JP2000204455A - Production of aluminum foil for electrolytic capacitor electrode - Google Patents

Production of aluminum foil for electrolytic capacitor electrode

Info

Publication number
JP2000204455A
JP2000204455A JP11006386A JP638699A JP2000204455A JP 2000204455 A JP2000204455 A JP 2000204455A JP 11006386 A JP11006386 A JP 11006386A JP 638699 A JP638699 A JP 638699A JP 2000204455 A JP2000204455 A JP 2000204455A
Authority
JP
Japan
Prior art keywords
aluminum foil
final annealing
foil
inert gas
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11006386A
Other languages
Japanese (ja)
Other versions
JP3676601B2 (en
Inventor
Hideo Watanabe
英雄 渡辺
Masahiko Kawai
正彦 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP00638699A priority Critical patent/JP3676601B2/en
Publication of JP2000204455A publication Critical patent/JP2000204455A/en
Application granted granted Critical
Publication of JP3676601B2 publication Critical patent/JP3676601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To securely remove oil stuck to the surface of foil and to obtain the structure of a high cubic body orientating ratio by heating an Al foil in a reducing atmosphere contg. oxygen of specified concn. and an inert gas and executing final annealing prior to the surface roughening treatment of the Al foil. SOLUTION: The Al foil of 99.9% purity and about 0.1 mm thickness is heated in a reducing atmosphere contg. 1 to 100 ppm oxygen, 0 to 10% inert gas, and the balance substantial reducing gas and is subjected to final annealing. The holding heating temp. in the final annealing is held to 530 to 620 deg.C. The holding time is desirably controlled to 2 to 10 hr. Moreover, as the reducing gas, hydrogen can be cited. The reducing atmosphere is preferably held even in a cooling stage after the holding stage in the final annealing. In the cooling stage, desirably, the cooling rate is controlled in such a manner that it is not made too fast by furnate cooling or the like, and, concretely, the cooling is executed, derirably, at the cooling rate of <=100 deg.C/hr on the average.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解コンデンサ電
極用アルミニウム箔の製造方法に関するものであり、特
に中圧並びに高圧用陽極箔の製造に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum foil for an electrode of an electrolytic capacitor, and is particularly suitable for producing an anode foil for medium pressure and high pressure.

【0002】[0002]

【従来の技術】一般に電解コンデンサ電極用アルミニウ
ム箔の製造には、純度99.9%以上(例えば純度9
9.96%以上)の純アルミニウムを常法により熱間、
冷間圧延して100μm前後の厚さにし、これを最終焼
鈍した後、表面の粗面化処理、所定の化成処理(陽極酸
化)が行われる。上記した粗面化処理はアルミニウム箔
の表面積の拡大を目的としたものであり、一般に塩酸を
主体とした電解液の中で電気化学的に処理して多数のキ
ャピラリー状ピットを形成させる。この1つずつのピッ
トは箔面に垂直に伸びて箔の表面積の増大をもたらし、
未処理のものに比べて高い静電容量をもたらす。この粗
面化における表面積拡大率が大きい程、コンデンサの電
極に用いる際に使用する箔の量は少なくて済み、小型化
及び省資源に寄与することができる。このため粗面化処
理における拡大率を高めるため、コンデンサメーカでは
粗面化処理条件の研究がなされており、一方、原箔の供
給者である箔圧延メーカでは粗面化処理で高い粗面化率
(拡大率)が得られる箔について種々の研究がなされて
いる。
2. Description of the Related Art In general, the production of an aluminum foil for an electrolytic capacitor electrode requires a purity of 99.9% or more (for example, a purity of 99.9%).
Pure aluminum of 9.96% or more)
After cold rolling to a thickness of about 100 μm and final annealing, a surface roughening treatment and a predetermined chemical treatment (anodic oxidation) are performed. The surface roughening treatment described above is intended to increase the surface area of the aluminum foil, and is generally performed electrochemically in an electrolytic solution mainly containing hydrochloric acid to form a large number of capillary pits. The individual pits extend perpendicular to the foil surface, resulting in an increase in foil surface area,
Produces higher capacitance than untreated ones. The larger the surface area expansion rate in the roughening, the smaller the amount of foil used when used for the electrode of the capacitor, which can contribute to miniaturization and resource saving. For this reason, capacitor manufacturers are studying the conditions of surface roughening treatment in order to increase the enlargement rate in the surface roughening process. Various studies have been made on foils that provide a ratio (magnification ratio).

【0003】[0003]

【発明が解決しようとする課題】しかし、粗面化率の改
善余地は未だに大きく、引き続き粗面化率改善のための
研究が続行されている。この粗面化率を高くするための
1つの要因は、材料側からは立方体方位の占める割合、
即ち立方体方位率である。この立方体方位率を高めるた
めにはアルミニウム箔の焼鈍温度を高くすればよい。し
かしながら、アルミニウム箔を高温に加熱して最終焼鈍
を行うと、アルミニウム箔の製造過程(圧延)でアルミ
ニウム箔に付着した潤滑油が一気に酸化してアルミニウ
ム箔に焼き付くという問題がある。そこで、本願発明者
が既に提案(特開平8−222488号)しているよう
に最終焼鈍を還元性雰囲気で行うことにより上記酸化を
防止して焼き付きを回避する方法が考えられる。しか
し、この方法では、アルミニウム箔に付着した潤滑油が
酸化することなく最終焼鈍後もアルミニウム箔の表面に
留まり、これが粗面化処理に際しピット形成の妨げにな
るので、酸化皮膜の結晶形制御による粗面化率改善効果
が相殺されてしまうという問題がある。一方現状の不活
性ガス主体の焼鈍雰囲気による焼鈍では、材料に含まれ
ていた水分等から来る酸化のため、コイルの焼付が比較
的低温で起こるため、コイル状に巻かれたアルミ箔の焼
鈍温度は520℃位しか上げられず、従って、例えば非
常に高い立方体方位率の(98%以上)箔は得られ難か
った。本法はこの点を改良し、かなり高温迄加熱できる
新しい焼鈍雰囲気を提案する。
However, there is still much room for improvement in the surface roughening rate, and research for improving the surface roughening rate is being continued. One factor for increasing the surface roughening rate is the ratio of the cubic orientation from the material side,
That is, the cubic orientation ratio. In order to increase the cubic orientation, the annealing temperature of the aluminum foil may be increased. However, when the final annealing is performed by heating the aluminum foil to a high temperature, there is a problem that the lubricating oil adhering to the aluminum foil during the manufacturing process (rolling) of the aluminum foil is oxidized at a stretch and burns to the aluminum foil. Then, as proposed by the present inventor (JP-A-8-222488), a method of preventing the above-described oxidation by performing the final annealing in a reducing atmosphere to avoid image sticking can be considered. However, in this method, the lubricating oil attached to the aluminum foil remains on the surface of the aluminum foil even after the final annealing without being oxidized, and this hinders the formation of pits during the surface roughening treatment. There is a problem that the effect of improving the surface roughening rate is offset. On the other hand, in the current annealing in an inert gas-based annealing atmosphere, the coil is baked at a relatively low temperature due to oxidation caused by moisture and the like contained in the material, so that the annealing temperature of the aluminum foil wound in a coil shape is reduced. Was raised only about 520 ° C., and therefore, for example, it was difficult to obtain a foil having a very high cubic orientation ratio (98% or more). This method improves this point and proposes a new annealing atmosphere that can be heated to a considerably high temperature.

【0004】本発明は上記事情を背景としてなされたも
のであり、最終焼鈍時の酸化皮膜の厚みを適切に制御す
るとともに、アルミニウム箔表面に付着した油分を最終
焼鈍後も残存させることなく確実に除去して、かつ最終
焼鈍温度を高温にすることにより高い粗面化率を得るた
めの高立方体方位率の箔を提供することを目的とする。
The present invention has been made in view of the above circumstances, and appropriately controls the thickness of an oxide film at the time of final annealing and ensures that oil adhering to the aluminum foil surface does not remain after the final annealing. It is an object of the present invention to provide a foil having a high cubic azimuthal rate for obtaining a high surface roughening rate by removing and increasing the final annealing temperature.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の電解コンデンサ電極用アルミニウム箔の製
造方法のうち第1の発明は、粗面化処理に先立ってアル
ミニウム箔に最終焼鈍を施す電解コンデンサ電極用アル
ミニウム箔の製造方法において、該最終焼鈍は、1〜1
00ppmの酸素と0〜10体積%の不活性ガスとを含
み、残部が実質的に還元性ガスからなる還元性雰囲気中
で530〜620℃に加熱保持して行うことを特徴とす
る。
Means for Solving the Problems To solve the above problems, the first invention of the method for manufacturing an aluminum foil for an electrolytic capacitor electrode according to the present invention is to perform a final annealing on the aluminum foil prior to the surface roughening treatment. In the method for producing an aluminum foil for an electrolytic capacitor electrode, the final annealing is performed in a range of 1 to 1;
The method is characterized in that it is carried out by heating and holding at 530 to 620 ° C. in a reducing atmosphere containing 00 ppm of oxygen and 0 to 10% by volume of an inert gas and the balance substantially consisting of a reducing gas.

【0006】第2の発明の電解コンデンサ電極用アルミ
ニウム箔の製造方法は、第1の発明において保持加熱中
に還元性雰囲気中の不活性ガス量を0〜10体積%の範
囲内で増加させることを特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing an aluminum foil for an electrolytic capacitor electrode according to the first aspect, wherein the amount of the inert gas in the reducing atmosphere is increased within the range of 0 to 10% by volume during the holding and heating. It is characterized by.

【0007】[0007]

【発明の実施形態】本発明で用いられるアルミニウム箔
には純度99.9%以上、さらに99.96%以上のも
のが望ましく、その製造に際し、鋳造、圧延については
通常のアルミニウム箔と同様の工程を採用することがで
き、最終厚みに至るまでの製造方法は特に限定されるも
のではない。なお、本発明としては最終厚みについて特
に限定されるものでないことは勿論であるが、通常は
0.1mm程度の厚さを最終厚みとしている。
BEST MODE FOR CARRYING OUT THE INVENTION The aluminum foil used in the present invention preferably has a purity of 99.9% or more, more preferably 99.96% or more. And the manufacturing method up to the final thickness is not particularly limited. The final thickness of the present invention is, of course, not particularly limited. However, the final thickness is usually about 0.1 mm.

【0008】上記工程により得られたアルミニウム箔に
は、酸素を微量含有する還元性雰囲気において最終焼鈍
を行う。すなわち、前記したように体積比率で1〜10
0ppmの酸素と0〜10%の不活性ガスを含み、残部
が実質的に還元性ガスからなる還元性雰囲気中で前記ア
ルミニウム箔を加熱する。なお、本発明で使用される還
元性ガスとしては代表的には水素を挙げることができる
が、その他にCO、炭化水素等のガスを用いることがで
きる。但し、還元力、熱伝導度の観点から水素が好適で
ある。なお、雰囲気には微量の水分や不純物の存在は許
容されるが、これらはできるだけ少ないものが望まし
い。
[0008] The aluminum foil obtained by the above process is subjected to final annealing in a reducing atmosphere containing a small amount of oxygen. That is, as described above, the volume ratio is 1 to 10
The aluminum foil is heated in a reducing atmosphere containing 0 ppm of oxygen and 0 to 10% of an inert gas and the balance substantially consisting of a reducing gas. In addition, as a reducing gas used in the present invention, hydrogen can be typically cited, but other gases such as CO and hydrocarbons can also be used. However, hydrogen is preferred from the viewpoint of reducing power and thermal conductivity. Note that a slight amount of moisture or impurities is allowed in the atmosphere, but it is desirable that these are as small as possible.

【0009】本発明では、高温領域迄アルミ同志のくっ
つきを抑制する要因として、酸化の抑制による油分の表
面への残留方法を考えた。例えば上記のように還元性雰
囲気中に微量の酸素を含むことにより、還元ガスによる
還元作用でアルミニウム箔表面に適切な厚さの酸化皮膜
が形成されるとともに、酸素による酸化作用によってア
ルミニウム箔表面に付着している油分が徐々に酸化され
る。しかし酸素量は低温領域で油を完全に分解、酸化す
る程の量はないため、若干の残留を見る。更に高温(5
30℃以上、望ましくは<550℃)では、微量な酸素
でも油の分解は徐々に起り、最終(最高620℃)温度
でようやく完全に油が酸化され分解除去される。従って
本方法によると高温迄油の残留があるため、コイルのく
っつきは抑制されるため、高温焼鈍が可能になったと言
える。このように高温焼鈍が達成できるため、高立方体
方位率が得られる結果が得られた。
In the present invention, as a factor for suppressing the adhesion of aluminum to each other up to a high temperature region, a method of suppressing the oxidation to suppress the oil content on the surface is considered. For example, by including a trace amount of oxygen in the reducing atmosphere as described above, an oxide film having an appropriate thickness is formed on the aluminum foil surface by the reducing action of the reducing gas, and the aluminum foil surface is oxidized by the oxygen. The attached oil is gradually oxidized. However, since the amount of oxygen is not enough to completely decompose and oxidize the oil in the low temperature range, a slight residual is observed. Higher temperature (5
Above 30.degree. C., preferably <550.degree. C.), decomposition of the oil takes place slowly even with trace amounts of oxygen, and finally at the final (up to 620.degree. C.) temperature the oil is completely oxidized and decomposed. Therefore, according to the present method, since oil remains up to a high temperature, sticking of the coil is suppressed, so that high-temperature annealing can be said to be possible. Since high-temperature annealing can be achieved in this manner, a result of obtaining a high cubic orientation ratio was obtained.

【0010】上記の現象は、雰囲気中に含まれる酸素濃
度を適切な範囲に設定することにより得られる。すなわ
ち、焼鈍温度(最高の)が高いと、高温迄油の残留が必
要なことから添加される酸素量は少ない方が良好であ
り、その量を制限することにより、保持加熱当初から油
分が一気に酸化されるのを抑止する。このため、酸素濃
度は体積比率において100ppm以下とする。なお、
同様の理由で50ppm以下とするのが望ましい。ま
た、最終的に保持加熱において油分が酸化除去されるた
めには酸素濃度を1ppm以上とすることが必要であ
り、同様の理由で10ppm以上とするのが望ましい。
The above phenomenon can be obtained by setting the concentration of oxygen contained in the atmosphere to an appropriate range. In other words, when the annealing temperature (highest) is high, the amount of oxygen added is preferably small because the oil needs to remain at high temperatures, and by limiting the amount, the oil content can be reduced at once from the beginning of holding and heating. Suppresses oxidation. Therefore, the oxygen concentration is set to 100 ppm or less in volume ratio. In addition,
For the same reason, the content is desirably 50 ppm or less. Further, in order to finally oxidize and remove the oil in the holding and heating, the oxygen concentration needs to be 1 ppm or more, and it is desirable to be 10 ppm or more for the same reason.

【0011】また、上記還元性雰囲気には上記したよう
に所望により10体積%以下の不活性ガスを含ませるこ
とができる。この不活性ガスは、アルミニウム箔の表面
に付着していたもので、最終焼鈍において気化されコイ
ル間に残留している油を取り去るのに有効に作用する。
ただし、過度に不活性ガスを含むと還元力が損なわれて
アルミニウム箔表面に適切な酸化皮膜(適度な厚みの)
の形成が困難になるので、不活性ガスの濃度上限を10
体積%とする。上記不活性ガスは、保持加熱中、一定の
濃度としてもよいが、上述するように、油分の酸化が進
行する保持加熱途中の時期から10体積%を限度として
濃度を増加させてもよく、当初は不活性ガスを含ませな
いで、中途から不活性ガスを導入するようにしてもよ
い。これにより、保持加熱当初は高い還元性を得るとと
もに油分が過度に除去されるのを避けて、コイルのくっ
つきを高温迄抑制することができる。更に高温領域で加
熱しても最終的に厚さも含めて適切な酸化皮膜を形成す
ることが可能になる。なお、不活性ガスの上限は、上記
理由と同様の理由で体積%以下とするのが望ましい。
上記不活性ガスとしては、Ar、He等が例示される。
一般にNも不活性ガスとして位置付けられているが本
発明では、焼鈍時の高温領域ではアルミニウム箔との反
応が起こるおそれがあるため、上記したように不活性度
が高い周期表第0属に属するガスを使用するのが望まし
い。
The reducing atmosphere may contain an inert gas of 10% by volume or less, if desired, as described above. This inert gas adheres to the surface of the aluminum foil and effectively acts to remove oil remaining between the coils after being vaporized in the final annealing.
However, if an excessive amount of inert gas is contained, the reducing power will be impaired and an appropriate oxide film (of an appropriate thickness) will be formed on the aluminum foil surface.
Is difficult to form, so the upper limit of the concentration of the inert gas is 10
% By volume. The inert gas may have a constant concentration during the holding heating, but as described above, the concentration may be increased up to 10% by volume from the middle of the holding heating when the oxidation of the oil proceeds. Alternatively, the inert gas may be introduced midway without including the inert gas. As a result, it is possible to obtain high reducibility at the beginning of the holding heating, to avoid excessive removal of oil, and to suppress sticking of the coil to a high temperature. Furthermore, even if the film is heated in a high temperature region, it becomes possible to finally form an appropriate oxide film including the thickness. The upper limit of the inert gas is desirably 5 % by volume or less for the same reason as described above.
Examples of the inert gas include Ar and He.
Generally, N 2 is also positioned as an inert gas. However, in the present invention, a reaction with the aluminum foil may occur in a high temperature region during annealing. It is desirable to use the gas to which it belongs.

【0012】なお最終焼鈍の保持過程では、保持加熱温
度を530〜620℃とする。これは、還元性ガス雰囲
気下で、より高い立方体方位率の組織を得るためには5
30℃以上の温度が必要なためであり、該温度以上で加
熱することによりアルミニウム箔の結晶構造を高い比率
(例えば95%以上)で立方晶構造にすることができ
る。立方体方位率は、保持温度が高くなるに連れて大き
くなるが、温度が高くなりすぎると、本方法をもっても
アルミニウム箔同士の一部焼付きを生じさせるため、保
持温度を620℃以下とする。なお、さらに下限は同様
の理由で550℃越が好ましく、上限は前記の理由で6
00℃が望ましい。また、保持時間については2〜10
時間とするのが望ましい。これは、2時間未満であると
立方晶の形成および油分の除去が不十分であり、一方、
10時間を越えると前述の箔同志が焼付きを生じさせる
場合があるためである。
In the holding process of the final annealing, the holding heating temperature is 530 to 620 ° C. This is necessary to obtain a structure with a higher cubic orientation ratio in a reducing gas atmosphere.
This is because a temperature of 30 ° C. or higher is required. By heating at the temperature or higher, the crystal structure of the aluminum foil can be changed to a cubic structure at a high ratio (for example, 95% or higher). The cubic azimuth ratio increases as the holding temperature increases, but if the temperature is too high, partial seizure of the aluminum foils may occur even with this method, so the holding temperature is set to 620 ° C. or lower. Further, the lower limit is preferably higher than 550 ° C. for the same reason, and the upper limit is 6 ° C. for the above-mentioned reason.
00 ° C is desirable. The holding time is 2 to 10
Time is desirable. This is because if it is less than 2 hours, the formation of cubic crystals and the removal of oil are insufficient.
If the time exceeds 10 hours, the above-mentioned foils may cause seizure.

【0013】保持過程の後の冷却過程でも高温域(例え
ば500℃以上)では上記した雰囲気を維持するのが望
ましい。また、焼鈍が終了するまではアルミニウム箔を
酸化性雰囲気におかないのが望ましい。したがって上記
高温域よりも低い温度では、雰囲気を還元性雰囲気から
不活性ガス雰囲気に移行させることが可能である。な
お、上記高温域よりも低い温度域では反応性が低くなる
ので不活性ガスとして例えば窒素ガスの使用も可能にな
る。また、冷却過程では、この焼鈍が比較的高い温度で
保持加熱されることから急冷すると熱応力によってアル
ミニウム箔にしわが発生しやすくなり、酸化被膜にも微
小なひび割れ等が発生して後の粗面化処理での均質性が
損なわれやすくなる。したがって、冷却過程では冷却速
度が速くなりすぎないように炉冷等により制御するのが
望ましく、具体的には平均で100℃/時間以下の冷却
速度で冷却するのが望ましい。
It is desirable to maintain the above-mentioned atmosphere in a high temperature region (for example, 500 ° C. or higher) even in a cooling process after the holding process. Further, it is desirable that the aluminum foil is not kept in an oxidizing atmosphere until the annealing is completed. Therefore, at a temperature lower than the high temperature range, it is possible to shift the atmosphere from a reducing atmosphere to an inert gas atmosphere. In addition, since reactivity becomes low in a temperature range lower than the high temperature range, for example, nitrogen gas can be used as an inert gas. In the cooling process, since this annealing is held and heated at a relatively high temperature, if it is rapidly cooled, wrinkles are likely to be generated in the aluminum foil due to thermal stress, and minute cracks and the like also occur in the oxide film, and the rough surface afterwards The homogeneity in the chemical treatment is easily lost. Therefore, in the cooling process, it is desirable to control by furnace cooling or the like so that the cooling rate does not become too fast. Specifically, it is desirable to cool at a cooling rate of 100 ° C./hour or less on average.

【0014】上記最終焼鈍により得られるアルミニウム
箔は、酸化皮膜の厚さが、適切(例えば厚さ35〜45
Å)なものが得られるとともに立方体方位率が高い組織
が得られ、しかも、その表面からは焼付きが生じること
なく油分が確実に除去されている。このアルミニウム箔
には、常法により粗面化処理を施すことができ、粗面化
処理に際して高密度で均一なキャピラリー状ピットが形
成され、高い粗面化率が得られる。高密度で均一なピッ
トが形成されることにより、このアルミニウム箔を用い
た電解コンデンサは大きな静電容量を有することができ
る。
The aluminum foil obtained by the final annealing has an appropriate thickness of the oxide film (for example, a thickness of 35 to 45).
Å) and a structure having a high cubic azimuth ratio is obtained, and the oil is reliably removed from the surface without seizure. This aluminum foil can be subjected to a surface roughening treatment by a conventional method. At the time of the surface roughening treatment, high-density and uniform capillary-like pits are formed, and a high surface roughening rate can be obtained. By forming high-density and uniform pits, an electrolytic capacitor using this aluminum foil can have a large capacitance.

【0015】[0015]

【実施例】以下に、本発明の実施例を説明する。常法に
より溶製された純度99.99%の純アルミニウムを最
終的に冷間圧延し、0.1mm厚のロール上がりの硬質
アルミニウム箔を得た。このアルミニウム箔を表1に示
す条件で加熱炉にて最終焼鈍した。その際に、発明材
(No.1〜9)では酸素を微量添加した還元性雰囲気
で焼鈍を行い、比較材(No.10〜15)では、該雰
囲気において発明法の条件を外した焼鈍、または不活性
ガス(Ar)雰囲気、真空雰囲気(10−3Torr)
で焼鈍を行った。なお発明材No.9では、当初は雰囲
気中に不活性ガスを含まず、保持過程中途(ほぼ中間
時)から不活性ガスを導入した。
Embodiments of the present invention will be described below. Pure aluminum having a purity of 99.99% produced by a conventional method was finally cold-rolled to obtain a rolled hard aluminum foil having a thickness of 0.1 mm. This aluminum foil was finally annealed in a heating furnace under the conditions shown in Table 1. At that time, the invention materials (Nos. 1 to 9) were annealed in a reducing atmosphere to which a small amount of oxygen was added, and the comparative materials (Nos. 10 to 15) were annealed in the atmosphere under the conditions of the invention method. Alternatively, an inert gas (Ar) atmosphere, a vacuum atmosphere (10 −3 Torr)
Annealed. Inventive material No. In No. 9, the inert gas was not initially contained in the atmosphere, and the inert gas was introduced from the middle of the holding process (at an almost intermediate time).

【0016】[0016]

【表1】 [Table 1]

【0017】上記により得られたアルミニウム箔には、
引き続き、以下の条件で粗面化処理および化成処理を行
った後、静電容量を測定した。 1.粗面化処理条件 (1)第1段エッチング条件(電解エッチング) 電解液 HCl 1モル/l HSO 3モル/l AlCl・6HO 60g/l 電解条件 温 度 75℃ 電流密度 0.8A/cm 電解時間 40秒 (2)第2段エッチング条件(化学エッチング) エッチング液(75℃) HO:HNO(1:1) エッチング時間:300秒
The aluminum foil obtained as described above includes:
Subsequently, after performing a surface roughening treatment and a chemical conversion treatment under the following conditions, the capacitance was measured. 1. Roughening treatment condition (1) the first step etching conditions (electrolytic etching) electrolyte solution HCl 1 mol / l H 2 SO 4 3 mol / l AlCl 3 · 6H 2 O 60g / l electrolysis conditions Temperature 75 ° C. Current density 0 0.8 A / cm 2 electrolysis time 40 seconds (2) Second stage etching condition (chemical etching) Etching solution (75 ° C.) H 2 O: HNO 3 (1: 1) Etching time: 300 seconds

【0018】2.化成条件(270V) 化成液 硼 酸 100g/l 硼酸アンモン 1g/l 条 件 温 度85℃ 電流密度0.1A/cm 到達電圧270V2. Chemical formation conditions (270V) Chemical formation liquid Boric acid 100g / l Ammonium borate 1g / l Condition Temperature 85 ° C Current density 0.1A / cm 2 Ultimate voltage 270V

【0019】さらに供試材について、その立方体方位は
硝酸−塩酸の混酸を用いたエッチングにより立方体方位
を現出させ面分析を行い率を算出した。また、島津製作
所の光電子分光装置(ESCA)を用い、次式により酸
化皮膜厚を測定した。 酸化皮膜厚み(Å)=23.7ln(1÷IM/IT) IM:金属Alのピークの積分強度 IT:金属及び酸化Alのピークの積分強度 上記した、各測定結果は表1に示した。さらに、図1
に、焼鈍での加熱温度とアルミニウム箔の立方体方位率
との関係を示し、図2には、立方体方位率と静電容量と
の関係を示した。なお、比較材No.10、11、13
〜15は、立方体方位率以外に、アルミニウム箔同士の
くっつきや油分の残存が静電容量に影響しているため図
2から除外した。
The cubic orientation of the test material was determined by etching using a mixed acid of nitric acid and hydrochloric acid to reveal the cubic orientation, and a surface analysis was performed to calculate the rate. Further, the thickness of the oxide film was measured by the following equation using a photoelectron spectrometer (ESCA) manufactured by Shimadzu Corporation. Oxide film thickness (Å) = 23.7 ln (1 ÷ IM / IT) IM: Integrated intensity of metal Al peak IT: Integrated intensity of metal and Al oxide peaks The above measurement results are shown in Table 1. Further, FIG.
2 shows the relationship between the heating temperature in annealing and the cubic orientation of the aluminum foil, and FIG. 2 shows the relationship between the cubic orientation and the capacitance. In addition, comparative material No. 10, 11, 13
2 to 15 were excluded from FIG. 2 because sticking between aluminum foils and remaining oil content, other than the cubic azimuth, affected the capacitance.

【0020】表1に明らかなように、最終焼鈍を適切な
雰囲気および加熱温度で行うことにより、アルミニウム
箔の静電容量が明らかに増大することがわかる。特に、
図2に示すようにアルミニウム素材の結晶立方体方位の
面積比率を高くすることにより静電容量がより向上す
る。この立方晶構造の比率は、図1に示すように最終焼
鈍の保持温度に依存している(温度が高いほど比率が大
きくなる)ことが分かる。これに対し、比較材では、最
終焼鈍の雰囲気または加熱温度が適切に調整されていな
いことにより、高い静電容量が得られなかった。すなわ
ち、比較材No.10、11、13、14では、最終焼
鈍温度を高くすることにより立方晶構造の比率は高いも
のとなったが、No.10、11、13では雰囲気での
酸素分が過量のため、またNo.14では加熱温度が高
すぎるため、アルミニウム箔同志のくっつきが生じて高
い静電容量が得られなかった。また、比較材No.12
は、アルミニウム箔のくっつきや油分の残存はなかった
が、最終焼鈍温度が低いため立方体方位率が低く、その
結果、静電容量は低いものとなった。さらに、比較材N
o.15は、アルミニウム箔のくっつきがなく、また適
切な最終温度によって立方体方位率も高くなったが、最
終焼鈍での酸素分が少なすぎるため最終焼鈍後も油分が
残り、その結果、十分な静電容量が得られなかった。ま
た、従来例に相当する比較材No.16は、加熱温度が
低いため立方体方位率が低く、したがって十分な静電容
量が得られなかった。
As is clear from Table 1, it can be seen that by performing the final annealing in an appropriate atmosphere and heating temperature, the capacitance of the aluminum foil is clearly increased. In particular,
As shown in FIG. 2, the capacitance is further improved by increasing the area ratio of the crystal cubic orientation of the aluminum material. As shown in FIG. 1, the ratio of the cubic structure depends on the holding temperature of the final annealing (the higher the temperature, the larger the ratio). On the other hand, in the comparative material, a high capacitance was not obtained because the atmosphere or the heating temperature of the final annealing was not properly adjusted. That is, the comparative material No. In Nos. 10, 11, 13, and 14, the ratio of the cubic structure was increased by increasing the final annealing temperature. In Nos. 10, 11, and 13, the oxygen content in the atmosphere was excessive, and In No. 14, since the heating temperature was too high, the aluminum foils were stuck together and a high capacitance could not be obtained. In addition, the comparative material No. 12
Although there was no sticking of the aluminum foil and no oil remaining, the cubic orientation rate was low due to the low final annealing temperature, and as a result, the capacitance was low. Further, the comparative material N
o. In No. 15, although the aluminum foil did not stick and the cubic orientation rate was increased by an appropriate final temperature, the oil content remained after the final annealing because the oxygen content in the final annealing was too small. No capacity was obtained. Comparative material No. corresponding to the conventional example. In No. 16, the cubic azimuth ratio was low because the heating temperature was low, and thus a sufficient capacitance could not be obtained.

【0021】[0021]

【発明の効果】以上説明したように本発明の電解コンデ
ンサ電極用アルミニウム箔の製造方法によれば、粗面化
処理に先立ってアルミニウム箔に最終焼鈍を施す電解コ
ンデンサ電極用アルミニウム箔の製造方法において、該
最終焼鈍は、1〜100ppmの酸素と0〜10体積%
の不活性ガスとを含み、残部が実質的に還元性ガスから
なる還元性雰囲気中で530〜620℃に加熱保持して
行うので、油分の焼き付きを伴うことなく素材の立方体
方位率を高いものとし、しかも油分は最終焼鈍で確実に
除去されて粗面化処理に際し高い粗面化率を得ることが
でき、その結果、単位面積あたりの静電容量が高い電解
コンデンサが得られる。また、保持加熱中に還元性雰囲
気中の不活性ガス量を0〜10体積%の範囲内で増加さ
せれば、アルミニウム箔表面での油の残留は少なくする
ことができ、高い粗面化率が得られることになる。
As described above, according to the method for producing an aluminum foil for an electrolytic capacitor electrode of the present invention, the aluminum foil for an electrolytic capacitor electrode is subjected to final annealing prior to the surface roughening treatment. , The final annealing is 1-100 ppm oxygen and 0-10 volume%
High inertia gas, and a high cubic azimuthal rate of the material without seizure of oil because the heating is performed at 530 to 620 ° C. in a reducing atmosphere substantially consisting of a reducing gas. In addition, the oil content is surely removed by the final annealing, so that a high surface roughening rate can be obtained during the surface roughening treatment. As a result, an electrolytic capacitor having a high capacitance per unit area can be obtained. Also, if the amount of the inert gas in the reducing atmosphere is increased within the range of 0 to 10% by volume during the holding and heating, the residual oil on the surface of the aluminum foil can be reduced, and a high surface roughening rate can be obtained. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例における最終焼鈍保持加熱温度と素材
の立方体方位率との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a final annealing holding heating temperature and a cubic orientation ratio of a material in an example.

【図2】 同じく、素材の立方体方位率と静電容量との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the cubic orientation ratio of a material and the capacitance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 686 C22F 1/00 691Z 691 691B H01G 9/04 346 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 686 C22F 1/00 691Z 691 691B H01G 9/04 346

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粗面化処理に先立ってアルミニウム箔に
最終焼鈍を施す電解コンデンサ電極用アルミニウム箔の
製造方法において、該最終焼鈍は、1〜100ppmの
酸素と0〜10体積%の不活性ガスとを含み、残部が実
質的に還元性ガスからなる還元性雰囲気中で530〜6
20℃に加熱保持して行うことを特徴とする電解コンデ
ンサ電極用アルミニウム箔の製造方法
1. A method for producing an aluminum foil for an electrolytic capacitor electrode, wherein a final annealing is performed on the aluminum foil prior to the surface roughening treatment, wherein the final annealing includes 1 to 100 ppm of oxygen and 0 to 10% by volume of an inert gas. 530-6 in a reducing atmosphere consisting essentially of a reducing gas.
A method for producing an aluminum foil for an electrode of an electrolytic capacitor, wherein the method is carried out by heating and holding at 20 ° C.
【請求項2】 保持加熱中に還元性雰囲気中の不活性ガ
ス量を0〜10体積%の範囲内で増加させることを特徴
とする請求項1記載の電解コンデンサ電極用アルミニウ
ム箔の製造方法
2. The method for producing an aluminum foil for an electrolytic capacitor electrode according to claim 1, wherein the amount of the inert gas in the reducing atmosphere is increased within the range of 0 to 10% by volume during the holding and heating.
JP00638699A 1999-01-13 1999-01-13 Method for producing aluminum foil for electrolytic capacitor electrode Expired - Fee Related JP3676601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00638699A JP3676601B2 (en) 1999-01-13 1999-01-13 Method for producing aluminum foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00638699A JP3676601B2 (en) 1999-01-13 1999-01-13 Method for producing aluminum foil for electrolytic capacitor electrode

Publications (2)

Publication Number Publication Date
JP2000204455A true JP2000204455A (en) 2000-07-25
JP3676601B2 JP3676601B2 (en) 2005-07-27

Family

ID=11636951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00638699A Expired - Fee Related JP3676601B2 (en) 1999-01-13 1999-01-13 Method for producing aluminum foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP3676601B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089837A (en) * 2001-09-17 2003-03-28 Toyo Aluminium Kk Aluminum alloy soft foil for cathode of electrolytic capacitor, and production method therefor
CN100445027C (en) * 2006-04-29 2008-12-24 东北轻合金有限责任公司 Method for manufacturing aluminium foil of high-voltage anode for electrolytic capacitor
KR101048458B1 (en) * 2003-03-07 2011-07-11 도요 알루미늄 가부시키가이샤 Manufacturing method of aluminum foil for electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089837A (en) * 2001-09-17 2003-03-28 Toyo Aluminium Kk Aluminum alloy soft foil for cathode of electrolytic capacitor, and production method therefor
JP4703066B2 (en) * 2001-09-17 2011-06-15 東洋アルミニウム株式会社 Manufacturing method of aluminum alloy soft foil for electrolytic capacitor cathode
KR101048458B1 (en) * 2003-03-07 2011-07-11 도요 알루미늄 가부시키가이샤 Manufacturing method of aluminum foil for electrolytic capacitor
CN100445027C (en) * 2006-04-29 2008-12-24 东北轻合金有限责任公司 Method for manufacturing aluminium foil of high-voltage anode for electrolytic capacitor

Also Published As

Publication number Publication date
JP3676601B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP4721448B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP2000204455A (en) Production of aluminum foil for electrolytic capacitor electrode
JP3797645B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JP3450083B2 (en) Aluminum foil for electrode of electrolytic capacitor and method for producing the same
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
US5417839A (en) Method for manufacturing aluminum foils used as electrolytic capacitor electrodes
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP5921951B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JPH05200407A (en) Production of aluminum foil for electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JPH05200406A (en) Production of aluminum foil for electrolytic capacitor
JP2006148085A (en) Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JPH02254140A (en) Production of aluminum foil for electrolytic capacitor
JP3930033B1 (en) Aluminum foil for electrolytic capacitors
JPH0581164B2 (en)
JPH0462819A (en) Aluminum foil for electrolytic capacitor electrode
JPH09129514A (en) Aluminum foil for electrolytic capacitor electrode
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees