JP2000204456A - Production of aluminum foil for electrolytic capacitor electrode - Google Patents

Production of aluminum foil for electrolytic capacitor electrode

Info

Publication number
JP2000204456A
JP2000204456A JP11007195A JP719599A JP2000204456A JP 2000204456 A JP2000204456 A JP 2000204456A JP 11007195 A JP11007195 A JP 11007195A JP 719599 A JP719599 A JP 719599A JP 2000204456 A JP2000204456 A JP 2000204456A
Authority
JP
Japan
Prior art keywords
aluminum foil
oxygen
electrolytic capacitor
reducing atmosphere
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11007195A
Other languages
Japanese (ja)
Other versions
JP3797645B2 (en
Inventor
Hideo Watanabe
英雄 渡辺
Masahiko Kawai
正彦 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP00719599A priority Critical patent/JP3797645B2/en
Publication of JP2000204456A publication Critical patent/JP2000204456A/en
Application granted granted Critical
Publication of JP3797645B2 publication Critical patent/JP3797645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the increase of the capacitance of a capacitor and its miniaturization by improving the surface roughening treating ratio of aluminum foil used for an electrolytic capacitor. SOLUTION: As to the method for producing aluminum foil for an electrolytic capacitor electrode in which aluminum foil is subjected to final annealing and is thereafter subjected to surface roughening treatment, in the temp. rising stage in final annealing, aluminum foil is heated in an oxygen-added reducing atmosphere contg. 0.01 to 1.0% oxygen and 0 to 50% inert gas, and the balance reducing gas, and, subsequently, in a stage including a holding stage, the aluminum foil is heated in an oxygen-nonadded reducing atmosphere contg. 0 to 25% inert gas, and the balance reducing gas and is annealed. Its expansing ratio in surface roughening treatment is improved, the capacitance of an electrolytic capacitor is increased, and its miniaturization is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解コンデンサ電
極用アルミニウム箔の製造方法に関するものであり、特
に中高圧用陽極箔材に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum foil for an electrode of an electrolytic capacitor, and more particularly, to a method suitable for an anode foil for medium and high pressure.

【0002】[0002]

【従来の技術】一般に電解コンデンサ電極用アルミニウ
ム箔の製造には、純度99.9%以上(例えば純度9
9.96%以上)の純アルミニウムを常法により熱間、
冷間圧延して100μm前後の厚さにし、これを最終焼
鈍した後、表面の粗面化処理、所定の化成処理(陽極酸
化)が行われる。上記した粗面化処理はアルミニウム箔
の表面積の拡大を目的としたものであり、一般に塩酸を
主体とした電解液の中で電気化学的に処理して多数のキ
ャピラリー状ピットを形成させる。この1つずつのピッ
トは箔面に垂直に伸びて箔の表面積の増大をもたらし、
未処理のものに比べて高い静電容量をもたらす。この粗
面化における表面積拡大率が大きい程、コンデンサの電
極に用いる際に使用する箔の量は少なくて済み、小型化
及び省資源に寄与することができる。このため粗面化処
理における拡大率を高めるため、コンデンサメーカでは
粗面化処理条件の研究がなされており、一方、原箔の供
給者である箔圧延メーカでは粗面化処理で高い粗面化率
(拡大率)が得られる箔について種々の研究がなされて
いる。そこで本発明者は先に、高い粗面化率が得られる
材料を提供することを目的として、最終焼鈍における雰
囲気を従来の真空下または不活性ガス雰囲気から還元性
雰囲気に変えて上記粗面化率を改善する方法を提案して
いる(特開平8−222488号)。この方法によれ
ば、粗面化処理に先立ってアルミニウム箔に形成される
酸化被膜を適切な厚さ及び結晶化率に調整でき、よって
粗面化処理に際し均一なピットが多数形成され、その結
果、粗面化率が向上することが期待される。
2. Description of the Related Art In general, the production of an aluminum foil for an electrolytic capacitor electrode requires a purity of 99.9% or more (for example, a purity of 99.9%).
Pure aluminum of 9.96% or more)
After cold rolling to a thickness of about 100 μm and final annealing, a surface roughening treatment and a predetermined chemical treatment (anodic oxidation) are performed. The surface roughening treatment described above is intended to increase the surface area of the aluminum foil, and is generally performed electrochemically in an electrolytic solution mainly containing hydrochloric acid to form a large number of capillary pits. The individual pits extend perpendicular to the foil surface, resulting in an increase in foil surface area,
Produces higher capacitance than untreated ones. The larger the surface area expansion rate in the roughening, the smaller the amount of foil used when used for the electrode of the capacitor, which can contribute to miniaturization and resource saving. For this reason, capacitor manufacturers are studying the conditions of surface roughening treatment in order to increase the enlargement rate in the surface roughening process. Various studies have been made on foils that provide a ratio (magnification ratio). In order to provide a material capable of obtaining a high surface roughening rate, the present inventor previously changed the atmosphere in the final annealing to a reducing atmosphere from a conventional vacuum or an inert gas atmosphere to a reducing atmosphere. A method for improving the rate has been proposed (Japanese Patent Laid-Open No. Hei 8-222488). According to this method, the oxide film formed on the aluminum foil prior to the surface roughening treatment can be adjusted to an appropriate thickness and crystallization rate, and thus a large number of uniform pits are formed during the surface roughening treatment. It is expected that the surface roughening rate will be improved.

【0003】[0003]

【発明が解決しようとする課題】上記方法により得られ
たアルミニウム箔では、電解コンデンサに用いることに
より単位面積あたりの静電容量が向上した電解コンデン
サを得ることができる。しかし、その向上の程度は理論
的に期待されるものよりも低く、十分な粗面化率が得ら
れていないという問題がある。本発明者はその後、さら
に研究を進め、上記における問題の原因を追求したとこ
ろ、アルミニウム箔を製造する圧延の過程で圧延材(最
終的にはアルミニウム箔となる)に付着した潤滑油が最
終焼鈍後もアルミニウム箔の表面に留まり、これが粗面
化処理に際しピット形成の妨げになること及びそのため
酸化皮膜の不均一性が生じ更に、現状の焼鈍条件では、
その厚みも厚くなることにより、ピットの形成密度が粗
になることなどがあり、粗面化率を低下させていること
を解明した。本発明者はかかる知見に基づいて本発明を
完成するに至ったものである。すなわち本発明は上記事
情を背景としてなされたものであり、最終焼鈍時にアル
ミニウム箔の酸化被膜厚を適切に制御するとともに、ア
ルミニウム箔表面に付着した油分を最終焼鈍時に確実に
除去し、粗面化処理に際し、高い粗面化率を得ることが
できる電解コンデンサ電極用アルミニウム箔の製造方法
を提供することを目的とする。
The aluminum foil obtained by the above method can be used as an electrolytic capacitor to obtain an electrolytic capacitor having an improved capacitance per unit area. However, the degree of the improvement is lower than theoretically expected, and there is a problem that a sufficient surface roughening rate is not obtained. The present inventor has further researched and pursued the cause of the above-mentioned problem. As a result, the lubricating oil adhering to the rolled material (which eventually becomes aluminum foil) in the rolling process of manufacturing aluminum foil was subjected to final annealing. After that, it remains on the surface of the aluminum foil, which hinders the formation of pits during the surface roughening treatment, and thus causes unevenness of the oxide film.In addition, under the current annealing conditions,
It has been clarified that the pit formation density becomes coarse due to the increase in the thickness, and the surface roughening rate is lowered. The present inventors have completed the present invention based on such findings. That is, the present invention has been made in view of the above circumstances, and appropriately controls the oxide film thickness of the aluminum foil at the time of final annealing, and reliably removes oil adhering to the surface of the aluminum foil at the time of final annealing to obtain a roughened surface. An object of the present invention is to provide a method for producing an aluminum foil for an electrolytic capacitor electrode that can obtain a high surface roughening rate during the treatment.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明の電解コンデンサ電極用アルミニウム箔の製
造方法のうち第1の発明は、アルミニウム箔に最終焼鈍
を行い、その後、粗面化処理を施す電解コンデンサ電極
用アルミニウム箔の製造方法であって、最終焼鈍におけ
る昇温過程で、0.01〜1.0体積%の酸素と0〜5
0体積%の不活性ガスとを含み、残部が実質的に還元性
ガスからなる酸素添加還元性雰囲気中で前記アルミニウ
ム箔を加熱し、その後、少なくとも保持過程を含む過程
で、0〜25体積%の不活性ガスを含み、残部が実質的
に還元性ガスからなる酸素無添加還元性雰囲気中で該ア
ルミニウム箔を加熱して焼鈍を行うことを特徴とする。
Means for Solving the Problems In order to solve the above problems, a first invention of a method for manufacturing an aluminum foil for an electrode of an electrolytic capacitor according to the present invention is to perform a final annealing on an aluminum foil, followed by a roughening treatment. A method for producing an aluminum foil for an electrolytic capacitor electrode, wherein 0.01 to 1.0% by volume of oxygen and 0 to 5%
The aluminum foil is heated in an oxygen-added reducing atmosphere containing 0% by volume of an inert gas and the balance substantially consisting of a reducing gas. Wherein the aluminum foil is heated and annealed in an oxygen-free reducing atmosphere consisting essentially of a reducing gas.

【0005】第2の発明の電解コンデンサ電極用アルミ
ニウム箔の製造方法は、第1の発明において、酸素添加
還元性雰囲気中での昇温速度が200℃/時間以下であ
ることを特徴とする。第3の発明の電解コンデンサ電極
用アルミニウム箔の製造方法は、第1または第2の発明
において、酸素添加還元性雰囲気は加熱温度が350〜
500℃に達するまで維持されることを特徴とする。
[0005] In a second aspect of the present invention, the method for producing an aluminum foil for an electrolytic capacitor electrode according to the first aspect is characterized in that the rate of temperature rise in an oxygen-added reducing atmosphere is 200 ° C / hour or less. The method for producing an aluminum foil for an electrolytic capacitor electrode according to the third invention is the method according to the first or second invention, wherein the oxygen-adding reducing atmosphere has a heating temperature of 350 to 350.
It is characterized in that it is maintained until it reaches 500 ° C.

【0006】第4の発明の電解コンデンサ電極用アルミ
ニウム箔の製造方法は、第1〜第3のいずれかの発明に
おいて、酸素添加還元性雰囲気から酸素無添加還元性雰
囲気に移行するに際し、酸素濃度を次第に減少させる移
行時期を設けることを特徴とする。第5の発明の電解コ
ンデンサ電極用アルミニウム箔の製造方法は、第1〜第
4のいずれかの発明において、酸素無添加還元性雰囲気
への移行は、昇温過程での加熱温度が500℃を越える
前に行うことを特徴とする。
In a fourth aspect of the present invention, there is provided a method for producing an aluminum foil for an electrolytic capacitor electrode according to any one of the first to third aspects, wherein the oxygen concentration is reduced when the oxygen-containing reducing atmosphere is shifted to the oxygen-free reducing atmosphere. Is characterized by providing a transition time for gradually decreasing the time. The method for producing an aluminum foil for an electrolytic capacitor electrode according to a fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the transition to the oxygen-free reducing atmosphere is performed by setting the heating temperature in the temperature increasing process to 500 ° C. It is characterized in that it is performed before crossing.

【0007】第6の発明の電解コンデンサ電極用アルミ
ニウム箔の製造方法は、第1〜第5のいずれかの発明に
おいて、酸素無添加還元性雰囲気中での酸素濃度を0.
01体積%未満に規制することを特徴とする。第7の発
明の電解コンデンサ電極用アルミニウム箔の製造方法
は、第1〜第6のいずれかの発明において、保持過程で
の加熱温度を500〜600℃とすることを特徴とす
る。
In a sixth aspect of the present invention, there is provided a method for manufacturing an aluminum foil for an electrolytic capacitor electrode according to any one of the first to fifth aspects, wherein the oxygen concentration in the oxygen-free reducing atmosphere is set to 0.1.
It is characterized in that it is regulated to less than 01% by volume. A method for producing an aluminum foil for an electrolytic capacitor electrode according to a seventh invention is characterized in that, in any one of the first to sixth inventions, the heating temperature in the holding step is set to 500 to 600 ° C.

【0008】[0008]

【発明の実施形態】本発明で用いられるアルミニウム箔
には純度99.9%以上、さらに99.96%以上のも
のが望ましく、その製造に際し、鋳造、圧延については
通常のアルミニウム箔と同様の工程を採用することがで
き、最終厚みに至るまでの製造方法は特に限定されるも
のではない。なお、本発明としては最終厚みについて特
に限定されるものでないことは勿論であるが、通常は
0.1mm程度の厚さを最終厚みとしている。
BEST MODE FOR CARRYING OUT THE INVENTION The aluminum foil used in the present invention preferably has a purity of 99.9% or more, more preferably 99.96% or more. And the manufacturing method up to the final thickness is not particularly limited. The final thickness of the present invention is, of course, not particularly limited. However, the final thickness is usually about 0.1 mm.

【0009】上記工程により得られたアルミニウム箔に
は最終焼鈍が施される。この焼鈍では、還元性雰囲気に
おいて昇温過程と保持過程と冷却過程を経るようにして
上記アルミニウム箔を加熱するが、その過程で、使用す
る雰囲気ガスを変えている。すなわち、前記したように
昇温過程で、0.01〜1.0体積%の酸素と0〜50
体積%の不活性ガスを含み、残部が実質的に還元性ガス
からなる酸素添加還元性雰囲気中で前記アルミニウム箔
を加熱する。上記のように還元性雰囲気中に少量の酸素
を含むことにより、還元ガスによる還元作用でアルミニ
ウム箔表面に適切な厚さの酸化被膜が形成されるととも
に、酸素による酸化作用によってアルミニウム箔表面に
付着している油分が酸化される。酸化した油分は高温加
熱状態で分解、ガス化し、アルミニウム箔から容易に離
脱する。なお、雰囲気中の酸素濃度が0.01体積%以
下であると上記作用が十分に得られず、油分を確実にア
ルミニウム箔表面から除去することが困難になる。一
方、あまりに多くの酸素を含有させるとアルミニウム箔
表面の酸化作用が過度になり、酸化被膜の厚さが必要以
上に厚くなり、後の粗面化処理が良好になされなくな
る。なお、同様の理由で下限0.02体積%、上限を
0.3体積%とするのが望ましい。上記の適切な酸素濃
度によってアルミニウム箔表面には適切な厚さ(例えば
30〜50Å厚)を有し、圧延油の残留がない酸化被膜
が形成される。
[0009] The aluminum foil obtained by the above process is subjected to final annealing. In this annealing, the aluminum foil is heated in a reducing atmosphere through a heating process, a holding process, and a cooling process, and in that process, an atmosphere gas used is changed. That is, as described above, during the heating process, 0.01 to 1.0% by volume of oxygen and 0 to 50%
The aluminum foil is heated in an oxygenated reducing atmosphere comprising a volume% of inert gas and the balance substantially consisting of reducing gas. By containing a small amount of oxygen in the reducing atmosphere as described above, an oxide film of an appropriate thickness is formed on the aluminum foil surface by the reducing action of the reducing gas, and adheres to the aluminum foil surface by the oxidizing action of oxygen. The oil content is oxidized. The oxidized oil is decomposed and gasified in a high-temperature heating state, and is easily separated from the aluminum foil. If the oxygen concentration in the atmosphere is not more than 0.01% by volume, the above effect cannot be sufficiently obtained, and it becomes difficult to reliably remove oil from the surface of the aluminum foil. On the other hand, if too much oxygen is contained, the oxidizing action on the aluminum foil surface becomes excessive, the thickness of the oxide film becomes unnecessarily thick, and the subsequent roughening treatment cannot be performed well. For the same reason, it is desirable to set the lower limit to 0.02% by volume and the upper limit to 0.3% by volume. Due to the above-described appropriate oxygen concentration, an oxide film having an appropriate thickness (for example, 30 to 50 mm thick) on the aluminum foil surface and having no remaining rolling oil is formed.

【0010】なお、本発明では、上記酸素添加還元性雰
囲気は実質的に上記した少量の酸素と還元性ガスとから
なるもので構成することができるが、これらの他に不活
性ガスを適量含有させたものであってもよい。また上記
不活性ガスは、酸化された油分をアルミニウム箔表面か
ら除去するのに有効に作用し、蒸散した酸化油分がアル
ミニウム箔に再付着することも有効に防止する作用があ
る。これら作用を確実に得るため、不活性ガスを含有さ
せる場合には、その含有量を10体積%以上とするのが
望ましい。但し、不活性ガスは還元性ガス(特に水素)
に比べて熱伝導度が低いため、不活性ガスの含有量が多
くなりすぎると雰囲気での熱伝導性が悪くなり加熱効率
が低下する。また、不活性ガスの含有量が多くなりすぎ
ると相対的に還元性ガスの含有量が低くなりすぎて還元
作用が損なわれる。これらの点から不活性ガス濃度は5
0体積%を上限とする。なお、同様の理由で上限をさら
に25%とするのが望ましい。なお、本発明で使用され
る還元性ガスとしては代表的には水素を挙げることがで
きるが、その他にCO、炭化水素等のガスを用いること
ができる。但し、還元力、熱伝導度の観点から水素が好
適である。また不活性ガスとしては、Ar、He等が例
示される。一般にNも不活性ガスとして位置付けられ
ているが本発明では、焼鈍時の高温領域ではアルミニウ
ム箔との反応が起こるおそれがあるため、上記したよう
に不活性度が高い周期表第0属に属するガスを使用する
のが望ましい。なお、雰囲気には微量の水分や不純物の
存在は許容されるが、これらはできるだけ少ないものが
望ましい。
In the present invention, the oxygen-added reducing atmosphere can be substantially composed of the above-mentioned small amounts of oxygen and a reducing gas. It may be made to be. Further, the inert gas has an effect of effectively removing oxidized oil from the surface of the aluminum foil, and also has an effect of effectively preventing the evaporated oxide oil from re-adhering to the aluminum foil. In order to surely obtain these effects, when an inert gas is contained, the content is desirably 10% by volume or more. However, the inert gas is a reducing gas (especially hydrogen)
Since the thermal conductivity is lower than that of, when the content of the inert gas is too large, the thermal conductivity in the atmosphere is deteriorated and the heating efficiency is reduced. On the other hand, if the content of the inert gas is too large, the content of the reducing gas is relatively too low, and the reducing action is impaired. From these points, the inert gas concentration is 5
The upper limit is 0% by volume. For the same reason, it is desirable to set the upper limit to 25%. In addition, as a reducing gas used in the present invention, hydrogen can be typically cited, but other gases such as CO and hydrocarbons can also be used. However, hydrogen is preferred from the viewpoint of reducing power and thermal conductivity. Examples of the inert gas include Ar and He. Generally, N 2 is also positioned as an inert gas. However, in the present invention, a reaction with the aluminum foil may occur in a high temperature region during annealing. It is desirable to use the gas to which it belongs. Note that a slight amount of moisture or impurities is allowed in the atmosphere, but it is desirable that these are as small as possible.

【0011】上記した酸素添加還元性雰囲気は昇温過程
で採用されるが、昇温過程の全過程でこの雰囲気になる
ことが必須となるものではない。但し、昇温開始当初か
ら該雰囲気として、加熱温度が350〜500℃に達す
るまで該雰囲気を維持するのが望ましい。なお、上記に
おける加熱温度とは雰囲気温度を示している。上記の範
囲より低い加熱温度で該雰囲気を終了してしまうと、ア
ルミニウム箔表面に付着している油分が十分かつ確実に
除去されず、また飛散した酸化油分が再付着しやすいた
め、該雰囲気を350℃以上の加熱温度まで維持するの
が望ましい。一方、相当に高温まで上記雰囲気を維持す
ると、高温酸化が過度に促進され、酸素を添加している
雰囲気にあることも加わってアルミニウム箔表面に所望
とする酸化被膜よりも厚い酸化被膜が形成されやすくな
る。このため上記雰囲気の維持は500℃以下で終了す
るのが望ましい。なお、同様の理由で下限は400℃が
好ましい。
Although the above-mentioned oxygen-added reducing atmosphere is employed in the temperature raising process, it is not essential that the atmosphere be changed to the atmosphere during the entire temperature raising process. However, it is desirable to maintain the atmosphere from the beginning of the temperature rise until the heating temperature reaches 350 to 500 ° C. Note that the heating temperature in the above description indicates an ambient temperature. If the atmosphere is terminated at a heating temperature lower than the above range, the oil adhering to the aluminum foil surface is not sufficiently and reliably removed, and the oxidized oil that has scattered easily adheres again. It is desirable to maintain up to a heating temperature of 350 ° C. or higher. On the other hand, when the above atmosphere is maintained at a considerably high temperature, high-temperature oxidation is excessively promoted, and an oxide film thicker than a desired oxide film is formed on the aluminum foil surface due to the presence of the oxygen-added atmosphere. It will be easier. For this reason, it is desirable that the maintenance of the atmosphere be completed at 500 ° C. or less. Note that the lower limit is preferably 400 ° C. for the same reason.

【0012】したがって該温度域が昇温過程中途にある
場合は、昇温過程途中で酸素添加還元性雰囲気から脱す
るのが望ましいことになる。また昇温過程での昇温は、
速い速度で行う程効率が良いことになるが、本発明で
は、昇温速度を200℃/時間以下とするのが望まし
い。これは昇温速度が速いと、上記した油分の酸化、除
去が十分になされる前に上記したような温度域に達して
しまい、そこで酸素添加還元性雰囲気から脱するとアル
ミニウム箔表面に油分が残ったままになってしまう。ま
たそのまま雰囲気を維持すると温度がさらに上昇して上
記したような不具合が生じてくる。したがって昇温速度
は、油分が酸化、除去されるのに十分に遅い速度、すな
わち200℃/時間以下とするのが望ましい。また、酸
素添加還元性雰囲気での加熱を終了した後は、効率を向
上させるために昇温速度を上げる(例えば200℃越/
時間)ことも可能である。
Therefore, when the temperature range is in the middle of the heating process, it is desirable to remove the oxygen-containing reducing atmosphere during the heating process. The temperature rise during the temperature rise process
The higher the speed, the better the efficiency. However, in the present invention, it is desirable to set the temperature rising rate to 200 ° C./hour or less. This is because if the heating rate is high, the temperature reaches the above-mentioned temperature range before the above-mentioned oxidation and removal of the oil is sufficiently performed, and when the oil is removed from the oxygen-added reducing atmosphere, the oil remains on the aluminum foil surface. It will be left standing. In addition, if the atmosphere is maintained as it is, the temperature further rises, and the above-described problem occurs. Therefore, it is desirable that the heating rate be slow enough to oxidize and remove the oil, that is, 200 ° C./hour or less. After the heating in the oxygen-added reducing atmosphere is completed, the temperature raising rate is increased (for example, over 200 ° C. /
Time) is also possible.

【0013】上記した酸素添加還元性ガス雰囲気を終了
した後は、保持過程を含む過程において酸素無添加還元
性雰囲気で加熱する。これは油分を酸化、除去した後
は、アルミニウム箔表面に適切に厚さが調整された酸化
被膜を一様に形成するためには酸素を添加していない還
元性雰囲気で加熱を行うことが必要になるためである。
ここで、雰囲気中に酸素が添加されていると、相当に高
温であることも重なって酸化が過度に進み、厚さが適切
な酸化被膜を得ることが困難になる。したがって、この
雰囲気では、酸素を添加せず、また不純物として含まれ
る酸素も0.01体積%未満に規制するのが望ましい。
さらに、同様の理由で酸素濃度を0.001体積%以下
に規制するのが望ましい。
After the above-described oxygen-added reducing gas atmosphere is completed, heating is performed in an oxygen-free reducing atmosphere in a process including a holding process. This means that after oxidizing and removing the oil, it is necessary to perform heating in a reducing atmosphere to which oxygen has not been added in order to uniformly form an oxide film of appropriately adjusted thickness on the aluminum foil surface. Because it becomes.
Here, if oxygen is added to the atmosphere, the temperature is considerably high and the oxidation is excessively advanced, and it becomes difficult to obtain an oxide film having an appropriate thickness. Therefore, in this atmosphere, it is desirable that oxygen is not added and oxygen contained as an impurity is regulated to less than 0.01% by volume.
Further, for the same reason, it is desirable to restrict the oxygen concentration to 0.001% by volume or less.

【0014】また、この雰囲気では、還元性ガスに加え
て不活性ガスを含んでいてもよい。少量の不活性ガス
は、上記したように飛散した油分がアルミニウム箔表面
に再付着するのを防止する効果があるが、その一方で熱
伝導度を低下させる。また、この雰囲気では、適切厚さ
の酸化被膜をアルミニウム箔表面に一様に形成するため
に、十分な還元作用が必要である。したがって、この雰
囲気においては還元性ガス濃度を75体積%以上とし、
不活性ガスを添加する場合でもその濃度を25体積%以
下とする。なお、同様の理由で還元性ガスの含有量を9
0体積%以上とし、不活性ガスの含有量を10体積%以
下とするのが一層望ましい。なお、還元性ガス、不活性
ガスの種別としては前記酸素添加還元性ガス雰囲気で説
明したものと同様である。また、酸素添加還元性雰囲気
と酸素無添加還元性雰囲気とで還元性ガス、不活性ガス
の種別を変えることも可能であるが、通常は、同種のも
のを用いる。
Further, this atmosphere may contain an inert gas in addition to the reducing gas. A small amount of the inert gas has an effect of preventing the scattered oil from re-adhering to the aluminum foil surface as described above, but on the other hand, lowers the thermal conductivity. In this atmosphere, a sufficient reducing action is required to uniformly form an oxide film having an appropriate thickness on the surface of the aluminum foil. Therefore, in this atmosphere, the reducing gas concentration is set to 75% by volume or more,
Even when an inert gas is added, its concentration is set to 25% by volume or less. For the same reason, the content of the reducing gas is 9
More preferably, the content is 0% by volume or more and the content of the inert gas is 10% by volume or less. The types of the reducing gas and the inert gas are the same as those described in the oxygen-added reducing gas atmosphere. The type of the reducing gas and the type of the inert gas can be changed between the oxygen-containing reducing atmosphere and the oxygen-free reducing atmosphere, but usually the same type is used.

【0015】上記した酸素無添加還元性雰囲気は、酸素
添加還元性雰囲気から直ちに移行することは難しいの
で、酸素無添加還元性雰囲気から徐々に酸素濃度を減少
させる移行期間を設けることができる。この移行期間は
できるだけ短時間が望ましく、加熱温度が500℃を越
えるまでに酸素無添加還元性雰囲気に移行させるのが望
ましい。これは、移行期間中は酸素濃度が高く、雰囲気
が相当に高温になることにより酸化作用が過度になって
アルミニウム箔表面への適切な酸化被膜の形成が困難に
なるためである。上記移行は、雰囲気中、例えば加熱炉
内に酸素を添加していない還元性ガスを徐々に導入して
全体の酸素濃度を低下させる方法を一例として挙げるこ
とができる。また、上記移行では、酸素の濃度に加えて
不活性ガスの濃度も徐々に減少させるようにすることも
可能であり、この場合にも雰囲気中に不活性ガスを添加
していないか不活性ガスの濃度が低い還元性ガスを次第
に導入することにより徐々に不活性ガス濃度を減少させ
ることができる。
Since it is difficult to immediately transition from the above-described oxygen-free reducing atmosphere to the oxygen-free reducing atmosphere, a transition period for gradually reducing the oxygen concentration from the oxygen-free reducing atmosphere can be provided. This transition period is desirably as short as possible, and it is desirable to transition to an oxygen-free reducing atmosphere until the heating temperature exceeds 500 ° C. This is because, during the transition period, the oxygen concentration is high and the atmosphere becomes considerably high in temperature, so that the oxidizing action becomes excessive and it becomes difficult to form an appropriate oxide film on the aluminum foil surface. The above-mentioned transition can be exemplified by a method in which a reducing gas to which no oxygen is added is gradually introduced into an atmosphere, for example, a heating furnace to lower the overall oxygen concentration. Further, in the above transition, it is possible to gradually decrease the concentration of the inert gas in addition to the concentration of the oxygen. In this case, too, the inert gas is not added to the atmosphere or the inert gas is added. The concentration of the inert gas can be gradually reduced by gradually introducing the reducing gas having a low concentration.

【0016】昇温過程後の保持過程では、保持加熱温度
を500〜600℃とするのが望ましい。これは、還元
性ガス雰囲気下で適切な酸化被膜(厚さ)及びアルミ素
材(高立方体方位率組織)を得るには500℃以上の高
温にするのが望ましいためである。なお、アルミ素材の
立方体方位率が高くなることによっても粗面化処理にお
ける粗面化率が向上する。一方、温度が高くなりすぎる
と、余剰酸素がアルミニウム箔同士の一部焼付きを生じ
させるため、保持温度を600℃以下とする望ましい。
なお、下限は結晶組織的に立方体方位を高くするため5
30℃が好ましく、上限は前記の理由で580℃が望ま
しい。また、保持時間については2〜8時間とするのが
望ましい。これは、2時間未満であると立方体方位率が
不十分であり、8時間を越えると前述の箔同志が焼付き
を生じさせるためである。
In the holding step after the temperature raising step, the holding and heating temperature is desirably set to 500 to 600 ° C. This is because it is desirable to raise the temperature to 500 ° C. or higher in order to obtain an appropriate oxide film (thickness) and an aluminum material (high cubic orientation structure) in a reducing gas atmosphere. It should be noted that the surface roughening rate in the surface roughening treatment is also improved by increasing the cubic orientation rate of the aluminum material. On the other hand, if the temperature is too high, excess oxygen causes partial seizure between the aluminum foils, so that the holding temperature is desirably 600 ° C. or lower.
Note that the lower limit is 5 in order to increase the cubic orientation in crystal structure.
30 ° C. is preferable, and the upper limit is preferably 580 ° C. for the above-mentioned reason. Further, the holding time is desirably 2 to 8 hours. This is because if the time is less than 2 hours, the cubic orientation ratio is insufficient, and if the time exceeds 8 hours, the above-mentioned foils cause seizure.

【0017】保持過程中は終始、酸素無添加還元性雰囲
気を維持することが望ましく、さらにその後の冷却過程
でも高温域(例えば500℃以上)では該雰囲気を維持
するのが望ましい。また、焼鈍が終了するまではアルミ
ニウム箔を酸化性雰囲気におかないのが望ましい。した
がって上記高温域よりも低い温度では、雰囲気を還元性
雰囲気から不活性ガス雰囲気に移行させることが可能で
ある。ただし、この雰囲気でも酸素の含有量は前記と同
様に規制する(例えば0.01体積%未満)のが望まし
い。なお上記高温域よりも低い温度域では反応性が低く
なるので不活性ガスとして例えば窒素ガスの使用も可能
になる。また、冷却過程では、この焼鈍が比較的高い温
度で保持加熱されることから急冷すると熱応力によって
アルミニウム箔にしわが発生しやすくなり、酸化被膜に
も微小なひび割れ等が発生して後の粗面化処理での均質
性が損なわれやすくなる。したがって、冷却過程では冷
却速度が速くなりすぎないように炉冷等により制御する
のが望ましく、具体的には平均で200℃/時間以下の
冷却速度で冷却するのが望ましい。
It is desirable to maintain an oxygen-free reducing atmosphere throughout the holding process, and it is also desirable to maintain the atmosphere in a high temperature region (for example, 500 ° C. or higher) during the subsequent cooling process. Further, it is desirable that the aluminum foil is not kept in an oxidizing atmosphere until the annealing is completed. Therefore, at a temperature lower than the high temperature range, it is possible to shift the atmosphere from a reducing atmosphere to an inert gas atmosphere. However, even in this atmosphere, the oxygen content is desirably regulated in the same manner as above (for example, less than 0.01% by volume). Note that the reactivity becomes lower in a temperature range lower than the above-mentioned high temperature range, so that, for example, nitrogen gas can be used as the inert gas. In the cooling process, since this annealing is held and heated at a relatively high temperature, if it is rapidly cooled, wrinkles are likely to be generated in the aluminum foil due to thermal stress, and minute cracks and the like also occur in the oxide film, and the rough surface afterwards The homogeneity in the chemical treatment is easily lost. Therefore, in the cooling process, it is desirable to control by furnace cooling or the like so that the cooling rate does not become too fast. Specifically, it is desirable to cool at a cooling rate of 200 ° C./hour or less on average.

【0018】上記最終焼鈍により得られるアルミニウム
箔は、その表面からは油分が確実に除去されており、し
かも適度な厚さを有する酸化被膜が均質に表面に形成さ
れている。このアルミニウム箔には、常法により粗面化
処理を施すことができ、粗面化処理に際して高密度で均
一なキャピラリー状ピットが形成され、高い粗面化率が
得られる。高密度で均一なピットが形成されることによ
り、このアルミニウム箔を用いた電解コンデンサは大き
な静電容量を有することができる。
The aluminum foil obtained by the above-mentioned final annealing has oil removed from its surface without fail, and has an oxide film having an appropriate thickness uniformly formed on the surface. This aluminum foil can be subjected to a surface roughening treatment by a conventional method. At the time of the surface roughening treatment, high-density and uniform capillary-like pits are formed, and a high surface roughening rate can be obtained. By forming high-density and uniform pits, an electrolytic capacitor using this aluminum foil can have a large capacitance.

【0019】[0019]

【実施例】以下に、本発明の実施例を説明する。常法に
より溶製された純度99.99%の純アルミニウムを最
終的に冷間圧延し、0.1mm厚のロール上がりの硬質
アルミニウム箔を得た。このアルミニウム箔を表1に示
す条件で加熱炉にて最終焼鈍した。その際に、発明材
(No.1〜12)では酸素添加還元性雰囲気と酸素無
添加還元性雰囲気を組み合わせ、比較材(No.13〜
17)では、該雰囲気において発明法の条件を外して焼
鈍を行った。なお発明法では、図1に示す一例(供試材
No.1)のように昇温過程で酸素添加還元性雰囲気で
加熱を行い、その後、炉内に酸素を添加していない水素
ガスを導入して徐々に酸素量を減少させて昇温過程中に
酸素無添加還元雰囲気に移行させ、保持過程でこの雰囲
気を維持させている。また、これら供試材では、保持加
熱後に冷却されるが、その冷却途中に加熱温度が200
℃または300℃になった状態で徐々に炉内に窒素ガス
を導入し、最終的に窒素ガスで炉内を置換した。
Embodiments of the present invention will be described below. Pure aluminum having a purity of 99.99% produced by a conventional method was finally cold-rolled to obtain a rolled hard aluminum foil having a thickness of 0.1 mm. This aluminum foil was finally annealed in a heating furnace under the conditions shown in Table 1. At that time, in the inventive materials (Nos. 1 to 12), an oxygen-added reducing atmosphere and an oxygen-free reduced atmosphere were combined, and the comparative materials (Nos.
In 17), annealing was performed in the atmosphere except for the conditions of the invention method. In the method of the present invention, as in the example shown in FIG. 1 (sample No. 1), heating is performed in an oxygen-added reducing atmosphere during the heating process, and then hydrogen gas without added oxygen is introduced into the furnace. Then, the amount of oxygen is gradually reduced, and the atmosphere is shifted to an oxygen-free reducing atmosphere during the temperature raising process, and this atmosphere is maintained during the holding process. Further, in these test materials, cooling is performed after holding and heating.
At a temperature of 300 ° C. or 300 ° C., nitrogen gas was gradually introduced into the furnace, and the inside of the furnace was finally replaced with nitrogen gas.

【0020】[0020]

【表1】 [Table 1]

【0021】上記により得られたアルミニウム箔には、
引き続き、以下の条件で粗面化処理および化成処理を行
った後、静電容量を測定した。 1.粗面化処理条件 (1)第1段エッチング条件(電解エッチング) 電解液 HCl 1モル/l HSO 3モル/l AlCl・6HO 60g/l 電解条件 温 度 75℃ 電流密度 0.8A/cm 電解時間 40秒 (2)第2段エッチング条件(化学エッチング) エッチング液(75℃) HO:HNO(1:1) エッチング時間:300秒
The aluminum foil obtained as described above includes:
Subsequently, after performing a surface roughening treatment and a chemical conversion treatment under the following conditions, the capacitance was measured. 1. Roughening treatment condition (1) the first step etching conditions (electrolytic etching) electrolyte solution HCl 1 mol / l H 2 SO 4 3 mol / l AlCl 3 · 6H 2 O 60g / l electrolysis conditions Temperature 75 ° C. Current density 0 0.8 A / cm 2 electrolysis time 40 seconds (2) Second stage etching condition (chemical etching) Etching solution (75 ° C.) H 2 O: HNO 3 (1: 1) Etching time: 300 seconds

【0022】2.化成条件(270V) 化成液 硼 酸 100g/l 硼酸アンモン 1g/l 条 件 温 度85℃ 電流密度0.1A/cm 到達電圧270V2. Chemical formation conditions (270V) Chemical formation liquid Boric acid 100g / l Ammonium borate 1g / l Condition Temperature 85 ° C Current density 0.1A / cm 2 Ultimate voltage 270V

【0023】さらに供試材について、ブロム−メタノー
ル液でAlを溶かし、シャーレ上に浮上した酸化被膜を
透過型電子顕微鏡で観察した。また、島津製作所の光電
子分光装置(ESCA)を用い、次式により酸化被膜厚
を測定した。 酸化被膜厚み(Å)=23.7ln(1÷IM/IT) IM:金属Alのピークの積分強度 IT:金属及び酸化Alのピークの積分強度 上記した、各測定結果は表2に示した。
Further, with respect to the test material, Al was dissolved with a bromo-methanol solution, and the oxide film floating on the petri dish was observed with a transmission electron microscope. The oxide film thickness was measured by the following equation using a photoelectron spectrometer (ESCA) manufactured by Shimadzu Corporation. Oxide film thickness (Å) = 23.7 ln (1 ÷ IM / IT) IM: Integrated intensity of metal Al peak IT: Integrated intensity of metal and Al oxide peaks The above measurement results are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2に明らかなように、最終焼鈍を適切な
雰囲気で行うことにより、アルミニウム箔の静電容量が
明らかに増大することがわかる。これに対し、酸素添加
還元性雰囲気と酸素無添加還元性雰囲気とを適切に組み
合わせないものでは、高い静電容量が得られなかった。
また、本発明の供試材の中でも昇温速度、酸素濃度、不
活性ガス濃度、雰囲気移行温度を適切に調整したもの
は、それ以外のものに比べて静電容量の増加が一層顕著
になっていた。
As is evident from Table 2, by performing the final annealing in an appropriate atmosphere, the capacitance of the aluminum foil is clearly increased. On the other hand, when the oxygen-added reducing atmosphere and the oxygen-free reduced atmosphere were not appropriately combined, a high capacitance could not be obtained.
Also, among the test materials of the present invention, those in which the heating rate, oxygen concentration, inert gas concentration, and atmosphere transition temperature were appropriately adjusted, the increase in capacitance became more remarkable as compared with the other test materials. I was

【0026】[0026]

【発明の効果】以上説明したように、本発明の電解コン
デンサ電極用アルミニウム箔の製造方法によれば、アル
ミニウム箔に最終焼鈍を行い、その後、粗面化処理を施
す電解コンデンサ電極用アルミニウム箔の製造方法であ
って、最終焼鈍における昇温過程で、0.01〜1.0
体積%の酸素と0〜50体積%の不活性ガスとを含み、
残部が実質的に還元性ガスからなる酸素添加還元性雰囲
気中で前記アルミニウム箔を加熱し、その後、少なくと
も保持過程を含む過程で、0〜25体積%の不活性ガス
を含み、残部が実質的に還元性ガスからなる酸素無添加
還元性雰囲気中で該アルミニウム箔を加熱して焼鈍を行
うので、焼鈍時にアルミニウム箔表面の油分が確実に除
去されるとともに、その表面に適切な酸化被膜が一様に
形成され、粗面化処理に際し高い粗面化率が得られ、結
果として単位面積あたりの静電容量を顕著に増大させる
効果があり、電解コンデンサの小型化、省資源化が達成
される。また、最終焼鈍時に油分が除去されるため、特
別な洗浄工程が必要とされることがなく製造効率が向上
する効果もある。
As described above, according to the method for manufacturing an aluminum foil for an electrolytic capacitor electrode of the present invention, the aluminum foil is subjected to a final annealing, and then a roughening treatment is performed. A manufacturing method, wherein a temperature rise in the final annealing is 0.01 to 1.0.
Volume% oxygen and 0-50 volume% inert gas,
The aluminum foil is heated in an oxygen-added reducing atmosphere in which the balance is substantially composed of a reducing gas, and thereafter, at least in a process including a holding process, contains 0 to 25% by volume of an inert gas, and the balance substantially includes the inert gas. Since the aluminum foil is annealed by heating in an oxygen-free reducing atmosphere composed of a reducing gas, oil on the surface of the aluminum foil is reliably removed during annealing, and an appropriate oxide film is formed on the surface. In this manner, a high surface roughening rate can be obtained during the surface roughening treatment. As a result, the capacitance per unit area is significantly increased, and the miniaturization and resource saving of the electrolytic capacitor are achieved. . In addition, since oil is removed at the time of final annealing, there is also an effect that a special cleaning step is not required and production efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例における、最終焼鈍時の酸
素含有量の変化を示すグラフである。
FIG. 1 is a graph showing a change in oxygen content during final annealing in one example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 691 C22F 1/00 691B H01G 9/04 346 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C22F 1/00 691 C22F 1/00 691B H01G 9/04 346

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム箔に最終焼鈍を行い、その
後、粗面化処理を施す電解コンデンサ電極用アルミニウ
ム箔の製造方法であって、最終焼鈍における昇温過程
で、0.01〜1.0体積%の酸素と0〜50体積%の
不活性ガスとを含み、残部が実質的に還元性ガスからな
る酸素添加還元性雰囲気中で前記アルミニウム箔を加熱
し、その後、少なくとも保持過程を含む過程で、0〜2
5体積%の不活性ガスを含み、残部が実質的に還元性ガ
スからなる酸素無添加還元性雰囲気中で該アルミニウム
箔を加熱して焼鈍を行うことを特徴とする電解コンデン
サ電極用アルミニウム箔の製造方法
1. A method for producing an aluminum foil for an electrolytic capacitor electrode, wherein a final annealing is performed on an aluminum foil, and thereafter the aluminum foil is subjected to a surface roughening treatment. % Of oxygen and 0 to 50% by volume of an inert gas, with the balance heating the aluminum foil in an oxygenated reducing atmosphere consisting essentially of a reducing gas. , 0-2
An aluminum foil for an electrolytic capacitor electrode, wherein said aluminum foil is heated and annealed in an oxygen-free reducing atmosphere containing 5% by volume of an inert gas and the balance substantially consisting of a reducing gas. Production method
【請求項2】 酸素添加還元性雰囲気中での昇温速度が
200℃/時間以下であることを特徴とする請求項1に
記載の電解コンデンサ電極用アルミニウム箔の製造方法
2. The method for producing an aluminum foil for an electrolytic capacitor electrode according to claim 1, wherein the rate of temperature rise in an oxygen-added reducing atmosphere is 200 ° C./hour or less.
【請求項3】 酸素添加還元性雰囲気は、加熱温度が3
50〜500℃に達するまで維持することを特徴とする
請求項1または2に記載の電解コンデンサ電極用アルミ
ニウム箔の製造方法
3. The oxygen-added reducing atmosphere has a heating temperature of 3.
The method for producing an aluminum foil for an electrolytic capacitor electrode according to claim 1, wherein the temperature is maintained until the temperature reaches 50 to 500 ° C. 4.
【請求項4】 酸素添加還元性雰囲気から酸素無添加還
元性雰囲気に移行する際に、酸素濃度を次第に減少させ
る移行時期を設けることを特徴とする請求項1〜3のい
ずれかに記載の電解コンデンサ電極用アルミニウム箔の
製造方法
4. The electrolysis according to claim 1, wherein a transition time for gradually reducing the oxygen concentration is provided when shifting from the oxygen-added reducing atmosphere to the oxygen-free reducing atmosphere. Manufacturing method of aluminum foil for capacitor electrode
【請求項5】 酸素無添加還元性雰囲気中での酸素濃度
を0.01体積%未満に規制することを特徴とする請求
項1〜4のいずれかに記載の電解コンデンサ電極用アル
ミニウム箔の製造方法
5. The production of an aluminum foil for an electrolytic capacitor electrode according to claim 1, wherein the oxygen concentration in the oxygen-free reducing atmosphere is regulated to less than 0.01% by volume. Method
【請求項6】 保持過程での加熱温度を500〜600
℃とすることを特徴とする請求項1〜5のいずれかに記
載の電解コンデンサ電極用アルミニウム箔の製造方法
6. The heating temperature in the holding step is 500 to 600.
The method for producing an aluminum foil for an electrolytic capacitor electrode according to any one of claims 1 to 5, wherein the temperature is set to ° C.
JP00719599A 1999-01-14 1999-01-14 Method for producing aluminum foil for electrolytic capacitor electrode Expired - Fee Related JP3797645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00719599A JP3797645B2 (en) 1999-01-14 1999-01-14 Method for producing aluminum foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00719599A JP3797645B2 (en) 1999-01-14 1999-01-14 Method for producing aluminum foil for electrolytic capacitor electrode

Publications (2)

Publication Number Publication Date
JP2000204456A true JP2000204456A (en) 2000-07-25
JP3797645B2 JP3797645B2 (en) 2006-07-19

Family

ID=11659262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00719599A Expired - Fee Related JP3797645B2 (en) 1999-01-14 1999-01-14 Method for producing aluminum foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP3797645B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291354A (en) * 2005-03-17 2006-10-26 Showa Denko Kk Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2008115428A (en) * 2006-11-06 2008-05-22 Mitsubishi Alum Co Ltd Method for producing aluminum foil for electrolytic capacitor
JP2009094546A (en) * 2009-02-03 2009-04-30 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP2011252229A (en) * 2005-03-17 2011-12-15 Showa Denko Kk Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2012012650A (en) * 2010-06-30 2012-01-19 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291354A (en) * 2005-03-17 2006-10-26 Showa Denko Kk Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2011252229A (en) * 2005-03-17 2011-12-15 Showa Denko Kk Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2014031586A (en) * 2005-03-17 2014-02-20 Showa Denko Kk Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2008115428A (en) * 2006-11-06 2008-05-22 Mitsubishi Alum Co Ltd Method for producing aluminum foil for electrolytic capacitor
JP2009094546A (en) * 2009-02-03 2009-04-30 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4493721B2 (en) * 2009-02-03 2010-06-30 昭和電工株式会社 Aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JP2012012650A (en) * 2010-06-30 2012-01-19 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same

Also Published As

Publication number Publication date
JP3797645B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP3797645B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JPH07235457A (en) Aluminum foil for forming electrode of electrolytic capacitor and etching method therefor
JP4721448B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JPH02146718A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP2004319794A (en) Aluminum material for electrolytic capacitor electrode, its manufacturing method and electrolytic capacitor
JP3450083B2 (en) Aluminum foil for electrode of electrolytic capacitor and method for producing the same
JPH0462820A (en) Aluminum foil for electrolytic capacitor electrode
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JPH0462823A (en) Aluminum foil for electrolytic capacitor electrode
JP2011006747A (en) Aluminum foil for electrolytic capacitor
JP5921951B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2005079330A (en) Aluminum foil for electrolytic capacitor electrode and its manufacturing method
JP3297840B2 (en) Aluminum foil for electrode of electrolytic capacitor
JPS6144139B2 (en)
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP3685820B2 (en) Aluminum foil for electrolytic capacitors
JP4707045B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2007113085A (en) Aluminum foil for electrolytic capacitor
JP4671218B2 (en) Method for producing aluminum foil for electrolytic capacitor
JPH0462819A (en) Aluminum foil for electrolytic capacitor electrode
JP4037203B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing the same, and electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees