい排気温度はNOx吸
収材に都合のよい排気温度よりも高いため、当該NOx
吸収材の上流側に三元触媒を設けることが好ましい。
When the NOx absorbent and the three-way catalyst are used together, the exhaust temperature suitable for the three-way catalyst is higher than the exhaust temperature favorable for the NOx absorbent.
It is preferable to provide a three-way catalyst upstream of the absorbent.

【0020】[0020]

【発明の実施の形態】本発明の好ましい実施の形態を図
面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described with reference to the drawings.

【0021】図1に示すエンジンの本体10は、複数の
気筒12を有し、各気筒12内にピストン14が装填さ
れており、各ピストン14の上方に燃焼室16が形成さ
れている。この実施の形態では、前記燃焼室16に対し
て2つの吸気ポートと排気ポートとが開口し、各吸気ポ
ート及び排気ポートがそれぞれ吸気弁17及び排気弁1
8によって開閉されるようになっている。
A main body 10 of the engine shown in FIG. 1 has a plurality of cylinders 12, each of which has a piston 14 mounted therein, and a combustion chamber 16 formed above each piston 14. In this embodiment, two intake ports and an exhaust port are opened to the combustion chamber 16, and each intake port and the exhaust port are connected to the intake valve 17 and the exhaust valve 1 respectively.
8 for opening and closing.

【0022】各燃焼室16の頂部には点火プラグ20が
配設され、そのプラグ先端が燃焼室16内に臨んでい
る。また、各燃焼室16内には側方からインジェクタ2
2の先端部(すなわち燃料噴射部)が臨み、このインジ
ェクタ22から燃焼室16内に直接燃料が噴射されるよ
うに構成されている。すなわち、このエンジンは筒内噴
射式エンジンとなっている。各インジェクタ22は、図
略のニードル弁及びソレノイドを内蔵し、このソレノイ
ドに後述のパルス信号が入力されることにより、そのパ
ルス入力時期に相当する時期にパルス幅に応じた量だけ
燃料を噴射するように構成されている。
A spark plug 20 is provided at the top of each combustion chamber 16, and the tip of the plug faces the combustion chamber 16. In addition, the injectors 2 are disposed in the respective combustion chambers 16 from the side.
The fuel injector 2 is configured such that a front end portion (ie, a fuel injection portion) faces and fuel is directly injected from the injector 22 into the combustion chamber 16. That is, this engine is a direct injection engine. Each injector 22 has a built-in needle valve and solenoid (not shown), and when a pulse signal described later is input to the solenoid, fuel is injected at a timing corresponding to the pulse input timing by an amount corresponding to the pulse width. It is configured as follows.

【0023】前記吸気ポートには吸気通路24が接続さ
れている。この吸気通路24には、その上流側から順
に、エアクリーナー25、エアフローセンサ26、スロ
ットルセンサ及びスロットル弁をもつエレキスロットル
28、サージタンク30が設けられている。このサージ
タンク30の下流側通路は、各吸気ポートに対応して分
岐する独立吸気通路となっている。
An intake passage 24 is connected to the intake port. The intake passage 24 is provided with an air cleaner 25, an air flow sensor 26, an electric throttle 28 having a throttle sensor and a throttle valve, and a surge tank 30 in this order from the upstream side. The downstream passage of the surge tank 30 is an independent intake passage that branches corresponding to each intake port.

【0024】図例では、各独立吸気通路の下流側部分が
2つの通路24a,24bに分岐し、各通路24a,2
4bが燃焼室16内に接続されるとともに、通路24b
にのみスワール生成用の開閉弁31が設けられている。
この開閉弁31は、図略のアクチュエータにより駆動さ
れて開閉作動するもので、この開閉弁31が第2の通路
24bを閉じるときには第1の通路24aのみを通る吸
気によって燃焼室15内にスワールが生成され、開閉弁
31が開かれるにつれてスワールが弱められるようにな
っている。
In the illustrated example, the downstream portion of each independent intake passage branches into two passages 24a, 24b, and each passage 24a, 24b
4b is connected into the combustion chamber 16 and the passage 24b
Is provided with an on-off valve 31 for swirl generation.
The on-off valve 31 is driven by an actuator (not shown) to open and close. When the on-off valve 31 closes the second passage 24b, swirl is generated in the combustion chamber 15 by intake air passing only through the first passage 24a. The swirl is generated and weakened as the on-off valve 31 is opened.

【0025】一方、前記排気ポートには排気通路34が
接続されている。この排気通路34の途中には、その上
流側から順に、三元触媒35と、リーンNOx触媒(N
Ox吸収材)36とが設けられている。これらの触媒
は、軸方向に沿って相互平行に延びる多数の貫通孔をも
つハニカム構造のコージェライト製担体の各貫通孔壁面
に触媒層を形成したものである。
On the other hand, an exhaust passage 34 is connected to the exhaust port. In the middle of the exhaust passage 34, a three-way catalyst 35 and a lean NOx catalyst (N
Ox absorber 36). In these catalysts, a catalyst layer is formed on the wall of each through-hole of a cordierite carrier having a honeycomb structure having a large number of through-holes extending in parallel with each other along the axial direction.

【0026】前記三元触媒35は、排気ガスが理論空燃
費近傍にある状態でNOx、CO、及びHCを浄化す
る。これに対してリーンNOx触媒36は、排気ガスの
空気過剰率が大きいリーン状態でNOxを吸着し、この
吸着したNOxを排気ガスの空気過剰率が小さいリッチ
状態で放出する。このリーンNOx触媒36は、三元触
媒35に好適な排気温度よりも低い特定温度域に排気温
度が存するときに有効な浄化性能を発揮するものであ
り、例えば特開平10-151353号公報に示される
ように、前記担体上に、Ptなどの貴金属とバリウムな
どのアルカリ土類金属担持のアルミナが担持された内側
触媒層と、白金及びロジウム担持のゼオライトが担持さ
れた外側触媒層とをコーティングしたもの等が好適であ
る。
The three-way catalyst 35 purifies NOx, CO and HC when the exhaust gas is near the stoichiometric air-fuel efficiency. On the other hand, the lean NOx catalyst 36 adsorbs NOx in a lean state where the excess air ratio of the exhaust gas is large, and releases the adsorbed NOx in a rich state where the excess air ratio of the exhaust gas is small. The lean NOx catalyst 36 exhibits an effective purification performance when the exhaust temperature is in a specific temperature range lower than the exhaust temperature suitable for the three-way catalyst 35, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 10-151353. As described above, the carrier was coated with an inner catalyst layer on which alumina carrying a noble metal such as Pt and an alkaline earth metal such as barium, and an outer catalyst layer on which zeolite carrying platinum and rhodium were carried. Those are suitable.

【0027】前記吸気通路24と排気通路34との間に
は、排気ガスを吸気通路24側に還流させるためのEG
R通路32が設けられている。このEGR通路32の入
口端は、排気通路34における三元触媒35のさらに上
流側の部分に接続されている。出口端は、吸気通路24
におけるエレキスロットル28の下流側の吸気集合部分
(サージタンク30よりも上流側の部分)に接続されて
いる。この出口端にはEGR弁33が設けられており、
このEGR弁33の駆動によってEGR流量の調節が可
能となっている。
An EG for recirculating exhaust gas toward the intake passage 24 is provided between the intake passage 24 and the exhaust passage 34.
An R passage 32 is provided. The inlet end of the EGR passage 32 is connected to a portion of the exhaust passage 34 further upstream of the three-way catalyst 35. The outlet end is the intake passage 24
Is connected to an intake collecting portion (a portion upstream of the surge tank 30) on the downstream side of the electric throttle 28 in FIG. An EGR valve 33 is provided at this outlet end.
By driving the EGR valve 33, the EGR flow rate can be adjusted.

【0028】前記エンジンには、前記スロットルセン
サ、エアフローセンサ26の他、エンジン回転数センサ
37、アクセル開度センサ38等の各種センサ類が装備
され、これらセンサの出力信号(検出信号)がECU
(コントロールユニット)40に入力されるようになっ
ている。このECU40は、燃料制御及びEGR制御に
関連する機能として、運転状態判定手段42、スロット
ル制御手段44、燃料制御手段46、及びEGR制御手
段48を備えている。
The engine is equipped with various sensors such as an engine speed sensor 37 and an accelerator opening sensor 38 in addition to the throttle sensor and the air flow sensor 26. The output signals (detection signals) of these sensors are provided by the ECU.
(Control unit) 40. The ECU 40 includes an operation state determination unit 42, a throttle control unit 44, a fuel control unit 46, and an EGR control unit 48 as functions related to the fuel control and the EGR control.

【0029】運転状態判定手段42は、前記各センサの
出力信号を取り込んで、現在のエンジンの運転状態が図
2に示す運転領域のうちのいずれに属するのかを判定す
るものである。各運転領域はエンジン回転数Ne及びエ
ンジン負荷Peに基づいて区画されている。
The operating state determining means 42 fetches the output signals of the sensors and determines which of the operating regions shown in FIG. 2 the current operating state of the engine belongs to. Each operating region is defined based on the engine speed Ne and the engine load Pe.

【0030】図中、領域Aは、燃料噴射量の少ない低中
回転低負荷運転時に成層燃焼運転、すなわち、圧縮行程
後半でのみ燃料を一括噴射することにより、燃焼室16
内全体は燃料リーンの状態にしながら点火プラグ20の
近傍のみ他の領域と比較して相対的かつ局所的にリッチ
状態にして点火する燃焼運転を行う領域である。
In the figure, a region A is a stratified charge combustion operation during a low-medium-speed low-load operation with a small fuel injection amount, that is, collective injection of fuel only in the latter half of the compression stroke.
The entire area is an area for performing a combustion operation in which only the vicinity of the ignition plug 20 is ignited relatively and locally as compared with other areas while the fuel is in a lean state.

【0031】領域Bは、エンジン回転数が所定値未満の
低回転領域であってかつ領域Aよりも高負荷の領域であ
り、吸気行程で燃料を一括噴射することにより均一燃焼
を行う領域である。
The region B is a low rotation region where the engine speed is lower than a predetermined value and a region where the load is higher than that of the region A, and a region where uniform combustion is performed by collectively injecting fuel in the intake stroke. .

【0032】領域Cは、エンジン回転数が所定値以上の
中高回転かつ高負荷の領域及び低負荷高回転領域であ
り、領域Bと同様に均一燃焼運転を行うが、一括噴射で
はなく分割噴射(第1の分割噴射)による運転を行う領
域である。すなわち、この領域Cでは、まず一部の燃料
のみを早期噴射(この実施の形態では吸気行程前半で噴
射)してこれを筒内で均一化してから残りの燃料を後期
噴射(この実施の形態では吸気行程後半で噴射)して点
火をする燃焼運転が行われる。
The region C is a region where the engine speed is higher than a predetermined value, that is, a region of medium to high rotation and high load, and a region of low load and high rotation. In the same manner as in region B, uniform combustion operation is performed. This is an area where the operation by the first split injection is performed. That is, in this region C, first, only a part of the fuel is injected early (in the first embodiment, the injection is performed in the first half of the intake stroke), the fuel is made uniform in the cylinder, and the remaining fuel is injected late (the present embodiment). In this case, the combustion operation is performed in which the fuel is injected in the latter half of the intake stroke and ignition is performed.

【0033】なお、図2の例では、高回転領域であって
も、エンジン負荷の非常に高い領域は一括噴射運転領域
Bが設定されている。
In the example shown in FIG. 2, the batch injection operation region B is set in a region where the engine load is extremely high even in the high rotation region.

【0034】スロットル制御手段44は、各運転領域に
おいて、その燃焼に適した吸入空気量を実現するために
エレキスロットル28のスロットル開度をスロットルセ
ンサの検出信号に基づいてフィードバック制御するもの
である。
The throttle control means 44 performs feedback control of the throttle opening of the electric throttle 28 based on the detection signal of the throttle sensor in each operation region in order to realize an intake air amount suitable for the combustion.

【0035】燃料制御手段46は、運転状態判定手段4
2により判定された運転領域での燃焼に見合う燃料噴射
量及び燃料噴射時期を決定し、図略のインジェクタドラ
イバに指令信号を出力して、前記燃料噴射時期に前記燃
料噴射量に相当する幅のパルス信号をインジェクタ22
へ出力させるものである。この実施の形態では、前記領
域Aでリーン燃焼を行い、領域B,Cで空気過剰率がほ
ぼ1での燃焼を行うように、燃料噴射量が設定される。
The fuel control means 46 includes the operating state determination means 4
The fuel injection amount and the fuel injection timing corresponding to the combustion in the operation region determined by the step 2 are determined, and a command signal is output to an unillustrated injector driver, so that the fuel injection timing has a width corresponding to the fuel injection amount. Pulse signal from injector 22
Output to In this embodiment, the fuel injection amount is set such that the lean combustion is performed in the region A and the combustion is performed at an excess air ratio of approximately 1 in the regions B and C.

【0036】EGR制御手段48は、実際のEGR量が
各運転領域に応じて設定された目標値に合致するように
EGR弁33の開度を制御するものである。この実施の
形態では、EGR弁33が閉じていると仮定した場合
(すなわちEGRを行わないと仮定した場合)に検出さ
れると予想される吸入空気量と、実際にエアフローセン
サ26により検出される吸入空気量との差から、現在の
EGR量を求め、このEGR量を現在の運転状態に対応
する目標EGR量に近づけるようにEGR弁33の開度
をフィードバック制御するように構成されている。
The EGR control means 48 controls the opening of the EGR valve 33 so that the actual EGR amount matches a target value set according to each operation region. In this embodiment, the intake air amount expected to be detected when the EGR valve 33 is assumed to be closed (that is, when EGR is not performed), and actually detected by the air flow sensor 26. The present EGR amount is obtained from the difference from the intake air amount, and the opening degree of the EGR valve 33 is feedback-controlled so that the EGR amount approaches the target EGR amount corresponding to the current operation state.

【0037】前記EGR量目標値については、成層燃焼
運転領域である領域Aでの目標値が、均一燃焼運転領域
である他の領域での目標値よりも大きく設定されてい
る。これは、成層燃焼運転時では点火プラグ周囲に燃料
が偏在しているために、均一燃焼運転時よりもEGRガ
ス導入が燃焼性に与える影響が小さいことを考慮したも
のである。
As for the EGR amount target value, a target value in a region A which is a stratified combustion operation region is set to be larger than a target value in another region which is a uniform combustion operation region. This takes into account that the influence of the EGR gas introduction on the combustibility is smaller in the stratified combustion operation than in the uniform combustion operation because the fuel is unevenly distributed around the spark plug.

【0038】次に、このECU40が行う具体的な燃料
噴射制御動作を、図3のタイムチャート及び図4のフロ
ーチャートに基づいて説明する。
Next, a specific fuel injection control operation performed by the ECU 40 will be described with reference to a time chart of FIG. 3 and a flowchart of FIG.

【0039】まず、エンジン回転数Ne及びアクセル開
度Accを取り込む(図4のステップS1)。そして、
前回判定した運転領域DAを直前運転領域DAOとして
記憶した後、ステップS1で取り込んだ検出信号に基づ
いて現在の運転領域DAを改めて判定する(ステップS
3)。新しく判定した領域DAが領域Aである場合には
(ステップS4でYES)、リーン状態での一括噴射に
よる成層燃焼運転を行い(ステップS5)、判定した領
域DAが領域Cである場合には(ステップS4,S6で
NO)、空気過剰率がほぼ1の状態での分割噴射(第1
分割噴射)による均一燃焼運転を行う(ステップS
7)。
First, the engine speed Ne and the accelerator opening Acc are fetched (step S1 in FIG. 4). And
After storing the previously determined operating area DA as the immediately preceding operating area DAO, the current operating area DA is determined again based on the detection signal captured in step S1 (step S1).
3). When the newly determined area DA is the area A (YES in step S4), the stratified charge combustion operation by the batch injection in the lean state is performed (step S5), and when the determined area DA is the area C ( NO in steps S4 and S6), split injection with the excess air ratio substantially equal to 1 (first injection)
Perform uniform combustion operation by split injection (step S)
7).

【0040】一方、新しく判定した領域DAが領域Bで
ある場合には(ステップS4でNO、ステップS6でY
ES)、直前運転領域DAOを確認する。この直前運転
領域DAOが領域Aでない場合には(ステップS8でN
O)、原則通り、空気過剰率がほぼ1での一括噴射によ
る均一燃焼運転を行うが(ステップS9)、直前運転領
域DAOが領域Aである場合(ステップS8でYE
S)、すなわち、EGR量目標値の高い成層燃焼運転領
域である領域AからEGR量目標値の低い均一燃焼運転
領域である領域Bへの移行時には、一定時間のみ分割噴
射(第2の分割噴射)を行わせる制御を実行する。
On the other hand, if the newly determined area DA is the area B (NO in step S4, Y in step S6)
ES), confirm the immediately preceding operation area DAO. If the immediately preceding operation area DAO is not in the area A (N in step S8)
O) In principle, uniform combustion operation is performed by batch injection at an excess air ratio of approximately 1 (step S9), but when the immediately preceding operation area DAO is the area A (YE in step S8).
S), that is, when shifting from the region A, which is a stratified combustion operation region having a high target EGR amount, to a region B, which is a uniform combustion operation region having a low EGR amount target value, the split injection is performed only for a predetermined time (the second split injection). ) Is performed.

【0041】具体的には、まず内蔵のタイマーをセット
し(ステップS10)、このタイマーの残り時間が0と
なる時点まで空気過剰率が1の状態での分割噴射による
均一燃焼運転を行う(ステップS11,S12)、タイ
マー残り時間が0となった時点(ステップS12でYE
S)、すなわち、領域Bへの切換時点から一定時間が経
過した後は、原則通り、一括噴射による均一燃焼運転を
行う(ステップS9)。
Specifically, first, a built-in timer is set (step S10), and until the remaining time of the timer becomes zero, the uniform combustion operation by the divided injection with the excess air ratio being 1 is performed (step S10). S11, S12), when the timer remaining time becomes 0 (YE in step S12)
S), that is, after a certain period of time has elapsed from the time of switching to the region B, a uniform combustion operation by batch injection is performed in principle (step S9).

【0042】この装置によれば、次のような優れた効果
が得られる。
According to this device, the following excellent effects can be obtained.

【0043】A)領域移行時における燃焼性低下の抑止 前記第2の分割噴射が行われているときの筒内EGR量
及びスロットル開度TVOの変動と早期噴射パルス信号
及び後期噴射パルス信号の変化を図3に示す。同図に示
す領域切換時点から、EGR量目標値が急減するため、
EGR弁33の開度を絞る制御が行われるが、このよう
にEGR弁33を絞ってから実際の筒内EGR量が十分
に減るまでには、相当の遅れ時間がある。従って、この
遅れ時間(移行期間)では、既に均一燃焼運転が開始さ
れているにもかかわらず筒内に多くのEGRガスが存す
る状態となり、何等の措置も講じなければ燃焼性が著し
く低下するおそれがある。
A) Suppression of Combustibility Degradation at the Time of Shifting to Region Change in In-Cylinder EGR Amount and Throttle Opening TVO and Change of Early Injection Pulse Signal and Late Injection Pulse Signal when Second Split Injection is Performed Is shown in FIG. Since the target value of the EGR amount sharply decreases from the time point of the area switching shown in FIG.
Control for reducing the opening degree of the EGR valve 33 is performed. However, there is a considerable delay time from when the EGR valve 33 is reduced to when the actual in-cylinder EGR amount is sufficiently reduced. Therefore, during this delay time (transition period), a large amount of EGR gas remains in the cylinder even though the uniform combustion operation has already started, and if no measures are taken, the combustibility may be significantly reduced. There is.

【0044】これに対して本実施形態にかかる装置で
は、前記移行期間で一時的に分割噴射(第2の分割噴
射)を行って噴射燃料の筒内均一化を促進するようにし
ているので、前記EGR量削減の応答遅れに起因する燃
焼性の低下を有効に抑止することができる。
On the other hand, in the apparatus according to the present embodiment, the split injection (second split injection) is temporarily performed during the transition period to promote uniformization of the injected fuel in the cylinder. It is possible to effectively suppress a decrease in flammability caused by a response delay in the reduction of the EGR amount.

【0045】B)リーンNOx触媒36の性能維持 高負荷領域のうち、排気温度の高くなる傾向のある高回
転領域(領域C)では、分割噴射(第1の分割噴射)を
実行して燃焼速度及び燃焼効率を高めることにより、排
気温度が高くなりすぎる(すなわちリーンNOx触媒3
6に好適な温度範囲を上回る)のを防ぐことができる。
B) Maintaining the Performance of the Lean NOx Catalyst 36 In the high-load region of the high-load region where the exhaust gas temperature tends to be high (region C), the split injection (first split injection) is executed to perform the combustion speed. And increasing the combustion efficiency, the exhaust gas temperature becomes too high (that is, the lean NOx catalyst 3
(Exceeding the temperature range suitable for 6).

【0046】逆に、高負荷領域でも排気温度の低くなる
傾向のある低回転領域(領域B)では、原則として一括
噴射のみを行うので、前記のように分割噴射を行うこと
によって排気温度が低くなりすぎる(すなわちリーンN
Ox触媒36に好適な温度範囲を下回る)のを防ぐこと
ができる。また、領域Aから領域Bへの移行時に分割噴
射(第2の分割噴射)を行う場合でも、当該分割噴射は
EGR量削減の応答遅れに起因する燃焼性低下をカバー
するためのほんの一時的なものであるため、排気温度が
過剰に低下することは十分に防止できる。
Conversely, in the low rotation region (region B) where the exhaust gas temperature tends to be low even in the high load region, only the batch injection is performed in principle, so that the exhaust gas temperature is lowered by performing the split injection as described above. Too much (ie lean N
(Below a temperature range suitable for the Ox catalyst 36). Further, even in the case where the split injection (second split injection) is performed at the time of transition from the area A to the area B, the split injection is only a temporary operation for covering a decrease in flammability caused by a response delay in reducing the EGR amount. Therefore, it is possible to sufficiently prevent the exhaust gas temperature from excessively decreasing.

【0047】すなわち、この装置では、燃焼性悪化の抑
止と、リーンNOx触媒36の性能維持とを両立させる
ことが可能となっている。
That is, in this device, it is possible to achieve both suppression of the deterioration of the combustibility and maintenance of the performance of the lean NOx catalyst 36.

【0048】なお、本発明は、かかる実施形態に限られ
るものではなく、次のような実施形態をとることも可能
である。
The present invention is not limited to such an embodiment, but can take the following embodiments.

【0049】・前記実施形態では、領域Aから領域Bへ
の移行時にのみ分割噴射を行う手段として、領域切換時
点からの経過時間を計測するようにしているが、本発明
はこれに限らず、例えば、実際のEGR量を測定し、そ
のEGR測定量が領域Bでの目標EGR量に達するまで
の間のみ分割噴射を行うといった制御を行ってもよい。
In the above-described embodiment, as a means for performing the divided injection only at the transition from the area A to the area B, the elapsed time from the time of the area switching is measured. However, the present invention is not limited to this. For example, control may be performed such that the actual EGR amount is measured and the divided injection is performed only until the measured EGR amount reaches the target EGR amount in the region B.

【0050】・前記実施形態では、第1の分割噴射及び
第2の分割噴射として吸気行程に2回燃料噴射を行うも
のを示したが、3回以上に分けて噴射してもよいし、吸
気行程と圧縮行程とに分けて燃料を噴射するようにして
もよい。
In the above embodiment, the fuel injection is performed twice in the intake stroke as the first divided injection and the second divided injection. However, the fuel may be divided into three or more times. The fuel may be injected separately into the stroke and the compression stroke.

【0051】・リーンNOx触媒36を用いない場合に
は、分割噴射を行う領域を自由に設定することが可能で
ある。また、三元触媒35の使用の有無も適宜決定すれ
ばよい。
When the lean NOx catalyst 36 is not used, it is possible to freely set the region where the split injection is performed. In addition, whether or not the three-way catalyst 35 is used may be appropriately determined.

【0052】・前記実施形態では、筒内噴射式エンジン
に適用したものを示したが、本発明はこれに限らず、互
いにEGR量目標値の異なる運転領域が隣接して設定さ
れたエンジンに広く適用が可能なものである。例えば、
吸気弁手前の吸気ポートに燃料を噴射するポート噴射式
エンジンであっても、高いEGR量目標値が設定される
成層燃焼運転領域から低いEGR量目標値が設定される
均一燃焼運転領域へ移行するときに分割噴射を行うよう
にすればよい。
In the above embodiment, the invention is applied to a direct injection type engine. However, the present invention is not limited to this, and is widely applied to engines in which operation regions having different target EGR values are set adjacent to each other. Applicable. For example,
Even in a port injection engine that injects fuel into the intake port just before the intake valve, the engine shifts from a stratified combustion operation region in which a high EGR amount target value is set to a uniform combustion operation region in which a low EGR amount target value is set. At times, split injection may be performed.

【0053】また、全運転領域で均一燃焼運転が行われ
るエンジンにおいても、例えば燃焼性が低いために低い
EGR量目標値が設定される低負荷低回転領域へ他の運
転領域から移行する時に前記のような分割噴射を行うこ
とにより、前記実施形態と同様、EGR量削減の応答遅
れに起因する燃焼性の悪化を有効に抑止することが可能
である。
Also, in an engine in which uniform combustion operation is performed in the entire operation range, when the engine shifts from another operation range to a low-load low-speed range in which a low EGR amount target value is set due to low flammability, for example. By performing the split injection as described above, it is possible to effectively suppress the deterioration of the combustibility due to the response delay of the reduction of the EGR amount, as in the above-described embodiment.

【0054】[0054]

【発明の効果】以上のように、本発明は、第1の運転領
域からそれよりもEGR量目標値の低い第2の運転領域
へ移行する時に分割噴射を行わせるようにしたものであ
るので、前記移行時におけるEGR量削減の応答遅れに
起因する燃焼性の悪化を有効に抑止できる効果がある。
As described above, according to the present invention, the split injection is performed when shifting from the first operation region to the second operation region having a lower EGR amount target value. In addition, there is an effect that deterioration of flammability caused by a response delay of the EGR amount reduction at the time of the transition can be effectively suppressed.

【0055】また、低負荷で成層燃焼運転が行われ、か
つ、排気ガス還流量目標値の高い成層燃焼運転領域と、
高負荷で均一燃焼運転が行われ、かつ、排気ガス還流目
標値の低い均一燃焼運転領域とを有するとともに、排気
通路に排気ガス中の空気過剰率が大きい時にNOxを吸
収するNOx吸収材が設けられたエンジンにおいて、前
記均一燃焼運転領域のうちエンジン回転数が所定値以上
の高回転領域で第1の分割噴射を行わせ、エンジン回転
数が前記所定値未満の低回転領域で前記成層燃焼運転領
域から均一燃焼運転領域への移行時にのみ第2の分割噴
射を行わせるようにしたものでは、排気温度を前記NO
x吸収材に好適な温度に維持しながら、前記成層燃焼運
転領域から均一燃焼運転領域への移行時における燃焼性
の悪化を有効に抑止できる効果がある。
Further, the stratified charge combustion operation is performed at a low load, and the stratified charge combustion operation region in which the target value of the exhaust gas recirculation amount is high is:
It has a uniform combustion operation region in which uniform combustion operation is performed under high load and has a low exhaust gas recirculation target value, and a NOx absorbing material that absorbs NOx when the excess air ratio in the exhaust gas is large is provided in the exhaust passage. The first split injection is performed in a high rotation region where the engine speed is equal to or more than a predetermined value in the uniform combustion operation region, and the stratified combustion operation is performed in a low rotation region where the engine rotation speed is less than the predetermined value. In the case where the second split injection is performed only at the time of transition from the region to the uniform combustion operation region, the exhaust gas temperature is set to the NO.
While maintaining the temperature suitable for the x-absorbing material, there is an effect that deterioration of combustibility at the time of shifting from the stratified combustion operation region to the uniform combustion operation region can be effectively suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかるエンジンの全体構
成図である。
FIG. 1 is an overall configuration diagram of an engine according to an embodiment of the present invention.

【図2】前記エンジンにおいて設定された各運転領域を
示すグラフである。
FIG. 2 is a graph showing each operating region set in the engine.

【図3】図2に示す領域Aから領域Bに移行する際のE
GR量等の時間変化を示すタイムチャートである。
FIG. 3 is a diagram showing an example of a transition E from a region A to a region B shown in FIG.
It is a time chart which shows a time change of GR amount etc.

【図4】前記エンジンにおいて実行される燃料噴射制御
の内容を示すフローチャートである。
FIG. 4 is a flowchart showing the details of fuel injection control executed in the engine.

【符号の説明】[Explanation of symbols]

10 エンジン本体 16 燃焼室 22 インジェクタ 24 吸気通路 32 EGR通路 33 EGR弁 34 排気通路 35 三元触媒 36 リーンNOx触媒 40 ECU 42 運転状態判定手段 46 燃料制御手段 48 EGR制御手段 DESCRIPTION OF SYMBOLS 10 Engine main body 16 Combustion chamber 22 Injector 24 Intake passage 32 EGR passage 33 EGR valve 34 Exhaust passage 35 Three-way catalyst 36 Lean NOx catalyst 40 ECU 42 Operating state determination means 46 Fuel control means 48 EGR control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鐵野 雅之 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 Fターム(参考) 3G301 HA01 HA04 HA13 HA16 JA00 KA08 KA09 LA00 LA03 MA19 MA26 ND01 PA01Z PA11Z PD15A PD15Z PE01Z PF03Z ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masayuki Tetsuno 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture F-term (reference) 3G301 HA01 HA04 HA13 HA16 JA00 KA08 KA09 LA00 LA03 MA19 MA26 ND01 PA01Z PA11Z PD15A PD15Z PE01Z PF03Z

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 第1の運転領域と、この第1の運転領域に
隣接し、当該第1の運転領域で設定される排気ガス還流
量目標値よりも低い排気ガス還流量目標値が設定された
第2の運転領域とをもつエンジンの燃料噴射制御装置で
あって、前記第1の運転領域から第2の運転領域への移
行時に1サイクル中燃料を複数回に分けて噴射する分割
噴射を行わせる燃料噴射制御手段を備えたことを特徴と
するエンジンの燃料噴射制御装置。
A first operating region and an exhaust gas recirculation amount target value adjacent to the first operation region and lower than an exhaust gas recirculation amount target value set in the first operation region are set. A fuel injection control device for an engine having a second operating region, wherein a split injection for injecting fuel in one cycle in a plurality of times during a transition from the first operating region to the second operating region is provided. A fuel injection control device for an engine, comprising a fuel injection control means for performing the control.
【請求項2】 請求項1記載のエンジンの燃料噴射制御
装置において、前記第1の運転領域は成層燃焼運転が行
われる低負荷領域であり、前記第2の運転領域は均一燃
焼運転が行われる高負荷領域であることを特徴とするエ
ンジンの燃料噴射制御装置。
2. The fuel injection control device for an engine according to claim 1, wherein the first operation region is a low load region where a stratified combustion operation is performed, and the second operation region is a uniform combustion operation. A fuel injection control device for an engine, which is in a high load region.
【請求項3】 請求項1または2記載のエンジンの燃料
噴射制御装置において、前記エンジンが、その燃焼室内
に直接燃料が噴射される筒内噴射式エンジンであること
を特徴とするエンジンの燃料噴射制御装置。
3. The fuel injection control device for an engine according to claim 1, wherein the engine is a direct injection type engine in which fuel is directly injected into a combustion chamber of the engine. Control device.
【請求項4】 請求項3記載のエンジンの燃料噴射制御
装置において、前記燃料噴射制御手段は、前記分割噴射
として吸気行程中に複数回燃料噴射を行わせるものであ
ることを特徴とするエンジンの燃料噴射制御装置。
4. The engine fuel injection control device according to claim 3, wherein the fuel injection control means causes the fuel injection to be performed a plurality of times during an intake stroke as the divided injection. Fuel injection control device.
【請求項5】 請求項3記載のエンジンの燃料噴射制御
装置において、前記燃料噴射制御手段は、前記分割噴射
として吸気行程と圧縮行程に分けて燃料噴射を行わせる
ものであることを特徴とするエンジンの燃料噴射制御装
置。
5. The fuel injection control device for an engine according to claim 3, wherein the fuel injection control means causes the fuel injection to be performed in the intake stroke and the compression stroke as the divided injection. Engine fuel injection control device.
【請求項6】 低負荷領域であって成層燃焼運転が行わ
れる成層燃焼運転領域と、この成層燃焼運転領域よりも
高負荷側の領域であって、均一燃焼運転が行われ、か
つ、前記成層燃焼運転領域で設定される排気ガス還流量
目標値よりも低い排気ガス還流量目標値が設定された均
一燃焼運転領域とを有するとともに、排気ガス中の空気
過剰率が大きい時にNOxを吸収するNOx吸収材が排
気通路に設けられたエンジンの燃料噴射制御装置であっ
て、前記均一燃焼運転領域のうちエンジン回転数が所定
値以上の高回転領域では1サイクル中燃料を複数回に分
けて噴射する第1の分割噴射を行わせ、エンジン回転数
が前記所定値未満の低回転領域では前記成層燃焼運転領
域から均一燃焼運転領域への移行時にのみ1サイクル中
燃料を複数回に分けて噴射する第2の分割噴射を行わせ
る燃料噴射制御手段を備えたことを特徴とするエンジン
の燃料噴射制御装置。
6. A stratified combustion operation region in which a stratified combustion operation is performed in a low load region and a region on a higher load side than the stratified combustion operation region, in which a uniform combustion operation is performed and the stratified combustion operation is performed. NOx that absorbs NOx when the excess air ratio in the exhaust gas is high, with a uniform combustion operation region in which a target exhaust gas recirculation amount is set lower than the target exhaust gas recirculation amount set in the combustion operation region. An engine fuel injection control device in which an absorbent is provided in an exhaust passage, wherein fuel is divided into a plurality of injections in one cycle in a high rotation region where the engine speed is equal to or more than a predetermined value in the uniform combustion operation region. In the low rotation region where the engine speed is less than the predetermined value, the fuel is divided into a plurality of injections during one cycle only in the transition from the stratified combustion operation region to the uniform combustion operation region. The fuel injection control device for an engine characterized by comprising a fuel injection control means for causing the second split injection to.
【請求項7】 請求項6記載のエンジンの燃料噴射制御
装置において、前記燃料噴射制御手段は、エンジン回転
数が前記所定値未満の低回転領域で前記成層燃焼運転領
域から均一燃焼運転領域に切換わった時点から所定時間
が経過するまで前記第2の分割噴射を行わせるものであ
ることを特徴とするエンジンの燃料噴射制御装置。
7. The fuel injection control device for an engine according to claim 6, wherein the fuel injection control means switches from the stratified combustion operation region to the uniform combustion operation region in a low rotation region where the engine speed is less than the predetermined value. The fuel injection control device for an engine, wherein the second split injection is performed until a predetermined time elapses from a time when the fuel injection control is performed.
【請求項8】 請求項6または7記載のエンジンの燃料
噴射制御装置において、前記エンジンが、その燃焼室内
に直接燃料が噴射される筒内噴射式エンジンであること
を特徴とするエンジンの燃料噴射制御装置。
8. The fuel injection control device for an engine according to claim 6, wherein the engine is a direct injection type engine in which fuel is directly injected into a combustion chamber of the engine. Control device.
【請求項9】 請求項8記載のエンジンの燃料噴射制御
装置において、前記燃料噴射制御手段は、前記第2の分
割噴射として吸気行程中に複数回燃料噴射を行わせるも
のであることを特徴とするエンジンの燃料噴射制御装
置。
9. The fuel injection control device for an engine according to claim 8, wherein the fuel injection control means causes the fuel injection to be performed a plurality of times during an intake stroke as the second split injection. Engine fuel injection control device.
【請求項10】 請求項8記載のエンジンの燃料噴射制
御装置において、前記燃料噴射制御手段は、前記第2の
分割噴射として吸気行程と圧縮行程とに分けて燃料噴射
を行わせるものであることを特徴とするエンジンの燃料
噴射制御装置。
10. The fuel injection control device for an engine according to claim 8, wherein the fuel injection control means performs the fuel injection in the intake stroke and the compression stroke as the second divided injection. A fuel injection control device for an engine, comprising:
【請求項11】 請求項6〜10のいずれかに記載のエ
ンジンの燃料噴射制御装置において、前記エンジンの排
気通路におけるNOx吸収材の上流側に三元触媒が設け
られていることを特徴とするエンジンの燃料噴射制御装
置。
11. The fuel injection control device for an engine according to claim 6, wherein a three-way catalyst is provided upstream of the NOx absorbent in an exhaust passage of the engine. Engine fuel injection control device.
JP01088799A 1999-01-19 1999-01-19 Engine fuel injection control device Expired - Fee Related JP3829514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01088799A JP3829514B2 (en) 1999-01-19 1999-01-19 Engine fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01088799A JP3829514B2 (en) 1999-01-19 1999-01-19 Engine fuel injection control device

Publications (2)

Publication Number Publication Date
JP2000205020A true JP2000205020A (en) 2000-07-25
JP3829514B2 JP3829514B2 (en) 2006-10-04

Family

ID=11762840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01088799A Expired - Fee Related JP3829514B2 (en) 1999-01-19 1999-01-19 Engine fuel injection control device

Country Status (1)

Country Link
JP (1) JP3829514B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303824A (en) * 2007-06-08 2008-12-18 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
US7620488B2 (en) 2005-08-23 2009-11-17 Toyota Jidosha Kabushiki Kaisha Engine control apparatus
JP2014114718A (en) * 2012-12-07 2014-06-26 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7620488B2 (en) 2005-08-23 2009-11-17 Toyota Jidosha Kabushiki Kaisha Engine control apparatus
JP2008303824A (en) * 2007-06-08 2008-12-18 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2014114718A (en) * 2012-12-07 2014-06-26 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine

Also Published As

Publication number Publication date
JP3829514B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP3632483B2 (en) Engine control device
EP0974747B1 (en) A control system for an internal combustion engine
US6560960B2 (en) Fuel control apparatus for an engine
US6434929B1 (en) Control apparatus for direct injection engine
JP3805098B2 (en) Engine exhaust gas purification control device
JPH1144234A (en) Exhaust emission control device for internal combustion engine
JP3324039B2 (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
US6634167B1 (en) Exhaust temperature raising apparatus and method for internal combustion engine
US20110203260A1 (en) Exhaust purification system of internal combustion engine
JP4385531B2 (en) 4-cycle engine with catalyst
JPH11218048A (en) Control device for engine
JP4591403B2 (en) Control device for internal combustion engine
JP4207295B2 (en) In-cylinder injection engine control device
EP0919713B1 (en) Controlsystem for a direct injection-spark ignition engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP3840911B2 (en) Engine control device
JP3829514B2 (en) Engine fuel injection control device
JP3506018B2 (en) Engine control device
JPH11218047A (en) Control device for engine
JP2001159311A (en) Exhaust emission control device for engine
JP3800633B2 (en) Engine exhaust gas purification device
JP2001115883A (en) Exhaust gas temperature raising device for internal combustion engine
JP4404841B2 (en) Control device for internal combustion engine
JP4284735B2 (en) Exhaust gas purification catalyst deterioration judgment device
JP3956107B2 (en) Exhaust purification device for multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees