JP2000204717A - Roof tile with solar battery - Google Patents

Roof tile with solar battery

Info

Publication number
JP2000204717A
JP2000204717A JP11166781A JP16678199A JP2000204717A JP 2000204717 A JP2000204717 A JP 2000204717A JP 11166781 A JP11166781 A JP 11166781A JP 16678199 A JP16678199 A JP 16678199A JP 2000204717 A JP2000204717 A JP 2000204717A
Authority
JP
Japan
Prior art keywords
tile
solar cell
roof
base material
roof tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11166781A
Other languages
Japanese (ja)
Inventor
Hiroshi Akamatsu
博 赤松
Yoshiharu Konno
義治 今野
Tomoshige Tsutao
友重 蔦尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11166781A priority Critical patent/JP2000204717A/en
Publication of JP2000204717A publication Critical patent/JP2000204717A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a roof tile with a solar battery excellent in durability and external appearance quality of structure capable of producing at high productivity without producing a weak structure by a dehydration method by providing the recess part of full depth arranging the solar battery. SOLUTION: A solar battery 2 is provided in the recess part provided on the surface of a tile basic material 1 comprising a hydraulic setting inorganic material, a roof tile with the solar battery of a water upper side and sideward is partially overlapped on the upper end and the side end of the roof tile with the solar battery of a water lower side toward a ridge part from an eaves, and the roof tile with the solar battery is fixed on the substrate of the roof to be roofed successively. The rear face of the tile base material of a part in which a recess part is provided, and the ratio of the thickness of the part in which the recess part is provided and the thickness of the peripheral part continued thereto is in the range of 1/3-3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池付屋根瓦に
関する。
The present invention relates to a roof tile with a solar cell.

【0002】[0002]

【従来の技術】太陽エネルギーを利用した太陽光発電
が、現在、主力となっている火力発電で惹起される排気
有害ガスや炭酸ガスによる温暖化現象等の地球環境問題
を改善するための代替エネルギーの一つとして注目さ
れ、近時、住宅の屋根を発電スペースとして用いる太陽
電池付屋根瓦が開発されている。従来、このような太陽
電池付屋根瓦として、例えば、特開平6−346557
号公報や実開平4−28524号公報に、平板状の瓦本
体の表面に浅い陥凹部を設け、該陥凹部に太陽電池を平
板状の瓦本体の表面より突出させて接着剤で固定し、太
陽電池の+極及び−極の両端子から引き出された出力端
子を瓦本体の前垂れ部付近の裏面に瓦本体を貫通して引
き出してなる太陽電池付瓦が開示されている。
2. Description of the Related Art Solar power generation using solar energy is an alternative energy for improving global environmental problems such as global warming caused by harmful exhaust gas and carbon dioxide gas caused by thermal power generation, which is currently the mainstay. Recently, roof tiles with solar cells using roofs of houses as power generation spaces have been developed. Conventionally, as such a roof tile with a solar cell, for example, Japanese Unexamined Patent Publication No. 6-346557
In Japanese Patent Application Laid-Open Publication No. Hei 4-28524 and Japanese Unexamined Utility Model Publication No. 4-28524, a shallow recess is provided on the surface of a flat tile body, and the solar cell is projected from the surface of the flat tile body into the recess and fixed with an adhesive. A tile with a solar cell is disclosed in which output terminals drawn out from both positive and negative terminals of a solar cell are pulled out through the tile body on the back surface near the front hanging portion of the tile body.

【0003】しかし、特開平6−346557号公報や
実開平4−28524号公報に開示された太陽電池付瓦
は、通常、無機材料をプレス成形によって成形される
が、太陽電池付瓦本体の形状を十分考慮してやらないと
外観不良や強度不足による破損等の不良品が多発するお
それの大きいものである。
However, the roof tiles with solar cells disclosed in JP-A-6-346557 and JP-A-4-28524 are usually formed by press-molding an inorganic material. Without sufficient consideration, defective products such as poor appearance or breakage due to insufficient strength are likely to occur frequently.

【0004】即ち、上記太陽電池付瓦は、太陽電池を配
設するために太陽電池の厚さに見合う十分な深さの陥凹
部を設けることが好ましいが、深い陥凹部を設けたとす
ると、後述する本発明者らの水硬性無機材料によるプレ
ス成形の知見からも明らかなように、深い陥凹部底面の
プレス圧を強く負荷された部分と、プレス圧が十分に負
荷されなかった部分が生じ、後者の部分が強度不足とな
る危険性が極めて高く、更に外観不良の原因となってい
た。
That is, the roof tile with a solar cell is preferably provided with a concave portion having a sufficient depth corresponding to the thickness of the solar cell in order to dispose the solar cell. As is clear from the findings of the present inventors of press molding with hydraulic inorganic material, a part where the press pressure of the deep concave bottom is strongly applied, and a part where the press pressure is not sufficiently applied occur, The latter part has a very high risk of insufficient strength, and further causes poor appearance.

【0005】又、特開平5−243598号公報には、
屋根パネル本体に、太陽電池が設けられたパネル状の太
陽電池モジュールが貼設され、屋根パネル本体と太陽電
池モジュールとの間に、通気層が形成され、この通気層
に太陽電池モジュールの電線が配線されてなる太陽電池
付屋根パネルが開示されている。
Japanese Patent Application Laid-Open No. Hei 5-243598 discloses that
A panel-shaped solar cell module provided with solar cells is attached to the roof panel main body, and a ventilation layer is formed between the roof panel main body and the solar cell module. A wired roof panel with solar cells is disclosed.

【0006】しかし、上記太陽電池付屋根パネルは、太
陽電池モジュールを専用架台に固定して用いるものであ
るので、屋根上への施工にあたり、太陽電池モジュール
を固定した専用架台以外の周辺の屋根材との継ぎ目の防
水処理が複雑になるという問題点がある。
However, since the above-mentioned roof panel with solar cells is used by fixing the solar cell module to a dedicated stand, when installing on the roof, roof materials other than the dedicated stand to which the solar cell module is fixed are provided. There is a problem that the waterproofing process of the seam becomes complicated.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記事実に
鑑みなされたものであって、その目的とするところは、
太陽電池を配設するに十分な深さの凹部が設けられてお
り、且つ、脱水プレス成形法によって、脆弱組織を生ぜ
しめることなく高い生産性で生産できる構造の、耐久性
及び外観品質に優れた太陽電池付屋根瓦を提供すること
にある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above facts, and has as its object the following:
It has excellent durability and appearance quality because it has a concave part with sufficient depth to dispose solar cells and can be produced with high productivity without causing fragile tissue by dehydration press molding method. To provide a roof tile with a solar cell.

【0008】本発明者らは、セメント、水、補強繊維、
無機質充填材及び水溶性高分子物質等からなる水硬性無
機材料を用いて薄肉の成形体のプレス成形について鋭意
研究し、太陽電池付屋根瓦のように、薄肉の基材の表面
に凹部を設けてなり、この凹部が基材の大部分を占める
ような成形体のプレス成形においては、大きく圧縮され
る凹部底面は十分な脱水がなされるが、これらの部分の
厚さより厚い凹部周縁部等においては、十分な圧縮がな
されないため、脱水不良のまま成形され硬化されて脆弱
な組織を部分的に生じる場合があることを見出し、更
に、太陽電池付屋根瓦の瓦基材の裏面を増厚した構造と
することによって、このような脆弱な組織の形成を抑制
し得ることを知見し、本発明を完成するに至ったのであ
る。
The present inventors have proposed cement, water, reinforcing fibers,
We have conducted extensive research on the press forming of thin molded bodies using hydraulic inorganic materials consisting of inorganic fillers and water-soluble polymer substances, and provided recesses on the surface of thin base materials, such as roof tiles with solar cells. In the press forming of a molded body in which the concave portion occupies most of the base material, the bottom surface of the concave portion that is greatly compressed is sufficiently dehydrated, but the peripheral portion of the concave portion that is thicker than the thickness of these portions. Found that because of insufficient compression, it was sometimes molded and hardened with poor dewatering and partially formed a fragile structure.Furthermore, the thickness of the back surface of the tile base material of roof tiles with solar cells was increased. The inventors have found that the formation of such a fragile tissue can be suppressed by adopting such a structure, and have completed the present invention.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明の太
陽電池付屋根瓦は、水硬性無機材料からなる瓦基材の表
面に設けられた凹部に太陽電池が配設されてなり、軒先
より棟部に向かって、水上側及び側方の太陽電池付屋根
瓦が水下側の太陽電池付屋根瓦の上縁及び側端に一部重
なり、屋根下地材に固定されて順次葺設される太陽電池
付屋根瓦であって、凹部が設けられている部分の瓦基材
裏面が増厚された形状となされ、該凹部が設けられてい
る部分の瓦基材の厚さと、これに連なる周縁部分の瓦基
材の厚さの比が1/3〜3の範囲にあるようになされて
いることを特徴とする。
According to a first aspect of the present invention, there is provided a roof tile with a solar cell, wherein the solar cell is disposed in a concave portion provided on the surface of a tile base made of a hydraulic inorganic material. Towards the ridge part, the roof tiles with solar cells above and below the water partially overlap the upper edge and side edges of the roof tiles with solar cells below the water, and are fixed to the roof base material and sequentially laid. A roof tile with a solar cell, wherein the back surface of the tile base in the portion where the recess is provided has an increased thickness, and the thickness of the tile base in the portion where the recess is provided is connected to this. It is characterized in that the ratio of the thickness of the tile base material at the peripheral portion is in the range of 1/3 to 3.

【0010】請求項2記載の発明の太陽電池付屋根瓦
は、請求項1記載の発明の太陽電池付屋根瓦において、
瓦基材裏面における増厚部分とこれに連なる周縁部分が
傾斜面によって接続されてなるものである。
A roof tile with a solar cell according to a second aspect of the present invention is the roof tile with a solar cell according to the first aspect of the present invention.
The thickened portion on the back surface of the tile substrate and the peripheral portion connected thereto are connected by an inclined surface.

【0011】請求項3記載の発明の太陽電池付屋根瓦
は、請求項1記載の発明の太陽電池付屋根瓦において、
瓦基材裏面における増厚部分とこれに連なる周縁部分が
円弧面によって接続されてなるものである。
The roof tile with a solar cell according to the third aspect of the present invention is the roof tile with a solar cell according to the first aspect of the present invention.
The thickened portion on the back surface of the tile base material and the peripheral portion connected thereto are connected by an arc surface.

【0012】請求項4記載の発明の太陽電池付屋根瓦
は、請求項1〜3記載の発明の太陽電池付屋根瓦におい
て、瓦基材裏面に高さ1〜20mm、幅1〜100mm
の補強用リブが設けられてなるものである。
A roof tile with a solar cell according to a fourth aspect of the present invention is the roof tile with a solar cell according to the first to third aspects of the present invention.
Are provided.

【0013】本発明の太陽電池付屋根瓦の瓦基材は、水
硬性無機材料から形成されたものである。上記水硬性無
機材料は、硬化後、屋根瓦として通常必要とされている
強度、耐水性等を有するものであれば特に限定されるも
のではないが、例えば、セメント、水、補強繊維、無機
質充填材及び水溶性高分子物質等からなる水硬性無機材
料が挙げられる。
The tile substrate of the roof tile with solar cells of the present invention is formed of a hydraulic inorganic material. The hydraulic inorganic material is not particularly limited as long as it has strength, water resistance, and the like normally required as a roof tile after curing. Examples thereof include cement, water, reinforcing fibers, and inorganic fillers. And a hydraulic inorganic material composed of a water-soluble polymer material and the like.

【0014】セメントとしては、水硬性を有する無機粉
粒体であれば天然物、人工物の別を問わないが、例え
ば、普通ポルトランドセメント、特殊ポルトランドセメ
ント、アルミナセメント、ローマンセメント等の単体セ
メント、耐酸セメント、耐火セメント、水ガラスセメン
ト等の特殊セメント等が挙げられる。中でも、強度、耐
水性が優れている点からポルトランドセメント、アルミ
ナセメントが好適に用いられる。
The cement may be any of natural and artificial materials as long as it is an inorganic powder having hydraulic properties. Special cements such as acid-resistant cement, fire-resistant cement, and water glass cement are exemplified. Among them, Portland cement and alumina cement are preferably used because of their excellent strength and water resistance.

【0015】補強繊維としては、特に限定されるもので
はないが、例えば、ビニロン、ポリアミド、ポリエステ
ル、ポリプロピレン、レーヨン等の合成繊維もしくは再
生繊維、ガラス繊維、炭素繊維、アラミド繊維、パルプ
等が挙げられる。これらは単独で用いられてもよいが、
2種以上が併用されてもよい。補強繊維の太さや繊維長
さは、特に限定されるものではないが、太さは1〜40
デニール程度のものが好適に用いられ、繊維長さは1〜
15mm程度のものが好適に用いられる。
The reinforcing fibers are not particularly restricted but include, for example, synthetic fibers such as vinylon, polyamide, polyester, polypropylene and rayon or recycled fibers, glass fibers, carbon fibers, aramid fibers and pulp. . These may be used alone,
Two or more kinds may be used in combination. The thickness and fiber length of the reinforcing fiber are not particularly limited, but the thickness is 1 to 40.
A denier grade is suitably used, and the fiber length is 1 to
Those having a size of about 15 mm are preferably used.

【0016】無機質充填材としては、水不溶性であり、
セメントの水硬性を阻害しないものであれば特に限定さ
れるものではないが、例えば、珪砂、川砂等のセメント
モルタル用骨材、フライアッシュ、シリカフラワー、フ
ューム、ベントナイト、高炉スラグ等の混合セメント用
骨材、セピオライト、ワラストナイト、炭酸カルシウ
ム、マイカ等が挙げられる。これらは単独で用いられて
もよいが、2種以上が併用されてもよい。
The inorganic filler is water-insoluble,
It is not particularly limited as long as it does not inhibit the hydraulic property of the cement.For example, silica sand, aggregate for cement mortar such as river sand, fly ash, silica flower, fume, bentonite, mixed cement for blast furnace slag, etc. Aggregate, sepiolite, wollastonite, calcium carbonate, mica and the like can be mentioned. These may be used alone or in combination of two or more.

【0017】無機質充填材の粒径は、余り小さいと水硬
性無機材料、就中、補強繊維中への分散性はそれ以上に
改善されないのに、製造コストが著しく高騰し経済性を
失い、余り大きいと補強繊維中への無機質充填材の分散
が難しくなり、補強繊維凝集するので、平均粒径で、好
ましくは0.03〜500μm程度である。
If the particle size of the inorganic filler is too small, the dispersibility in the hydraulic inorganic material, especially the reinforcing fiber, cannot be further improved, but the production cost rises remarkably and the economic efficiency is lost. If it is large, it becomes difficult to disperse the inorganic filler in the reinforcing fibers, and the reinforcing fibers aggregate. Therefore, the average particle size is preferably about 0.03 to 500 μm.

【0018】水溶性高分子物質としては、水に溶解して
水硬性無機材料に粘性を付与し、補強繊維や無機質充填
材等の添加材の分散性を高めることによって水硬性無機
材料の流動性を高め賦形性を改善する目的で添加される
ものであって、上記機能を有するものであれば特に限定
されるものではないが、例えば、メチルセルロース、ヒ
ドロキシメチルセルロース、ヒドロキシエチルセルロー
ス、カルボキシメチルセルロース、ヒドロキシプロピル
メチルセルロース等のセルロースエーテル類、ポリビニ
ルアルコール、ポリアクリル酸等が挙げられる。これら
は単独で用いられてもよいが、2種以上が併用されても
よい。
As the water-soluble polymer substance, the fluidity of the hydraulic inorganic material is increased by dissolving in water to impart viscosity to the hydraulic inorganic material and enhancing the dispersibility of additives such as reinforcing fibers and inorganic fillers. It is added for the purpose of improving the shapeability and is not particularly limited as long as it has the above function, for example, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, hydroxypropyl Examples thereof include cellulose ethers such as methyl cellulose, polyvinyl alcohol, and polyacrylic acid. These may be used alone or in combination of two or more.

【0019】水硬性無機材料の配合例を示せば、セメン
ト100重量部に対して、水25〜100重量部、補強
繊維0.3〜7重量部、無機質充填材10〜200重量
部及び水溶性高分子物質0.05〜3重量部であり、こ
れらの成分を十分に攪拌混合することによって好ましい
流動性、その他賦形性に関する諸物性並びに硬化後の物
性を与えるスラリーを調製することができる。
If the mixing example of the hydraulic inorganic material is shown, 25-100 parts by weight of water, 0.3-7 parts by weight of reinforcing fiber, 10-200 parts by weight of inorganic filler and water-soluble The polymer material is 0.05 to 3 parts by weight. By sufficiently stirring and mixing these components, it is possible to prepare a slurry which gives favorable fluidity, other physical properties relating to shapeability, and physical properties after curing.

【0020】上記配合例において、水の配合量が25重
量部未満では、水硬性無機材料スラリーの流動性が十分
に付与され難く、100重量部を超えると、硬化後の成
形体の強度が十分に付与され難い。より好ましくは30
〜80重量部である。補強繊維の配合量が0.3重量部
未満では、硬化後の成形体の強度が十分に付与され難
く、7重量部を超えると、補強繊維の分散性が低下し、
水硬性無機材料スラリーの流動性が十分に付与され難
い。より好ましくは0.5〜5重量部である。
In the above mixing examples, if the amount of water is less than 25 parts by weight, the fluidity of the hydraulic inorganic material slurry is difficult to be sufficiently imparted, and if it exceeds 100 parts by weight, the strength of the molded article after curing is insufficient. It is hard to be given to. More preferably 30
8080 parts by weight. If the compounding amount of the reinforcing fiber is less than 0.3 parts by weight, the strength of the molded article after curing is difficult to be sufficiently imparted, and if it exceeds 7 parts by weight, the dispersibility of the reinforcing fiber decreases,
It is difficult for the fluidity of the hydraulic inorganic material slurry to be sufficiently imparted. More preferably, it is 0.5 to 5 parts by weight.

【0021】無機質充填材の配合量が10重量部未満で
は、水硬性無機材料の硬化収縮によって硬化後の成形体
に反りやクラックの発生のおそれがあり、200重量部
を超えると、硬化後の成形体の強度が十分に付与され難
い。より好ましくは20〜150重量部、更に好ましく
は30〜100重量部である。水溶性高分子物質の配合
量が0.05重量部未満では、補強繊維や無機質充填材
を十分に分散させ難く、3重量部を超えると、硬化後の
成形体の耐水性が低下する。より好ましくは0.1〜2
重量部、更に好ましくは0.1〜1重量部である。
If the amount of the inorganic filler is less than 10 parts by weight, the molded article after curing may be warped or cracked due to curing shrinkage of the hydraulic inorganic material. It is difficult to sufficiently impart the strength of the molded body. More preferably, it is 20 to 150 parts by weight, further preferably 30 to 100 parts by weight. If the amount of the water-soluble polymer is less than 0.05 part by weight, it is difficult to sufficiently disperse the reinforcing fibers and the inorganic filler, and if it exceeds 3 parts by weight, the water resistance of the cured molded article decreases. More preferably, 0.1 to 2
Parts by weight, more preferably 0.1 to 1 part by weight.

【0022】上記水硬性無機材料スラリーを用いて瓦基
材を作製する手段は、瓦基材表面が大部分、太陽電池及
び付帯する機器類、送電ケーブル及び付帯する機器類等
の収納スペースに用いられる凹部となっており、その周
縁部には、屋根下地への固定機構と該部を被蓋する雨仕
舞いの機構、屋根下地との間の通風機構、更には瓦基材
の軽量化と堅牢性付与のための裏面の補強リブ機構等
々、表裏両面に種々の凹凸が形成された比較的複雑な形
状からなるものであることから、大量に能率良く短いサ
イクルで信頼性高く精密に生産するためには、脱水プレ
ス成形法が最も適した方法である。
The means for preparing a tile base material using the above-mentioned hydraulic inorganic material slurry is used in a storage space for a solar cell and ancillary devices, a power transmission cable and ancillary devices, etc. The periphery of the roof has a fixing mechanism to the roof base, a rain-closing mechanism to cover the part, a ventilation mechanism between the roof base, and a lighter and more robust tile base material. Since it has a relatively complicated shape with various irregularities formed on the front and back surfaces, such as a reinforcing rib mechanism on the back surface for imparting properties, it is necessary to produce large quantities efficiently and with high reliability in short cycles. The dewatering press molding method is the most suitable method.

【0023】図4に、比較のために太陽電池を配設する
凹部が設けられていない従来の瓦を、瓦の雨水の流れ方
向の断面図を示すが、従来の瓦の裏面には、積重ね用の
突起部6が設けられている。上記突起部6は、図面より
分かるように、その他の部分と著しく厚さが異なっては
いるが、その全体に占める比率は左程大きなものではな
いが、この程度のものでも、多少ながら脱水不良の問題
は生じている。しかし、この程度の形状の複雑さであれ
ば、脱水プレス成形におけるプレス圧やプレス速度等の
成形条件、水硬性無機材料スラリーにおける水の配合量
や水溶性高分子物質の配合量等、水硬性無機材料の配合
条件等の微調整によってその対応は可能であった。
FIG. 4 is a cross-sectional view of a conventional tile having no concave portion for arranging a solar cell, in the direction of rainwater flow, for comparison. Projection 6 is provided. As can be seen from the drawing, the protrusion 6 has a significantly different thickness from the other portions, but the ratio of the protrusion 6 to the whole is not as large as the left. The problem has arisen. However, if the shape is as complicated as this, the hydraulic conditions such as the pressing pressure and the pressing speed in the dewatering press molding, the amount of water in the hydraulic inorganic material slurry, the amount of the water-soluble polymer material, etc. This was possible by fine adjustment of the blending conditions of the inorganic material.

【0024】しかし、図1に太陽電池と瓦基材に分解し
た本発明の太陽電池付屋根瓦を示すが、図示された瓦基
材1のように、その表面の大部分が凹部11となってお
り、その周縁部13との厚さの違いの大きい成形体にあ
っては、もはや成形条件や配合条件等の調整によって大
きな改善をすることは難しい。
However, FIG. 1 shows a roof tile with a solar cell according to the present invention disassembled into a solar cell and a tile base material. As shown in the tile base material 1 shown in FIG. Therefore, it is difficult to greatly improve the molded body having a large difference in thickness from the peripheral portion 13 by adjusting the molding conditions and the blending conditions.

【0025】上記脱水プレス成形法においては、先ず、
良好な流動特性を有する水硬性無機材料スラリーの調製
が前提であり、こうして調製された水硬性無機材料スラ
リーが脱水プレス成形型に充填され、脱水プレスされる
のであるが、良好な流動特性を有するとはいえ、屋根瓦
としての必要強度を得るために添加された補強繊維等に
よって流動性には制約があり、脱水プレス成形型型窩の
プレス圧の不均等化を排除し、脱水不足による脆弱な組
織の発生がなく、高い生産性でもって生産するために
は、前述する無機材料からのアプローチに加え、以下に
詳述する上記脱水プレス成形時に脆弱な部分ができない
ようにする製品設計からのアプローチが必須のものとな
る。
In the above dewatering press molding method, first,
The preparation of a hydraulic inorganic material slurry having good flow characteristics is a prerequisite, and the hydraulic inorganic material slurry thus prepared is filled in a dehydration press molding die and dewatered and pressed. Nevertheless, fluidity is restricted by reinforcing fibers added to obtain the required strength as a roof tile, eliminating uneven pressing pressure in the dewatering press mold cavity, and weakening due to insufficient dewatering In order to produce with high productivity without the occurrence of a fine structure, in addition to the approach from inorganic materials described above, from the product design to prevent the formation of fragile parts during the dehydration press molding described in detail below, An approach becomes mandatory.

【0026】即ち、本発明の太陽電池付屋根瓦は、図5
に、図4と同位置の断面図で示すように、凹部11が設
けられている部分12の瓦基材1の厚さ(t1 )と、こ
れに連なる周縁部分13の瓦基材1の厚さ(t2 )との
厚さ比(t2 /t1 )が1/3〜3の範囲にあるように
凹部11が設けられている部分12の瓦基材1の裏面が
増厚された形状となされたものである。このように凹部
の裏面を増厚することによって、脱水プレス金型型窩内
のプレス圧を略均等に負荷することを可能にしたのであ
る。
That is, the roof tile with a solar cell according to the present invention is shown in FIG.
As shown in the cross-sectional view at the same position as in FIG. 4, the thickness (t 1 ) of the tile base material 1 in the portion 12 where the concave portion 11 is provided and the thickness (t 1 ) of the tile base material 1 in the peripheral portion 13 connected thereto. The back surface of the tile substrate 1 in the portion 12 where the concave portion 11 is provided is increased so that the thickness ratio (t 2 / t 1 ) to the thickness (t 2 ) is in the range of 1/3 to 3. It was made into the shape. By increasing the thickness of the back surface of the concave portion in this manner, it is possible to apply the pressing pressure in the dehydration press mold cavity almost uniformly.

【0027】上記厚さ比(t2 /t1 )が3より大きい
場合、脱水プレス成形される瓦基材は、凹部11が設け
られている部分12の瓦基材1にプレス圧が、その周縁
部13の瓦基材1に負荷されず、プレス圧の総てを凹部
11が設けられている部分12の瓦基材1が受けてしま
う結果となり、上記周縁部13の瓦基材1は十分脱水さ
れない状態で成形され、そのままの状態で硬化すること
になって、得られる成形体の外観を悪くするばかりか、
密度の低い脆弱な組織となって強度不良をきたすおそれ
が極めて大きなものとなる。又、上記厚さ比(t2 /t
1 )が1/3より小さい場合、逆に上記周縁部13がプ
レス圧の総てを受けてしまうことから、凹部11は十分
な脱水が行われず不良をきたすおそれがある。
When the thickness ratio (t 2 / t 1 ) is greater than 3, the tile substrate to be dewatered and press-formed has a pressing pressure applied to the tile substrate 1 in the portion 12 where the concave portion 11 is provided. The tile substrate 1 of the peripheral portion 13 is not loaded on the tile substrate 1 of the peripheral portion 13 and all of the pressing pressure is received by the tile substrate 1 of the portion 12 where the concave portion 11 is provided. Molded in a state where it is not sufficiently dehydrated, it will be cured as it is, not only deteriorates the appearance of the obtained molded body,
There is a great possibility that the resulting structure becomes a fragile tissue having a low density, resulting in poor strength. In addition, the thickness ratio (t 2 / t
If 1 ) is smaller than 1/3, the peripheral portion 13 receives all the pressing pressure, and consequently the concave portion 11 may not be sufficiently dehydrated and may be defective.

【0028】特に、上記範囲の中でも厚さ比(t2 /t
1 )が1/2.5〜2.5の範囲にあることが好まし
い。この範囲に該当するように増厚することによって、
前記する成形条件や配合条件等の微調整を殆ど用いるこ
となく常に良好な品質の成形体を高能率で生産すること
ができる。瓦基材の設計において、特に、瓦基材の厚さ
方向に、高さの変更がある場合には、厚さ比(t2 /t
1 )を更に調整することによって上記問題に対する対応
が可能である。
Particularly, in the above range, the thickness ratio (t 2 / t)
1 ) is preferably in the range of 1 / 2.5 to 2.5. By increasing the thickness to fall within this range,
A molded product of good quality can always be produced with high efficiency without using the above-mentioned fine adjustment of molding conditions and compounding conditions. In the design of the tile base material, especially when the height is changed in the thickness direction of the tile base material, the thickness ratio (t 2 / t)
The above problem can be addressed by further adjusting 1 ).

【0029】厚さ比(t2 /t1 )が1に近づけば近づ
くほど、より良好な品質の成形体を高能率で生産し得る
ものである。従って、特別な制限がない限りは、極力厚
さ比(t2 /t1 )を1に近づけるように瓦基材1の肉
厚方向の変化を設計しておくことが好ましい。
The closer the thickness ratio (t 2 / t 1 ) is to 1, the more efficiently a molded article of better quality can be produced. Therefore, unless there is a special limitation, it is preferable to design the change in the thickness direction of the tile base material 1 so that the thickness ratio (t 2 / t 1 ) approaches 1 as much as possible.

【0030】又、増肉された部分とその周縁部分とは傾
斜面によって接続されていることが好ましい。図6にこ
のような傾斜面14によって接続された例を示す。この
ような傾斜面で接続されてなる構造とすることによっ
て、凹部が設けられている部分の瓦基材裏面が増肉され
た部分12とこれに連なる周縁部分13の境界部分の水
硬性無機材料スラリーの異動方向に直交する金型の断面
積変化を緩やかにし、脱水プレス成形時の水硬性無機材
料スラリーの塑性流動がより容易となっている。上記傾
斜面14は、平面で構成されるものであってもよく、曲
面で構成されるものであってもよく、更に、これら平面
と曲面が組み合わされたものであってもよい。
It is preferable that the thickened portion and its peripheral portion are connected by an inclined surface. FIG. 6 shows an example of connection by such an inclined surface 14. With such a structure in which the connection is made by the inclined surface, the hydraulic inorganic material at the boundary between the portion 12 where the back surface of the tile base material is thickened in the portion where the concave portion is provided and the peripheral portion 13 connected thereto is provided. The change in the cross-sectional area of the mold orthogonal to the direction in which the slurry is moved is moderated, and the plastic flow of the hydraulic inorganic material slurry at the time of dewatering press molding is facilitated. The inclined surface 14 may be formed of a flat surface, may be formed of a curved surface, or may be a combination of the flat surface and the curved surface.

【0031】又、増肉された部分とその周縁部分とは円
弧面によって接続されてもよい。図7に円弧面16によ
って接続された例を示す。このような円弧面で接続され
てなる構造とすることによって、凹部が設けられている
部分の瓦基材裏面が増肉された部分12とこれに連なる
周縁部分13の境界部分の水硬性無機材料スラリーの異
動方向に直交する金型の断面積変化を緩やかにし、脱水
プレス成形時の水硬性無機材料スラリーの塑性流動がよ
り容易となっている。上記円弧面16は、図面左方に示
されるように凸円弧面であってもよく、図面右方に示さ
れるように凹円弧面であってもよく、これらは双方共に
凸円弧面又は凹円弧面であってもよく、図示されている
ように凸円弧面及び凹円弧面の双方が用いられてもよ
く、更には、これら双方の円弧面を組み合わされた円弧
面が用いられてもよい。
Further, the thickened portion and its peripheral portion may be connected by an arc surface. FIG. 7 shows an example of connection by an arc surface 16. With such a structure connected by the arc surface, the hydraulic inorganic material at the boundary between the portion 12 where the back surface of the tile base material is thickened in the portion where the concave portion is provided and the peripheral portion 13 connected to the portion 12 The change in the cross-sectional area of the mold orthogonal to the direction in which the slurry is moved is moderated, and the plastic flow of the hydraulic inorganic material slurry at the time of dewatering press molding is facilitated. The arc surface 16 may be a convex arc surface as shown on the left side of the drawing, or a concave arc surface as shown on the right side of the drawing, both of which may be a convex arc surface or a concave arc surface. A surface may be used, both a convex arc surface and a concave arc surface may be used as shown in the figure, and an arc surface combining these two arc surfaces may be used.

【0032】又、裏面の増肉された部分は、凹部よりひ
と回り大きく設けられることが好ましい。図8の例で
は、増肉された部分がなす区画aが凹部底面12がなす
区画bより大きくなされている。図中のcで示す区画は
1〜30mmの幅をもって区画bの全周に渡って続いて
いる。このような構造とすることによって、凹部が設け
られている部分の瓦基材裏面が増肉された部分12とこ
れに連なる周縁部分13の境界部分が薄肉となるのを防
ぎ脱水不良を防止する。
It is preferable that the thickened portion on the back surface is provided one size larger than the concave portion. In the example of FIG. 8, the section a formed by the thickened portion is made larger than the section b formed by the concave bottom surface 12. The section indicated by c in the figure continues over the entire circumference of the section b with a width of 1 to 30 mm. With such a structure, the boundary between the portion 12 where the back surface of the tile base material is thickened in the portion where the concave portion is provided and the peripheral portion 13 connected to the portion 12 is prevented from becoming thin, and poor dewatering is prevented. .

【0033】上記区画cの幅が1mm未満では、凹部が
設けられている部分の瓦基材裏面が増肉された部分12
とこれに連なる周縁部分13の境界部分の水硬性無機材
料スラリーの異動方向に直交する金型の断面積変化を十
分に緩やかにすることができず、脱水プレス成形時に凹
部周縁部の脱水不良を惹起し易くなり、30mmを超え
ると、凹部が設けられている部分の瓦基材裏面が増肉さ
れた部分12とこれに連なる周縁部分13の境界部分に
肉厚部分ができて、前記する従来の瓦における積重ね用
突起と同様に、該部における水硬性無機材料スラリーの
脱水不良を惹起し易くなるので、1〜30mmの幅とす
ることが好ましい。
If the width of the section c is less than 1 mm, the portion 12 in which the concave portion is provided and the back surface of the tile base material is thickened 12
And the cross-sectional area change of the mold orthogonal to the direction of movement of the hydraulic inorganic material slurry at the boundary portion of the peripheral portion 13 connected to the peripheral portion 13 cannot be sufficiently gradual. When the thickness exceeds 30 mm, a thick portion is formed at the boundary between the portion 12 where the back surface of the tile base material is thickened in the portion where the concave portion is provided and the peripheral portion 13 which is continuous with the portion. As in the case of the stacking projections in the tile, the width of the hydraulic inorganic material slurry in the portion is likely to be insufficiently dehydrated. Therefore, the width is preferably 1 to 30 mm.

【0034】又、本発明の太陽電池付屋根瓦は、瓦基材
裏面に高さ1〜20mm、幅1〜100mmの補強用リ
ブが設けられてなることが好ましい。上記補強用リブ
は、瓦基材の長辺に沿って設けられるものであってもよ
いが、短辺に沿ってのみ設けられるものであってもよ
く、両者が交差して設けられるものであってもよい。
The roof tile with a solar cell of the present invention is preferably provided with a reinforcing rib having a height of 1 to 20 mm and a width of 1 to 100 mm on the back surface of the tile base material. The reinforcing rib may be provided along the long side of the tile base material, or may be provided only along the short side, or both may be provided to intersect. You may.

【0035】補強用リブの高さが1mm未満では、瓦基
材の硬化後の経時的変形を阻止するだけの強度がなく、
20mmを超えると、リブ部の肉厚がその周辺部分の肉
厚に比べて著しく大きくなることから脱水不良の原因と
なる。又、補強用リブの幅が1mm未満では、上記高さ
同様、瓦基材の硬化後の経時的変化を阻止するだけの強
度がなく、100mmを超えると、瓦基材の裏面全面積
に占める肉厚の補強用リブの面積が大きくなって、前述
する瓦基材作製時の脱水不良の原因となる。
If the height of the reinforcing ribs is less than 1 mm, there is no strength enough to prevent temporal deformation of the tile base material after curing.
If the thickness exceeds 20 mm, the thickness of the rib portion becomes significantly larger than the thickness of the peripheral portion, which causes poor dewatering. Further, if the width of the reinforcing rib is less than 1 mm, as in the case of the above height, there is no strength enough to prevent a temporal change after curing of the tile base material. The area of the thick reinforcing rib becomes large, which causes the above-mentioned poor dewatering at the time of producing the tile base material.

【0036】補強用リブの設置本数は、一本設けるだけ
でも可成りの効果が得られるものである。これらの補強
用リブを瓦基材の長辺及び短辺に沿って数本を交差して
井桁状に設けることによって、瓦基材の硬化後の経時的
変形を殆ど阻止することができる。しかし、余り沢山の
補強用リブを設けると、前述する瓦基材作製時の脱水不
良の原因となるので、補強用リブの形状と同様に布設面
積及び体積を十分注意することが好ましい。
A considerable effect can be obtained by providing only one reinforcing rib. By providing these reinforcing ribs in the form of a grid crossing several along the long side and the short side of the tile base material, it is possible to almost prevent deformation of the tile base material over time after curing. However, if too many reinforcing ribs are provided, this may cause poor dewatering during the production of the tile base material described above. Therefore, it is preferable to pay close attention to the laying area and volume as in the case of the reinforcing ribs.

【0037】図9は、太陽電池付屋根瓦の裏面の示す斜
視図であるが、短辺に沿って7本、長辺に沿って2本を
交差して井桁状に設けた本発明の太陽電池付屋根瓦の一
実施例を示す。
FIG. 9 is a perspective view showing the back surface of a roof tile with a solar cell. The solar battery according to the present invention, which is provided in a crosswise manner, crosses seven along the short side and two along the long side. 1 shows an embodiment of a roof tile with a battery.

【0038】本発明で用いられる太陽電池は、特に限定
されるものではないが、例えば、シリコン系半導体、化
合物系半導体等の材料からなり、単結晶系や多結晶系の
結晶系半導体やアモルファス系半導体が挙げられる。こ
れらの太陽電池のうち、特に結晶系シリコン太陽電池
は、高い信頼性、高いエネルギー変換効率等によって、
太陽電池付屋根瓦のような屋外用途に好適に用いられ
る。上記太陽電池は、結晶系半導体、化合物系半導体や
これらの半導体とアモルファス系半導体の積層構造のセ
ルからなる多数の素子を1枚の基板に集積したモジュー
ルが用いられてもよいが、大面積の1枚のアモルファス
系シリコン太陽電池素子からなるモジュールが用いられ
てもよい。これらの太陽電池は、その表面に、例えば、
普通もしくは強化ガラス、アクリル系樹脂板等の透明性
の高い表面保護材が積層されていてもよい。
The solar cell used in the present invention is not particularly limited. For example, the solar cell is made of a material such as a silicon-based semiconductor, a compound-based semiconductor, etc. Semiconductors. Among these solar cells, crystalline silicon solar cells, in particular, have high reliability, high energy conversion efficiency, etc.
It is suitably used for outdoor applications such as roof tiles with solar cells. The solar cell may be a module in which a large number of elements formed of a crystalline semiconductor, a compound semiconductor, or a stacked structure of these semiconductors and an amorphous semiconductor are integrated on a single substrate. A module composed of one amorphous silicon solar cell element may be used. These solar cells have, for example,
A highly transparent surface protective material such as ordinary or tempered glass or an acrylic resin plate may be laminated.

【0039】太陽電池は、上記瓦基材の表面に設けられ
た凹部に装着されるが、その装着手段は特に限定される
ものではく、例えば、その装着位置は、図1及び図2に
示されるように、瓦基材の表面、即ち、凹部周縁表面と
太陽電池の表面が面一になるように装着されてもよく、
上記凹部周縁表面と太陽電池の表面が若干高めの段差を
もって装着されてもよい。太陽電池を含む太陽電池付屋
根面の保守管理の面からは両者が面一であることが好ま
しい。
The solar cell is mounted in a concave portion provided on the surface of the tile substrate, but the mounting means is not particularly limited. For example, the mounting position is shown in FIGS. So that the surface of the tile base material, that is, the peripheral surface of the concave portion and the surface of the solar cell may be mounted so as to be flush,
The peripheral surface of the concave portion and the surface of the solar cell may be mounted with a slightly higher step. From the viewpoint of maintenance management of the solar cell-equipped roof surface including the solar cells, it is preferable that both are flush.

【0040】又、太陽電池の上記瓦基材への固定は、例
えば、図1及び図2に示されるように、樹脂製、金属製
等の固定具3をビス、ネジ、建築用アンカー、建築用フ
ァスナー等の緊締具4を用いて固定する方法、接着剤を
用いて固定する方法等が挙げられる。
For fixing the solar cell to the tile substrate, for example, as shown in FIGS. 1 and 2, a fixing tool 3 made of resin, metal, etc. For example, there are a method of fixing with a fastener 4 such as a fastener for use, a method of fixing with an adhesive, and the like.

【0041】太陽電池付屋根瓦の葺設方法は通常の屋根
工事と同様、軒先より棟部に向かって図3に示されるよ
うに、太陽電池付屋根瓦の上縁部付近及び一方(図では
右側)の側端部付近を野地板等の屋根下地材に固定し、
水下側の太陽電池付屋根瓦の上端部及び他側(図では左
側)の側端部の一部に重ねて、雨の吹き込みによる漏水
を防ぎ、順次、屋根棟に向かって葺設される。上記固定
は、瓦基材のサイズにもよるが、例えば、400〜60
0mmサイズの太陽電池付屋根瓦では50〜300mm
間隔で釘打ち等によって固定される。
As shown in FIG. 3, the roof tiles with solar cells are laid in the vicinity of the upper edge of the roof tiles with solar cells and one side thereof as shown in FIG. The right side) is fixed to the roof base material such as a base plate,
The roof tiles with solar cells under the water are placed on top of the roof tiles and part of the side edges on the other side (the left side in the figure) to prevent water leakage due to the blowing of rain, and are sequentially laid toward the roof ridge. . The fixing depends on the size of the tile base material.
50-300mm for roof tile with solar cell of 0mm size
It is fixed by nailing at intervals.

【0042】又、太陽電池付屋根瓦の左右の雨仕舞は、
瓦基材1の表面に太陽電池2を配設するのに支障のない
構造であれば特に限定されるものではないが、例えば、
図1に示されるように、屋根瓦基材1の右周縁が、左周
縁の厚さ分だけ下方に位置するように屈曲されて受け部
を形成しており、該受け部に瓦基材1の左周縁が重なっ
て被蓋部を形成して左右に連結されている。上記被蓋部
は、葺設された際に、太陽電池2の表面より好ましくは
1〜5mm高くなるように構成されており、台形状の突
出部を形成する。
In addition, the rain action on the left and right of the roof tile with solar cells is as follows:
The structure is not particularly limited as long as it does not hinder the arrangement of the solar cell 2 on the surface of the tile base material 1.
As shown in FIG. 1, the right edge of the roof tile base material 1 is bent so as to be positioned below by the thickness of the left edge to form a receiving portion, and the roof base material 1 is provided on the receiving portion. Are overlapped to form a covered part and are connected to the left and right. The covered portion is configured to be preferably 1 to 5 mm higher than the surface of the solar cell 2 when laid, and forms a trapezoidal projection.

【0043】本発明の太陽電池付屋根瓦は、叙上のよう
に、無機材料からなる瓦基材の表面に設けられた凹部に
太陽電池が装着されてなり、凹部が設けられている部分
の瓦基材の厚さと、それ以外の部分の瓦基材の厚さの比
が1/3〜3の範囲にあるように増厚されてなるもので
あるので、脱水プレス中のプレス圧の偏りを防ぎ、脱水
プレス成形法によって常に良好な品質の瓦基材を高能率
で生産し得るものであり、生産コストを大幅に低減する
ことができる。更に、上記構成からなる太陽電池付屋根
瓦は、脱水プレス成形法において、均等なプレス圧の負
荷によって均質な無機材料からなる瓦基材が形成されて
いるので、経時的な変形も少なく、長期にわったって太
陽電池付屋根瓦の機能を発揮し得るものである。
As described above, the roof tile with a solar cell according to the present invention is obtained by mounting a solar cell in a concave portion provided on the surface of a tile base material made of an inorganic material. Since the thickness of the tile substrate is increased so that the ratio of the thickness of the tile substrate to the thickness of the tile substrate in the other portions is in the range of 1/3 to 3, the bias of the pressing pressure during the dewatering press is increased. , And a tile base material of good quality can always be produced with high efficiency by the dewatering press molding method, and the production cost can be greatly reduced. Furthermore, the roof tile with a solar cell having the above-described structure is a dehydration press molding method, in which a tile substrate made of a homogeneous inorganic material is formed by applying a uniform pressing pressure, so that there is little temporal deformation, The function of the roof tiles with solar cells can be demonstrated.

【0044】請求項2記載の発明の太陽電池付屋根瓦
は、叙上のように、請求項1記載の発明の太陽電池付屋
根瓦において、脱水プレス成形法において、瓦基材の裏
面の凹部底面相当部分と凹部周縁相当部が傾斜面からな
る凹部側面相当部分で接続されてなるものであるので、
脱水プレス中のプレス圧が金型型窩内で均一にすること
を可能にしたのである。
As described above, the roof tile with a solar cell according to the second aspect of the present invention is the roof tile with a solar cell according to the first aspect of the present invention, wherein the depressed portion is formed on the back surface of the tile base material by the dehydration press molding method. Since the bottom portion equivalent portion and the concave portion peripheral edge equivalent portion are connected at the concave side surface equivalent portion formed of the inclined surface,
The press pressure during the dewatering press was made uniform within the mold cavity.

【0045】請求項3記載の発明の太陽電池付屋根瓦
は、叙上のように、請求項1記載の発明の太陽電池付屋
根瓦において、脱水プレス成形法において、瓦基材の裏
面の凹部底面相当部分と凹部周縁相当部が円弧面からな
る凹部側面相当部分で接続されてなるものであるので、
脱水プレス中のプレス圧が金型型窩内で均一にすること
を可能にしたのである。
As described above, the roof tile with a solar cell according to the third aspect of the present invention is the roof tile with a solar cell according to the first aspect of the present invention, wherein the depressed portion on the back surface of the tile base material is formed by the dehydration press molding method. Since the bottom-equivalent portion and the concave-periphery-corresponding portion are connected at the concave-portion-side equivalent portion formed of an arc surface,
The press pressure during the dewatering press was made uniform within the mold cavity.

【0046】請求項4記載の発明の太陽電池付屋根瓦
は、叙上のように、請求項1〜3記載の発明の太陽電池
付屋根瓦において、瓦基材裏面に高さ1〜20mm、幅
1〜100mmの補強用リブが設けられてなるものであ
るので、成形歪やひび入り、割れ等の製品不良を発生さ
せることなく大面積化でき、効率的且つ安価に生産でき
る。更に、瓦基材が薄肉であっても機械的強度は大き
く、経時的変形量を極めて小さいものとすることができ
るので、太陽電池付屋根瓦の軽量化が可能となり、物流
や施工における生産性を高めることができる。
As described above, the roof tile with a solar cell according to the fourth aspect of the present invention is the roof tile with a solar cell according to the first to third aspects of the present invention. Since reinforcing ribs having a width of 1 to 100 mm are provided, the area can be increased without causing product defects such as molding distortion, cracking, and cracks, and the production can be performed efficiently and at low cost. Furthermore, even if the tile base material is thin, the mechanical strength is large and the amount of deformation with time can be extremely small, so that the roof tile with a solar cell can be reduced in weight, and productivity in logistics and construction can be improved. Can be increased.

【0047】[0047]

【発明の実施の形態】以下、本発明を図面を参照しなが
ら説明するが、本発明は、これらの実施例に限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

【0048】図2は、本発明の太陽電池付屋根瓦の一例
を示す斜視図であり、図1は、図2に示された本発明の
太陽電池付屋根瓦の構成を説明するために、太陽電池2
と瓦基材1を上下に分割して示す斜視図である。太陽電
池2は、ビス4によって瓦基材1に固定された金属製固
定具3の起立している爪を太陽電池2表面に沿って折り
曲げ、図1に示すように太陽電池付屋根瓦が組み立てら
れる。図3は、本発明の太陽電池付屋根瓦を葺設する工
程を説明するための一部切欠斜視図であり、一部、図2
に示された太陽電池2と瓦基材1を上下に分割した状態
の太陽電池付屋根瓦を示して太陽電池付屋根瓦相互にケ
ーブル5で接続している状態をより明確に示した。
FIG. 2 is a perspective view showing an example of the roof tile with a solar cell of the present invention. FIG. 1 is a view for explaining the structure of the roof tile with a solar cell of the present invention shown in FIG. Solar cell 2
FIG. In the solar cell 2, an upstanding nail of the metal fixture 3 fixed to the tile base 1 by the screw 4 is bent along the surface of the solar cell 2, and a roof tile with a solar cell is assembled as shown in FIG. Can be FIG. 3 is a partially cutaway perspective view for explaining a step of laying a roof tile with a solar cell according to the present invention.
3 shows the roof tile with the solar cell in a state where the solar cell 2 and the tile base material 1 are vertically divided, and the state in which the roof tile with the solar cell is connected to each other with the cable 5 is more clearly shown.

【0049】図4は、平瓦として従来から用いられてい
る瓦の水上側から水下側に向かう切断面における断面図
である。図4の左側が水上側である。裏面水上側先端縁
近くに先端縁に沿って積重ね用突条6と裏面水上側寄り
の中間点に積重ね用突起6が設けられているが、これら
の積重ね用突条6や突起6を設けた平瓦を脱水プレス成
形法で作製した場合、これら肉厚部分によってその近傍
に、脱水不足による強度低下部分の発生を見るが、製品
として許容できる限度に近いものである。
FIG. 4 is a cross-sectional view of a roof tile conventionally used as a flat roof tile, taken along a cut surface from the upper side to the lower side. The left side of FIG. 4 is the water surface. A stacking ridge 6 is provided along the leading edge near the rear edge on the upper surface and a stacking protrusion 6 is provided at an intermediate point closer to the upper surface on the rear surface. The stacking ridge 6 and the projection 6 are provided. When a flat roof tile is manufactured by the dewatering press molding method, occurrence of a portion where the strength is reduced due to insufficient dehydration is observed in the vicinity of these thick portions, but it is close to an allowable limit as a product.

【0050】図5は、本発明の太陽電池付屋根瓦の構成
の一例を説明するために、構成部材の一つである瓦基材
のみを取り出し、図4と対照させて示す、瓦基材の水上
側から水下側に向かう縦断面図である。図5において、
凹部11が設けられている部分12の瓦基材の厚さ(t
1 )と、該凹部11周縁を含むそれ以外の瓦基材の厚さ
(t2 )との厚さ比(t2 /t 1 )が1/3〜3の範囲
にあるように増肉されていることを示している。このよ
うな厚さ比に限定することによって、図5に示される凹
凸の多い形状の瓦基材を脱水プレス成形法によって、脱
水プレス中の金型型窩内でのプレス圧の偏りを防止して
いる。
FIG. 5 shows the structure of a roof tile with a solar cell according to the present invention.
In order to explain one example, a tile base material that is one of the constituent members
Only, taken out of the tile substrate and shown in contrast to FIG.
It is a longitudinal cross-sectional view which goes from the side to the underwater side. In FIG.
The thickness (t) of the tile base material in the portion 12 where the concave portion 11 is provided
1) And other thicknesses of the tile base material including the periphery of the concave portion 11
(TTwo) And the thickness ratio (tTwo/ T 1) Is in the range of 1/3 to 3
Indicates that the meat has been increased. This
By limiting to such a thickness ratio, the recess shown in FIG.
Detachment of roof tiles with many convex shapes by dewatering press molding
Prevent biasing of press pressure in mold cavity during water press
I have.

【0051】図6は、図5に示される本発明の太陽電池
付屋根瓦の構成部材の一つである瓦基材の他の例を示す
縦断面図である。図6において、凹部11が設けられて
いる部分12の瓦基材1裏面とこれに連なる周縁部分1
3が傾斜面14によって接続されてなるものとすること
によって、瓦基材1の作製時に、脱水プレス成形法によ
って、脱水プレス中の金型型窩内でのプレス圧の偏りを
防止している。
FIG. 6 is a longitudinal sectional view showing another example of a tile base material which is one of the components of the roof tile with solar cells of the present invention shown in FIG. In FIG. 6, the back surface of the tile substrate 1 in the portion 12 where the concave portion 11 is provided and the peripheral portion 1 connected thereto.
By making the tiles 3 connected by the inclined surfaces 14, the bias of the press pressure in the mold cavity during the dehydration press is prevented by the dehydration press molding method during the production of the tile base material 1. .

【0052】図7は、図5に示される本発明の太陽電池
付屋根瓦の構成部材の一つである瓦基材の他の例を示す
縦断面図である。図7において、凹部11が設けられて
いる部分12の瓦基材1裏面とこれに連なる周縁部分1
3が円弧面16によって接続されてなるものとすること
によって、瓦基材1の作製時に、脱水プレス成形法によ
って、脱水プレス中の金型型窩内でのプレス圧の偏りを
防止している。
FIG. 7 is a longitudinal sectional view showing another example of a tile base material which is one of the components of the roof tile with solar cells of the present invention shown in FIG. In FIG. 7, the back surface of the tile base material 1 in the portion 12 where the concave portion 11 is provided and the peripheral portion 1 connected thereto.
By forming the tiles 3 to be connected by the arcuate surface 16, the bias of the press pressure in the mold cavity during the dewatering press is prevented by the dewatering press molding method during the production of the tile base material 1. .

【0053】図8は、図5に示される本発明の太陽電池
付屋根瓦の構成部材の一つである瓦基材の他の例を示す
縦断面図である。図8において、増肉部分がなす区画a
が凹部底面12がなす区画bより大きくなされ、bの全
周に1〜30mmの幅をもって区画cが設けられること
によって、瓦基材1の作製時に、脱水プレス成形法によ
って、脱水プレス中の金型型窩内でのプレス圧の偏りを
防止している。
FIG. 8 is a longitudinal sectional view showing another example of a tile base material which is one of the components of the roof tile with solar cells of the present invention shown in FIG. In FIG. 8, the section a formed by the thickened portion
Is made larger than the section b formed by the concave bottom surface 12, and the section c is provided with a width of 1 to 30 mm on the entire circumference of b. The bias of the press pressure in the mold cavity is prevented.

【0054】図9は、図5に示される本発明の太陽電池
付屋根瓦の裏面の一例を示す斜視図である。瓦基材裏面
は、水上側から水下側に向かう補強用リブ7を7本、こ
れに直交して補強用リブ8を2本を交差して配設したリ
ブ補強構造を有するものである。このように瓦基材裏面
を補強用リブを配設して補強することにより、比較的複
雑な形状の瓦基材が薄肉であっても機械的強度は大き
く、経時的変形量を極めて小さいものとすることがで
き、太陽電池付屋根瓦の軽量化が可能となり、物流や施
工における生産性を高めることができることを示してい
る。
FIG. 9 is a perspective view showing an example of the back surface of the roof tile with solar cells of the present invention shown in FIG. The back surface of the tile base material has a rib reinforcing structure in which seven reinforcing ribs 7 extending from the water upper side to the water lower side, and two reinforcing ribs 8 are arranged so as to intersect at right angles. By arranging the reinforcing ribs on the back surface of the tile base material in this way, even if the tile base material having a relatively complicated shape is thin, the mechanical strength is large and the temporal deformation amount is extremely small. This indicates that the roof tiles with solar cells can be reduced in weight, and that the productivity in logistics and construction can be increased.

【0055】[0055]

【実施例】(実施例1〜3、比較例1)普通ポルトラン
ドセメント(秩父小野田セメント社製)100重量部、
補強繊維としてポリプロピレン繊維(二デニール、繊維
長5mm)1重量部、無機質充填材としてフライアッシ
ュ(関東化工社製、JIS A 6201相当品、真比
重2.3、嵩比重0.6)40重量部、水溶性高分子物
質としてヒドロキシプロピルメチルセルロース(20℃
における2重量%水溶液の粘度が30000cps)
0.2重量部及び水40重量部からなる組成の無機材料
を、オムニミキサー(千代田技研工業社製、容量20リ
ットル)を用いて揺動混合し、水硬性無機材料スラリー
を調製し、脱水プレス成形法によって、プレス圧60k
g/cm2 、加圧時間10秒、60℃、90%RHで1
2時間蒸気養生して硬化させ、表1に示す形状、寸法
(t1 ,t2 及びt2 /t1 )の瓦基材を成形した。
尚、瓦基材の大きさは、400mm×600mmであ
り、その表面に設けられた凹部の深さは4mmである。
Examples (Examples 1 to 3, Comparative Example 1) 100 parts by weight of ordinary Portland cement (manufactured by Chichibu Onoda Cement Co.)
1 part by weight of polypropylene fiber (two denier, fiber length 5 mm) as a reinforcing fiber, and 40 parts by weight of fly ash (manufactured by Kanto Kako Co., Ltd., JIS A 6201 equivalent, true specific gravity 2.3, bulk specific gravity 0.6) as an inorganic filler Hydroxypropyl methylcellulose (20 ° C.)
The viscosity of the 2% by weight aqueous solution at 30,000 cps)
An inorganic material having a composition of 0.2 parts by weight and 40 parts by weight of water is rocked and mixed using an omni mixer (manufactured by Chiyoda Giken Kogyo Co., Ltd., capacity: 20 liters) to prepare a hydraulic inorganic material slurry, and a dehydration press is performed. Pressing pressure 60k by molding method
g / cm 2 , pressurization time 10 seconds, 60 ° C., 90% RH 1
The tiles were cured by steam curing for 2 hours to form tile substrates having the shapes and dimensions (t 1 , t 2 and t 2 / t 1 ) shown in Table 1.
In addition, the size of the tile base material is 400 mm × 600 mm, and the depth of the concave portion provided on the surface is 4 mm.

【0056】得られた瓦基材の表面状態を目視により観
察し、外観品質評価を行った。評価は以下に示す基準で
行い、各々の評価マークを表1に示した。 (外観品質評価基準) ○:凹部周縁部分が凹部と同様に均一脱水されて硬化
し、外観が非常によいもの。 △:凹部周縁部分で僅かに脱水不良が見られるが、外観
上問題のないもの。 ×:凹部周縁部分で著しい脱水不良が見られ、外観上問
題があるもの。
The surface condition of the obtained tile base material was visually observed, and the appearance quality was evaluated. The evaluation was performed according to the following criteria. Each evaluation mark is shown in Table 1. (Appearance quality evaluation standard) :: The periphery of the concave portion is uniformly dehydrated and hardened similarly to the concave portion, and the appearance is very good. Δ: Dehydration failure is slightly observed at the periphery of the concave portion, but there is no problem in appearance. X: A remarkable dehydration defect is observed at the periphery of the concave portion, and there is a problem in appearance.

【0057】[0057]

【表1】 [Table 1]

【0058】上記瓦基材の表面に設けられた凹部に、図
2に示すようにして、表面保護に強化ガラスを張設した
太陽電池を固定して装着し、図1に示す太陽電池付屋根
瓦を作製した。
As shown in FIG. 2, a solar cell having a tempered glass stretched for surface protection is fixed and mounted in a concave portion provided on the surface of the tile substrate, and a roof with a solar cell shown in FIG. A tile was made.

【0059】(実施例4)図6に示される瓦基材形状で
あって、凹部11が設けられている部分12の瓦基材1
裏面とこれに連なる周縁部分13が45度の傾斜面によ
って接続されてなること以外、実施例1と同様にして瓦
基材を成形し、実施例1と同様にして太陽電池を装着
し、太陽電池付屋根瓦を作製した。実施例1と同様にし
て行った瓦基材の外観品質評価の結果は、○であった。
(Example 4) The tile substrate 1 in the portion 12 having the concave portion 11 and having the tile substrate shape shown in FIG.
A tile substrate is formed in the same manner as in Example 1, except that the back surface and the peripheral portion 13 connected thereto are connected by a 45-degree inclined surface, and a solar cell is mounted in the same manner as in Example 1, A roof tile with batteries was produced. The result of the evaluation of the appearance quality of the tile substrate performed in the same manner as in Example 1 was ○.

【0060】(実施例5)図7に示される瓦基材形状で
あって、凹部11が設けられている部分12の瓦基材1
裏面とこれに連なる周縁部分13が円弧面によって接続
されてなること以外、実施例1と同様にして瓦基材を成
形し、実施例1と同様にして太陽電池を装着し、太陽電
池付屋根瓦を作製した。実施例1と同様にして行った瓦
基材の外観品質評価の結果は、○であった。
(Example 5) A tile substrate 1 having a tile substrate shape shown in FIG.
Except that the back surface and the peripheral portion 13 connected thereto are connected by an arc surface, a tile base material is formed in the same manner as in Example 1, a solar cell is mounted in the same manner as in Example 1, and a roof with a solar cell is mounted. A tile was made. The result of the evaluation of the appearance quality of the tile substrate performed in the same manner as in Example 1 was ○.

【0061】(実施例6)図8に示される瓦基材形状で
あって、凹部底面12がなす区画bの全周に渡って10
mmの幅で区画cが同じ厚さに存在するように瓦基材の
裏面を増肉したこと以外、実施例1と同様にして瓦基材
を成形し、実施例1と同様にして太陽電池を装着し、太
陽電池付屋根瓦を作製した。実施例1と同様にして行っ
た瓦基材の外観品質評価の結果は、○であった。
(Example 6) The tile base material shown in FIG.
A tile substrate was formed in the same manner as in Example 1 except that the back surface of the tile substrate was thickened so that the section c had the same thickness with a width of mm, and the solar cell was formed in the same manner as in Example 1. Was mounted to produce a roof tile with a solar cell. The result of the evaluation of the appearance quality of the tile substrate performed in the same manner as in Example 1 was ○.

【0062】(実施例7)図9に示される瓦基材形状で
あって、高さ6mm、幅20mmの補強リブを瓦基材裏
面に、短辺に沿って7本、長辺に沿って2本を略等間隔
に直交させて設けられていること以外、実施例1と同様
にして瓦基材を成形し、実施例1と同様にして太陽電池
を装着し、太陽電池付屋根瓦を作製した。実施例1と同
様にして行った瓦基材の外観品質評価の結果は、○であ
った。
(Example 7) Seven reinforcing ribs each having a height of 6 mm and a width of 20 mm in the shape of the tile base material shown in FIG. Except that two of them are provided at substantially regular intervals at right angles, a tile base material is formed in the same manner as in Example 1, a solar cell is mounted in the same manner as in Example 1, and a roof tile with a solar cell is formed. Produced. The result of the evaluation of the appearance quality of the tile substrate performed in the same manner as in Example 1 was ○.

【0063】[0063]

【発明の効果】本発明の太陽電池付屋根瓦は、叙上のよ
うに構成されているので、脱水プレス中のプレス圧が金
型型窩内で可及的均一にすることを可能にし、脱水プレ
ス成形法によって常に良好な品質の瓦基材を高能率で生
産し得るものであり、生産コストを大幅に低減すること
ができる。更に、上記構成からなる太陽電池付屋根瓦
は、脱水プレス成形法において、均等なプレス圧の負荷
によって均質な無機材料からなる瓦基材が形成されてい
るので、経時的に反り等の変形も少なく、長期にわった
って太陽電池付屋根瓦の機能を発揮しえるものである。
The roof tile with solar cell of the present invention is constructed as described above, so that the pressing pressure during the dewatering press can be made as uniform as possible in the mold cavity. A tile base material of good quality can always be produced with high efficiency by the dehydration press molding method, and the production cost can be greatly reduced. Furthermore, since the roof tile with solar cell having the above-described structure is formed by a dewatering press molding method, a tile base material made of a homogeneous inorganic material is formed by applying a uniform pressing pressure, deformation such as warpage over time also occurs. It is possible to exhibit the function of the roof tile with solar cells in a small amount over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1に示された太陽電池付屋根瓦の構成を説明
するために、太陽電池と瓦基材を上下に分割して示す斜
視図である。
FIG. 1 is a perspective view showing a solar cell and a tile base material divided into upper and lower parts for explaining a configuration of a roof tile with a solar cell shown in FIG.

【図2】本発明の太陽電池付屋根瓦の一例を示す斜視図
である。
FIG. 2 is a perspective view showing an example of a roof tile with a solar cell of the present invention.

【図3】本発明の太陽電池付屋根瓦を葺設する工程を説
明するための一部切欠斜視図である。
FIG. 3 is a partially cutaway perspective view for explaining a step of laying a roof tile with a solar cell according to the present invention.

【図4】従来の平瓦の水上側から水下側に向かう切断面
における断面図である。
FIG. 4 is a cross-sectional view of a section of a conventional flat tile from a water surface to a water surface.

【図5】本発明の太陽電池付屋根瓦の構成部材の一つで
ある瓦基材の他の例の水上側から水下側に向かう切断面
における断面図である。
FIG. 5 is a cross-sectional view of another example of the tile base material, which is one of the constituent members of the roof tile with solar cells of the present invention, taken along a cut surface extending from the upper side to the lower side.

【図6】本発明の太陽電池付屋根瓦の構成部材の一つで
ある瓦基材の他の例の水上側から水下側に向かう切断面
における断面図である。
FIG. 6 is a cross-sectional view of another example of a tile base material, which is one of the components of the roof tile with a solar cell of the present invention, taken along a cut surface from the upper side to the lower side.

【図7】本発明の太陽電池付屋根瓦の構成部材の一つで
ある瓦基材の他の例の水上側から水下側に向かう切断面
における断面図である。
FIG. 7 is a cross-sectional view of another example of the tile base material, which is one of the constituent members of the roof tile with a solar cell of the present invention, taken along a cut surface from the upper side to the lower side.

【図8】本発明の太陽電池付屋根瓦の構成部材の一つで
ある瓦基材の他の例の水上側から水下側に向かう切断面
における断面図である。
FIG. 8 is a cross-sectional view of another example of the tile base material, which is one of the constituent members of the roof tile with a solar cell of the present invention, taken along a cut surface from the upper surface to the lower surface.

【図9】本発明の太陽電池付屋根瓦の構成部材の一つで
ある瓦基材の他の例の裏面を示す斜視図である。
FIG. 9 is a perspective view showing the back surface of another example of the tile base material which is one of the constituent members of the roof tile with solar cells of the present invention.

【符号の説明】 1:瓦基材 11:凹部 12:凹部が設けられている瓦基材部分 13:周縁部(凹部が設けられている部分以外の瓦基材
部分) 14:傾斜面からなる凹部側面相当部分 15:凹部側面 16:円弧面からなる凹部側面相当部分 2:太陽電池 3:固定具 4:緊締具 5:ケーブル 6:積重ね用突条及び突起 7、8:補強用リブ a:増肉部分がなす区画(b+c) b:凹部底面がなす区画 c:区画bの全周に1〜30mmの幅でもって設けられ
た区画 t1 :凹部が設けられている部分の瓦基材の厚さ t2 :凹部が設けられている部分以外の瓦基材の厚さ
[Description of Signs] 1: Tile substrate 11: Concave portion 12: Tile substrate portion provided with concave portion 13: Peripheral portion (tile substrate portion other than portion provided with concave portion) 14: Inclined surface Part corresponding to the concave side surface 15: Side surface corresponding to the concave part 16: Part corresponding to the concave side surface formed of an arc surface 2: Solar cell 3: Fixing tool 4: Fastening tool 5: Cable 6: Stacking ridge and projection 7, 8: Reinforcing rib a: Section (b + c) formed by the thickened portion b: Section formed by the bottom surface of the recess c: Section provided with a width of 1 to 30 mm around the entire circumference of the section b t 1 : Tile of the tile base in the section provided with the recess Thickness t 2 : Thickness of the tile base material other than the portion where the concave portion is provided

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水硬性無機材料からなる瓦基材の表面に
設けられた凹部に太陽電池が配設されてなり、軒先より
棟部に向かって、水上側及び側方の太陽電池付屋根瓦が
水下側の太陽電池付屋根瓦の上縁及び側端に一部重な
り、屋根下地材に固定されて順次葺設される太陽電池付
屋根瓦であって、凹部が設けられている部分の瓦基材裏
面が増厚された形状となされ、該凹部が設けられている
部分の瓦基材の厚さと、これに連なる周縁部分の瓦基材
の厚さの比が1/3〜3の範囲にあるようになされてい
ることを特徴とする太陽電池付屋根瓦。
A solar cell is provided in a concave portion provided on the surface of a tile base made of a hydraulic inorganic material, and a roof tile with solar cells on the water side and sideways from the eaves toward the ridge. Is partially overlapped with the upper edge and the side edge of the roof tile with the solar cell under the water, fixed to the base material of the roof and sequentially laid, and the roof tile with the concave part is provided. The ratio of the thickness of the tile base material in the portion where the concave portion is provided to the thickness of the tile base material in the peripheral portion connected thereto is set to 1/3 to 3 A roof tile with solar cells, characterized in that it is in a range.
【請求項2】 瓦基材裏面における増厚部分とこれに連
なる周縁部分が傾斜面によって接続されてなる請求項1
記載の太陽電池付屋根瓦。
2. A thickened portion on the back surface of the tile base material and a peripheral portion connected to the thickened portion are connected by an inclined surface.
A roof tile with a solar cell as described.
【請求項3】 瓦基材裏面における増厚部分とこれに連
なる周縁部分が円弧面によって接続されてなる請求項1
記載の太陽電池付屋根瓦。
3. The thickened portion on the back surface of the tile base material and the peripheral portion connected thereto are connected by an arc surface.
A roof tile with a solar cell as described.
【請求項4】 瓦基材裏面に高さ1〜20mm、幅1〜
100mmの補強用リブが設けられてなる請求項1〜3
記載の太陽電池付屋根瓦。
4. A tile having a height of 1 to 20 mm and a width of 1 to 20
A reinforcing rib having a thickness of 100 mm is provided.
A roof tile with a solar cell as described.
JP11166781A 1998-11-10 1999-06-14 Roof tile with solar battery Pending JP2000204717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11166781A JP2000204717A (en) 1998-11-10 1999-06-14 Roof tile with solar battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31929898 1998-11-10
JP10-319298 1998-11-10
JP11166781A JP2000204717A (en) 1998-11-10 1999-06-14 Roof tile with solar battery

Publications (1)

Publication Number Publication Date
JP2000204717A true JP2000204717A (en) 2000-07-25

Family

ID=26491038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11166781A Pending JP2000204717A (en) 1998-11-10 1999-06-14 Roof tile with solar battery

Country Status (1)

Country Link
JP (1) JP2000204717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012163457A3 (en) * 2011-06-03 2013-05-10 Basf Se Photovoltaic system for installation on roofs comprising a plastic carrier and photovoltaic module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012163457A3 (en) * 2011-06-03 2013-05-10 Basf Se Photovoltaic system for installation on roofs comprising a plastic carrier and photovoltaic module

Similar Documents

Publication Publication Date Title
CN1181955C (en) Foamed cement composite slab and its production method
JP2000204717A (en) Roof tile with solar battery
CN214696484U (en) Light composite heat-insulating and sound-insulating brick for roof
CN214117514U (en) Structural beam water and electricity pressure groove section bar for building
JP5217060B2 (en) Heat shield block and manufacturing method thereof
CN200975052Y (en) Paper surface desulfurize gypsum wallboard
CN210396008U (en) Vitrified tile paving structure
CN113442269A (en) Preparation process of multifunctional composite appearance beauty wall material
JPH1093126A (en) Manufacture of roof tile with solar battery
CN2420350Y (en) Composite polyphenyl thermal insulation plate
CN213653955U (en) Aerated concrete block convenient to splice
CN210767619U (en) Household ceramic tile structure
CN215330892U (en) Environment-friendly evaporates presses aerated concrete block convenient to stack
CN216340569U (en) Mineral composite decorative board
CN220666750U (en) Enhanced anti-cracking and anti-falling insulation board
CN104831823B (en) Compound heat preservation die plate
CN214884532U (en) High-strength waterproof foam concrete composite insulation board
CN2527619Y (en) Slotted brick
CN2570342Y (en) Wall insulating board
CN214034350U (en) Bearing perforated brick for building
WO2008095400A1 (en) A honeycomb brick and process of manufacture thereof
CN2414907Y (en) Granite-like composite stone
CN208857612U (en) A kind of high-strength ceramsite water-permeable brick
CN209277332U (en) A kind of building energy-saving building block
CN1556056A (en) Cement polyphenyl thermal insulaton composite material