JP2000204427A - Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance - Google Patents

Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance

Info

Publication number
JP2000204427A
JP2000204427A JP11003769A JP376999A JP2000204427A JP 2000204427 A JP2000204427 A JP 2000204427A JP 11003769 A JP11003769 A JP 11003769A JP 376999 A JP376999 A JP 376999A JP 2000204427 A JP2000204427 A JP 2000204427A
Authority
JP
Japan
Prior art keywords
brazing
aluminum alloy
content
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11003769A
Other languages
Japanese (ja)
Inventor
Yoshifusa Shoji
美房 正路
Hiroshi Ikeda
洋 池田
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP11003769A priority Critical patent/JP2000204427A/en
Publication of JP2000204427A publication Critical patent/JP2000204427A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/16Electrodes characterised by the combination of the structure and the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Abstract

PROBLEM TO BE SOLVED: To obtain an aluminum alloy clad material for heat exchangers excellent in brazing property and corrosion resistance and capable of being suitably used for a radiator, heater core, or the like, as a tube material of a heat exchanger for automobile. SOLUTION: This material is obtained by cladding a sacrificial anode material having the composition containing one or more metals of 0.5-4.0% Zn, 0.005-0.1% In and 0.01-0.1% Sn and regulated to <=0.3% Si, <=0.5% Fe and <=0.04% Mg and the balance Al with impurities on one surface of aluminum alloy core material containing 0.6-2.0% Mn, 0.3-1.0% Cu and 0.06-1.0% Si and regulated to <=0.4% Fe and <=0.04% Mg and the balance Al with impurities, and cladding a brazing filler metal containing 6-14% Si and 0.06-0.7% Fe and regulated to <=0.04% Mg and <=0.006% Ca and the balance Al with impurities on another surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ろう付け性と耐食
性に優れた熱交換器用アルミニウム合金クラッド材、と
くに自動車用熱交換器、例えばラジエータ、ヒータコア
など、ろう付けにより接合される熱交換器の流体通路構
成材(チューブ材)、ヘッダープレート材として適し、
フッ化物系フラックスを用いるろう付けにおけるろう付
け性および耐食性に優れた熱交換器用アルミニウム合金
クラッド材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy clad material for a heat exchanger having excellent brazing properties and corrosion resistance, and more particularly to a heat exchanger for automobiles, such as a radiator or a heater core, which is joined by brazing. Suitable for fluid passage components (tube material), header plate material,
The present invention relates to an aluminum alloy clad material for a heat exchanger having excellent brazing properties and corrosion resistance in brazing using a fluoride-based flux.

【0002】[0002]

【従来の技術】ラジエータやヒーターコアなど、自動車
用熱交換器のチューブ材やヘッダープレート材には、J
IS3003合金などのAl−Mn系合金を芯材とし、
芯材の一方の面にAl−Si系のろう材をクラッドし、
他方の面のAl−Zn系合金やAl−Zn−Mg系合金
からなる犠牲陽極材をクラッドしたアルミニウム合金の
3層クラッド材が使用されている。
2. Description of the Related Art Tube materials and header plate materials for automotive heat exchangers, such as radiators and heater cores, include J
Al-Mn alloy such as IS3003 alloy as the core material,
One surface of the core material is clad with an Al-Si brazing material,
A three-layer clad material of an aluminum alloy clad with a sacrificial anode material made of an Al-Zn-based alloy or an Al-Zn-Mg-based alloy on the other surface is used.

【0003】Al−Si系のろう材は、チューブとフィ
ンとの接合、チューブとヘッダープレートとのろう付け
のためにクラッドされるものであり、ろう付けは、一般
的には不活性ガス雰囲気中でフッ化物系フラックスを用
いて行うろう付けが適用されるが、真空ろう付けが行わ
れる場合もある。犠牲陽極材はチュ−ブの内面を構成
し、熱交換器の使用中に作動流体と接して犠牲陽極効果
を発揮し、芯材の孔食発生や隙間腐食を防ぐ。チュ−ブ
外面に接合されるフィンは、犠牲陽極効果を発揮して芯
材を防食するもので、Al−Mn系合金にCu,Mg、
Zn、Sn、Inなどを添加したアルミニウム合金が適
用される。
An Al-Si brazing material is clad for joining a tube to a fin and for brazing a tube to a header plate. The brazing is generally performed in an inert gas atmosphere. In the above, brazing using a fluoride-based flux is applied, but vacuum brazing may be performed in some cases. The sacrificial anode material constitutes the inner surface of the tube and contacts the working fluid during use of the heat exchanger to exert a sacrificial anode effect, thereby preventing pitting and crevice corrosion of the core material. The fin bonded to the outer surface of the tube exerts a sacrificial anode effect to prevent corrosion of the core material.
An aluminum alloy to which Zn, Sn, In, or the like is added is applied.

【0004】近年、自動車の軽量化の観点から、自動車
用熱交換器の軽量化およびコスト低減が強く要求され、
チュ−ブ材など熱交換器構成材料をさらに薄肉化するこ
とが必要となっている。このため、チューブ材やヘッダ
ープレート材に各種元素を添加して強度を高めることが
試みられているが、添加成分の含有は耐食性を低下させ
る原因となり、また、材料の薄肉化に伴ってろう付けが
難しくなって、熱交換器の製造性、耐久性に問題が生じ
ることから、ろう付け性および耐食性に優れた熱交換器
用材料の開発が強く要望されている。
In recent years, from the viewpoint of reducing the weight of automobiles, there has been a strong demand for reducing the weight and cost of heat exchangers for automobiles.
It is necessary to further reduce the thickness of a heat exchanger constituent material such as a tube material. For this reason, it has been attempted to increase the strength by adding various elements to the tube material and the header plate material. However, the inclusion of the added components causes the corrosion resistance to decrease, and the brazing is accompanied by the thinning of the material. Therefore, there arises a problem in the productivity and durability of the heat exchanger. Therefore, there is a strong demand for the development of a heat exchanger material having excellent brazing properties and corrosion resistance.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の要求
を満足させる熱交換器用アルミニウム合金材料を得るた
めに、3層クラッド材における芯材、犠牲陽極材および
ろう材の組成、およびそれらの組合わせと、とくにフッ
化物系のフラックスを用いるろう付けにおけるろう付け
性と耐食性との関係について、多角的に実験、検討を重
ねた結果としてなされたものであり、その目的は、熱交
換器、とくに自動車用熱交換器のチューブ材、ヘッダー
プレート材として好適に使用することができるろう付け
性と耐食性に優れた熱交換器用アルミニウム合金クラッ
ド材を提供することにある。
SUMMARY OF THE INVENTION The present invention provides a composition of a core material, a sacrificial anode material and a brazing material in a three-layer clad material, and a composition thereof, in order to obtain an aluminum alloy material for a heat exchanger satisfying the above-mentioned requirements. The relationship between brazing properties and corrosion resistance in brazing using a combination of fluorides and fluxes in particular was made as a result of repeated experiments and studies from various angles. In particular, it is an object of the present invention to provide an aluminum alloy clad material for a heat exchanger having excellent brazing properties and corrosion resistance which can be suitably used as a tube material and a header plate material for a heat exchanger for an automobile.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1によるろう付け性と耐食性に優れ
た熱交換器用アルミニウム合金クラッド材は、芯材の一
方の面に犠牲陽極材をクラッドし、他方の面にAl−S
i系のろう材をクラッドしたアルミニウム合金クラッド
材であって、芯材は、Mn:0.6〜2.0 %、Cu:0.3〜1.
0 %、Si:0.06 〜1.0 %を含有し、Feの含有量を0.
4 %以下、Mgの含有量を0.04%以下に規制し、残部ア
ルミニウムおよび不可避的不純物からなるアルミニウム
合金で構成され、犠牲陽極材は、Zn:0.5〜4.0 %、I
n:0.005〜0.1 %、Sn:0.01 〜0.1 %のうちの1種ま
たは2種以上を含有し、Siの含有量を0.3 %以下、F
eの含有量を0.5 %以下、Mgの含有量を0.04%以下に
規制し、残部アルミニウムおよび不純物からなるアルミ
ニウム合金で構成され、ろう材は、Si:6〜14%、F
e:0.06 〜0.7 %を含有し、Mgの含有量を0.04%以
下、Caの含有量を0.006 %以下に規制し、残部Alお
よび不可避的不純物からなるアルミニウム合金で構成さ
れることを特徴とする。
According to the present invention, there is provided an aluminum alloy clad material for a heat exchanger having excellent brazing properties and corrosion resistance according to the first aspect of the present invention. Material is clad and the other surface is Al-S
An aluminum alloy clad material clad with an i-type brazing material, wherein the core material is Mn: 0.6-2.0%, Cu: 0.3-1.
0%, Si: 0.06 to 1.0%, and the Fe content is 0.1%.
4% or less, the content of Mg is regulated to 0.04% or less, and the balance is made of an aluminum alloy composed of aluminum and unavoidable impurities. The sacrificial anode material is Zn: 0.5 to 4.0%,
n: 0.005 to 0.1%, Sn: one or more of 0.01 to 0.1%, the content of Si is 0.3% or less,
The content of e is controlled to 0.5% or less, the content of Mg is controlled to 0.04% or less, and the balance is made of an aluminum alloy composed of aluminum and impurities.
e: contains 0.06 to 0.7%, regulates the content of Mg to 0.04% or less, the content of Ca to 0.006% or less, and is composed of an aluminum alloy containing the balance of Al and inevitable impurities. .

【0007】本発明の請求項2によるアルミニウム合金
クラッド材は、請求項1において、ろう材が、さらにB
i:0.01 〜0.4 %を含有することを特徴とし、本発明の
請求項3によるアルミニウム合金クラッド材は、請求項
1または2において、芯材が、さらにTi:0.06 〜0.35
%を含有することを特徴とする。
According to a second aspect of the present invention, there is provided the aluminum alloy clad material according to the first aspect, wherein the brazing material further comprises
i: 0.01 to 0.4%, wherein the aluminum alloy clad material according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the core material further comprises Ti: 0.06 to 0.35.
%.

【0008】[0008]

【発明の実施の形態】本発明のアルミニウム合金クラッ
ド材における芯材、犠牲陽極材およびろう材の合金成分
の意義およびその限定理由について説明する。 (1)芯材 芯材中のMnは、強度を向上させるとともに、芯材の電
位を貴にして、犠牲陽極材との電位差を大きくして耐食
性を高めるよう機能する。好ましい含有範囲は0.6 〜2.
0 %であり、0.6 %未満ではその効果が小さく、2.0 %
を越えて含有すると、鋳造時に粗大な化合物が生成し、
圧延加工性が害される結果、健全な板材が得難い。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of alloy components of a core material, a sacrificial anode material and a brazing material in an aluminum alloy clad material of the present invention and reasons for limiting the components will be described. (1) Core Material Mn in the core material functions to improve the strength, increase the potential of the core material, increase the potential difference from the sacrificial anode material, and increase the corrosion resistance. The preferred content range is 0.6 to 2.
0%, the effect is small at less than 0.6%, 2.0%
If contained in excess of the above, a coarse compound is formed during casting,
As a result of impairing the rolling processability, it is difficult to obtain a sound plate.

【0009】Cuは、強度を向上させるとともに、芯材
の電位を貴にし、犠牲陽極材、ろう材との電位差を大き
くして、耐食性を高めるよう機能する。さらに、芯材中
のCuは、ろう付け加熱時に犠牲陽極材中およびろう材
中に拡散して、なだらかな濃度勾配を形成する。その結
果、芯材側の電位は貴となり、犠牲陽極材の表面側およ
びろう材の表面側の電位は卑となって、犠牲陽極材中お
よびろう材中になだらかな電位勾配が形成され、腐食形
態を横拡がりの全面腐食型にする。Cuの好ましい含有
量は0.3 〜1.0 %の範囲であり、0.3 %未満ではその効
果が小さく、1.0 %を越えると、芯材の耐食性が低下
し、また、融点が低下して、ろう付け時に局部的な溶融
が生じ易くなる。Cuのさらに好ましい含有量は0.3 〜
1.0 %の範囲である。
[0009] Cu functions to improve the strength, increase the potential of the core material, increase the potential difference between the sacrificial anode material and the brazing material, and increase the corrosion resistance. Further, Cu in the core material diffuses into the sacrificial anode material and the brazing material at the time of brazing heating, and forms a gentle concentration gradient. As a result, the potential on the core material side becomes noble, the potential on the surface side of the sacrificial anode material and the surface side of the brazing material become low, and a gentle potential gradient is formed in the sacrificial anode material and the brazing material, resulting in corrosion. The form is a horizontal spread general corrosion type. The preferable content of Cu is in the range of 0.3 to 1.0%. If the content is less than 0.3%, the effect is small, and if it exceeds 1.0%, the corrosion resistance of the core material is lowered, and the melting point is lowered, so that the local content during brazing is reduced. Melting is likely to occur. The more preferred content of Cu is 0.3 to
It is in the range of 1.0%.

【0010】Siは、強度を向上させる効果を有する。
Siの好ましい含有範囲は0.06〜1.0 %であり、0.06%
未満ではその効果が十分でなく、1.0 %を越えると、耐
食性を低下させ、また融点が低下して局部溶融が生じ易
くなる。
[0010] Si has the effect of improving the strength.
The preferable content range of Si is 0.06 to 1.0%, and 0.06%
If it is less than 1.0%, the effect is not sufficient, and if it exceeds 1.0%, the corrosion resistance is lowered, and the melting point is lowered, so that local melting tends to occur.

【0011】不純物としてのFeは、アルミニウム母材
に対してカソードとなり、耐食性を低下させるため、0.
4 %以下に規制するのが好ましい。また、Feの含有量
の極めて少ない高純度のアルミニウム地金はコストが高
く実用的でないから、さらに好ましいFeの含有量は0.
01〜0.4 %とする。
[0011] Fe as an impurity serves as a cathode with respect to the aluminum base material and lowers corrosion resistance.
It is preferable to regulate it to 4% or less. Further, since a high-purity aluminum ingot having an extremely low Fe content is expensive and impractical, a more preferable Fe content is 0.
01 to 0.4%.

【0012】Mgは、ろう付け性低下の観点から0.04%
以下に制限するのが好ましい。0.04%を越えて含有する
と、フッ化物系のフラックスを使用する不活性ガス雰囲
気ろう付けの場合、Mgがフラックスと反応してMgF
2 などの化合物を生成するため、フラックスの絶対量は
不足し、ろう付け性が低下する。Mgのさらに好ましい
含有量は0.02%以下の範囲である。
Mg is added in an amount of 0.04% from the viewpoint of reducing the brazing property.
It is preferable to limit to the following. If the content exceeds 0.04%, in the case of an inert gas atmosphere brazing using a fluoride-based flux, Mg reacts with the flux to form MgF.
Since a compound such as 2 is generated, the absolute amount of the flux is insufficient, and the brazing property is reduced. The more preferred content of Mg is in the range of 0.02% or less.

【0013】Tiは、芯材の耐食性をより一層向上させ
る効果を有する。すなわち、Tiは、濃度の高い領域と
低い領域との分かれ、それらが板厚方向に交互に分布し
て層状となり、Ti濃度の低い領域が高い領域に比べて
優先的に腐食することにより腐食形態が層状となる結
果、板厚方向への腐食の進行が妨げられ、耐孔食性が向
上する。Tiの好ましい含有量は0.06〜0.35%の範囲で
あり、0.06%未満では効果が十分でなく、0.35%を越え
ると、鋳造時に粗大な化合物が生成して材料の圧延を阻
害し、健全なクラッド材が得難くなる。
[0013] Ti has the effect of further improving the corrosion resistance of the core material. That is, Ti is divided into a high-concentration region and a low-concentration region, and they are alternately distributed in the plate thickness direction to form a layer. As a result, the progress of corrosion in the sheet thickness direction is hindered, and the pitting resistance is improved. The preferable content of Ti is in the range of 0.06 to 0.35%. If the content is less than 0.06%, the effect is not sufficient. If the content is more than 0.35%, a coarse compound is formed at the time of casting, which hinders the rolling of the material, resulting in a sound cladding. It becomes difficult to obtain wood.

【0014】なお、芯材中には、不純物として、Zn、
Cr、Zrなどの成分が含まれていても良い。但し、Z
nは芯材の電位を卑にし、犠牲陽極材およびろう材との
電位差を小さくして耐食性を低下させるので、0.2 %以
下に規制するのが好ましく、CrおよびZrは、組織の
微細化などの目的で添加することもできるが、加工性を
害するので、それぞれ0.3 %以下に制限するのが好まし
い。
In the core material, Zn,
Components such as Cr and Zr may be included. Where Z
Since n makes the potential of the core material low and reduces the potential difference between the sacrificial anode material and the brazing material and lowers the corrosion resistance, it is preferable to limit the content to 0.2% or less. Although it can be added for the purpose, it is preferable to limit each to 0.3% or less because it impairs processability.

【0015】(2)犠牲陽極材 犠牲陽極材中のZnは、犠牲陽極材の電位を卑にし、芯
材に対する犠牲陽極効果を保持し、クラッド材の腐食を
全面腐食型にして、芯材の孔食や隙間腐食を防止するよ
う機能する。Znの好ましい含有範囲は0.5 〜4.0 %で
あり、Znの含有量が0.5 %未満ではその効果が十分で
なく、4.0 %を越えると、自己耐食性が低下して犠牲陽
極材の腐食消耗が激しくなり、犠牲陽極効果が長期に持
続されない。また、0.4 %を越えて含有してもその効果
が飽和する。
(2) Sacrificial anode material Zn in the sacrificial anode material makes the potential of the sacrificial anode material low, maintains the sacrificial anode effect on the core material, makes the clad material corroded completely by corrosion, and It functions to prevent pitting and crevice corrosion. The preferred range of Zn content is 0.5-4.0%. If the Zn content is less than 0.5%, the effect is not sufficient, and if it exceeds 4.0%, the self-corrosion resistance is reduced and the sacrificial anode material is greatly consumed by corrosion. In addition, the sacrificial anode effect is not maintained for a long time. If the content exceeds 0.4%, the effect is saturated.

【0016】Inは犠牲陽極材の電位を卑にし、芯材に
対し犠牲陽極効果を確実に付与するために役立つ。In
の好ましい含有量は0.005 〜0.1 %の範囲であり、0.00
5 %未満ではその効果が小さく、0.1 %を越えて含有す
ると、効果が飽和するとともに、犠牲陽極材の自己耐食
性が低下し、また圧延加工性が劣化する。
In lowers the potential of the sacrificial anode material and helps the sacrificial anode effect to the core material. In
Is preferably in the range of 0.005 to 0.1%,
If the content is less than 5%, the effect is small. If the content exceeds 0.1%, the effect is saturated, the self-corrosion resistance of the sacrificial anode material is reduced, and the rolling processability is deteriorated.

【0017】Snは犠牲陽極材の電位を卑にし、芯材に
対し犠牲陽極効果を確実に付与するために役立つ。Sn
の好ましい含有量は0.01〜0.1 %の範囲であり、0.01%
未満ではその効果が小さく、0.1 %を越えて含有する
と、効果が飽和するとともに、犠牲陽極材の自己耐食性
が低下し、また圧延加工性が劣化する。
Sn serves to make the potential of the sacrificial anode material low and to surely impart the sacrificial anode effect to the core material. Sn
Is preferably in the range of 0.01 to 0.1%, and 0.01%
If the content is less than 0.1%, the effect is small. If the content exceeds 0.1%, the effect is saturated, the self-corrosion resistance of the sacrificial anode material is reduced, and the rolling processability is deteriorated.

【0018】不純物としてのSiおよびFeは、いずれ
もアルミニウム母材に対してカソードとなり、自己耐食
性を低下させるから、Siの含有量は0.3 %以下、Fe
の含有量は0.5 %以下の規制するのが好ましい。また、
Si、Feの極めて少ない高純度のアルミニウム地金は
コストが高く実用的でないから、Si:0.01 〜0.3 %、
Fe:0.01 〜0.5 %の範囲とするのがさらに好ましい。
Since both Si and Fe as impurities serve as cathodes for the aluminum base material and lower the self-corrosion resistance, the content of Si is 0.3% or less, and
Is preferably regulated to 0.5% or less. Also,
Since high-purity aluminum ingot with extremely small amounts of Si and Fe is expensive and impractical, Si: 0.01 to 0.3%,
Fe: More preferably in the range of 0.01 to 0.5%.

【0019】犠牲陽極材中のMgは、フッ化物系のフラ
ックスを使用してろう付けを行う場合、フラックス成分
のフッ素(F)と反応してMgF2 などの化合物を生成
するため、フラックスの絶対量が不足して、ろう付け性
が低下するので、0.04%以下に規制するのが好ましい。
より好ましくは0.02%以下に規制する。
Mg in the sacrificial anode material reacts with fluorine (F) as a flux component to generate a compound such as MgF 2 when brazing is performed using a fluoride-based flux. Since the amount is insufficient and the brazing property is reduced, it is preferable to regulate the amount to 0.04% or less.
It is more preferably regulated to 0.02% or less.

【0020】なお、犠牲陽極材中には、Mn、Cu、C
r、Zr、Tiなどの元素が、発明の効果を損なわない
範囲で少量含まれていても良いが、MnおよびCuは、
犠牲陽極材の電位を貴にし、芯材との電位差を小さくし
て犠牲陽極効果を低下させるので、それぞれ0.3 %以下
に制限するのが好ましい。また、Cr、ZrおよびTi
は、結晶粒の微細化などの目的で添加する場合もある
が、加工性を害するので、それぞれ0.3 %以下に制限す
るのが好ましい。
In the sacrificial anode material, Mn, Cu, C
Elements such as r, Zr, and Ti may be contained in small amounts as long as the effects of the invention are not impaired.
Since the potential of the sacrificial anode material is made noble and the potential difference from the core material is reduced to reduce the sacrificial anode effect, it is preferable to limit each to 0.3% or less. In addition, Cr, Zr and Ti
May be added for the purpose of refining the crystal grains, etc., but it impairs the processability, so it is preferable to limit each to 0.3% or less.

【0021】(3)ろう材 ろう材中のSiは、ろう材の融点を下げ、ろうの流動性
を高めるよう機能する。Siの好ましい含有量は6 〜14
%の範囲であり、6 %未満ではその効果が十分でなく、
14%を越えると、ろう材の融点が高くなり、ろう材製造
時の加工性が低下する。
(3) Brazing material Si in the brazing material functions to lower the melting point of the brazing material and increase the fluidity of the brazing material. The preferred content of Si is 6-14.
%, And less than 6% is not effective enough.
If it exceeds 14%, the melting point of the brazing material will be high, and workability during the production of the brazing material will be reduced.

【0022】Feは、ろう材の組織を微細化し、ろうの
流動性を高める効果を有する。Feの好ましい含有量は
0.06〜0.7 %の範囲であり、0.06%未満ではその効果が
小さく、0.7 %を越えて含有すると、その効果が飽和す
るとともに、アルミニウム母材に対してカソードとな
り、Al−Fe系の化合物の生成量も多くなって、耐食
性が低下する。
Fe has the effect of refining the structure of the brazing material and increasing the fluidity of the brazing material. The preferred content of Fe is
When the content is less than 0.06%, the effect is small, and when the content exceeds 0.7%, the effect is saturated, and the cathode becomes a cathode with respect to the aluminum base material to form an Al-Fe-based compound. The amount increases and the corrosion resistance decreases.

【0023】ろう材中のMgは、フッ化物系のフラック
スを使用してろう付けを行う場合、ろう付け加熱過程に
おいて、ろう材表面に濃縮し易く、フラックス成分のフ
ッ素(F)と反応してMgF2 などの化合物を生成する
ため、フラックスの絶対量が不足して、ろう付け性が低
下するので、0.04%以下に規制するのが好ましい。より
好ましくは0.02%以下に規制する。
When brazing is performed using a fluoride-based flux, Mg in the brazing material is easily concentrated on the surface of the brazing material during the brazing heating process, and reacts with fluorine (F) as a flux component. Since a compound such as MgF 2 is generated, the absolute amount of the flux is insufficient, and the brazing property is deteriorated. It is more preferably regulated to 0.02% or less.

【0024】Caは、ろう材表面に緻密な酸化物を形成
するため、ろうの濡れ性および拡がり性が低下して、ろ
う付け性を阻害する。ろう付け性の低下は、Caの含有
量が0.006 %を越えると顕著となるから、Caの含有量
は0.006 %以下に規制するのが好ましい。さらに好まし
くは0.004 %以下とする。
Since Ca forms a dense oxide on the surface of the brazing material, the wettability and spreadability of the brazing material are reduced, and the brazing property is impaired. Since the decrease in brazing property becomes significant when the Ca content exceeds 0.006%, the Ca content is preferably regulated to 0.006% or less. More preferably, it is 0.004% or less.

【0025】Biは、ろう材の融点を下げ、ろうの濡れ
性および拡がり性を改善する。Biの好ましい含有量は
0.01〜0.4 %の範囲であり、0.01%未満ではその効果が
小さく、0.4 %を越えると、その効果が飽和するととも
に、ろう材の自己耐食性が低下する。Biのさらに好ま
しい含有範囲は0.1 〜0.4 %である。
Bi lowers the melting point of the brazing material and improves the wettability and spreadability of the brazing material. The preferred content of Bi is
If it is less than 0.01%, the effect is small, and if it exceeds 0.4%, the effect is saturated and the self-corrosion resistance of the brazing material is reduced. The more preferable content range of Bi is 0.1 to 0.4%.

【0026】ろう材には、ろう付け性を改善するため
に、少量、例えば0.1 %以下のBe、Sr、Li、Na
のうちの1種以上を含有させることもできる。ろう材の
電位を卑にして、芯材に対してろう材に犠牲陽極効果を
与え、クラッド材の耐食性を向上させるために、Zn、
InおよびSnなどの1種以上を含有させても良い。但
し、Zn、InおよびSnは、含有量が多くなると、自
己耐食性が低下して、ろう材の腐食消耗が激しくなり、
犠牲陽極効果が長期に持続されなくなるから、Znの含
有量は4 %以下、InおよびSnの含有量はそれぞれ0.
1 %以下に規制するのが好ましい。また、Mn,Cu、
Ti、Cr、Zr、Niなども、ろう材の強度を向上さ
せるために、発明の効果を損なわない範囲で添加しても
良いが、添加量が多くなると自己耐食性が低下するの
で、総量を1 %以下に制限するのが好ましい。
In order to improve the brazing property, a small amount of, for example, 0.1% or less of Be, Sr, Li, Na
One or more of the above may also be contained. In order to make the potential of the brazing material low, to give the brazing material a sacrificial anode effect on the core material, and to improve the corrosion resistance of the clad material, Zn,
One or more of In and Sn may be contained. However, when the contents of Zn, In, and Sn are large, the self-corrosion resistance is reduced, and the corrosion consumption of the brazing material becomes severe,
Since the sacrificial anode effect is not maintained for a long time, the content of Zn is 4% or less, and the content of In and Sn is 0.1% each.
It is preferable to regulate it to 1% or less. Also, Mn, Cu,
Ti, Cr, Zr, Ni, and the like may be added in a range that does not impair the effects of the present invention in order to improve the strength of the brazing filler metal. However, if the added amount increases, the self-corrosion resistance decreases. % Is preferred.

【0027】本発明の熱交換器用アルミニウム合金クラ
ッド材は、芯材、犠牲陽極材およびろう材を構成するア
ルミニウム合金を、例えば半連続鋳造により造塊し、必
要に応じて均質化処理したのち、それぞれ所定厚さまで
熱間圧延し、ついで、各材料を組合わせ、常法に従っ
て、熱間圧延によりクラッド材とし、最終的に所定厚さ
まで冷間圧延し、必要により焼鈍を行う工程を経て製造
される。
The aluminum alloy clad material for a heat exchanger of the present invention is obtained by agglomerating an aluminum alloy constituting a core material, a sacrificial anode material and a brazing material by, for example, semi-continuous casting and, if necessary, homogenizing. Each is hot-rolled to a predetermined thickness, then each material is combined, and in accordance with a conventional method, a clad material is formed by hot-rolling, finally cold-rolled to a predetermined thickness, and if necessary, manufactured through a process of annealing. You.

【0028】本発明のアルミニウム合金クラッド材を、
ラジエータ、ヒータコアなど、自動車用熱交換器のチュ
ーブ材とするには、クラッド板を曲成し、突き合わせ部
を溶接またはろう付けすることによりチューブ形状とす
る。犠牲陽極材層が内皮層を構成して作動流体と接し、
ろう材層が外皮層となる。外皮層にはアルミニウム合金
フィン材をろう付けして熱交換器を組立てる。
The aluminum alloy clad material of the present invention is
In order to form a tube material for a heat exchanger for an automobile, such as a radiator or a heater core, a clad plate is bent and a butt portion is welded or brazed to form a tube. The sacrificial anode material layer constitutes the endothelial layer and contacts the working fluid,
The brazing material layer becomes the outer skin layer. The heat exchanger is assembled by brazing an aluminum alloy fin material to the outer skin layer.

【0029】[0029]

【実施例】実施例1 連続鋳造により、表1に示す組成を有する芯材用アルミ
ニウム合金を造塊し、均質化処理後、厚さ25mmに面
削して芯材用素材とした。また、表2に示す組成を有す
るろう材用合金および表3に示す組成を有する犠牲陽極
材用合金を、芯材用合金と同様にして造塊し、面削後、
熱間圧延を行って、それぞれ厚さ3mmの板材とした。
このろう材および犠牲陽極材を芯材の両面に重ね合わ
せ、熱間圧延して厚さ3mmのクラッド材を得た。その
後、冷間圧延、中間焼鈍、最終冷間圧延を施して、厚さ
0.25mmの3層クラッド材(調質H14)とした。
Example 1 An aluminum alloy for a core material having the composition shown in Table 1 was ingoted by continuous casting, and after homogenization treatment, a 25 mm-thick surface was chamfered to obtain a core material. Further, an alloy for a brazing filler metal having a composition shown in Table 2 and an alloy for a sacrificial anode material having a composition shown in Table 3 were ingoted in the same manner as the alloy for the core material, and after face milling,
Hot rolling was performed to obtain a plate material having a thickness of 3 mm.
The brazing material and the sacrificial anode material were superimposed on both sides of the core material and hot rolled to obtain a clad material having a thickness of 3 mm. Thereafter, cold rolling, intermediate annealing and final cold rolling were performed to obtain a three-layer clad material (temper H14) having a thickness of 0.25 mm.

【0030】得られたアルミニウム合金クラッド材(試
験材)について、以下の方法に従って、ろう付け後の強
度を測定し、ろう付け性および耐食性を評価した。結果
を表4〜5に示す。 (1)ろう付け後の強度 クラッド材に、ろう付け条件と同様、フッ化物系フラッ
クス(濃度1%)を塗布して窒素ガス中で、ろう付け温
度の600℃(材料温度)に5分間加熱した後、冷却し
て引張試験を行い、引張強さを測定した。
With respect to the obtained aluminum alloy clad material (test material), the strength after brazing was measured according to the following method, and the brazing property and the corrosion resistance were evaluated. The results are shown in Tables 4 and 5. (1) Strength after brazing A fluoride flux (concentration: 1%) is applied to the clad material in the same manner as the brazing condition, and heated to 600 ° C. (material temperature) of the brazing temperature in nitrogen gas for 5 minutes. After cooling, a tensile test was performed to measure the tensile strength.

【0031】(2)ろう付け性 クラッド材を、幅20mm、長さ40mmに切断し、図
1に示すように、ろう材4、犠牲陽極材5および芯材6
からなるクラッド材2を3003合金材(厚さ1mm、
幅25mm、長さ40mm)3の上に載せて、逆T字型
継手1に組合わせ、ろう付け条件と同様、フッ化物系フ
ラックスを塗布した後、窒素ガス雰囲気中で600℃の
温度に5分間加熱し、図2に示すように、加熱により逆
T字型継手1の隅角部に溶融形成されたフィレット部
7、8の断面積A1 およびA2 を測定し、ろう付け加熱
前のろう材の断面積A0 との比から流動係数K(K=
(A1+A2 )/A0 )を求める。流動係数Kが大きい
ほど、ろう材の溶融した割合が多く、ろうの流動性が良
好で、ろう付け性に優れていることを示す。通常の自動
車用熱交換器用3層クラッド材のろう付けでは、流動係
数Kが0.20未満の場合、フィレット切れ(フィレッ
ト未成形部発生)などのろう付け不良が生じ易くなるか
ら、流動係数Kが0.20未満または実際にフィレット
切れが生じたものをろう付け性不十分(×)、流動係数
Kが0.20以上をろう付け性良好と評価した。
(2) Brazing properties The clad material was cut into a width of 20 mm and a length of 40 mm, and as shown in FIG.
Clad material 2 made of 3003 alloy material (thickness 1 mm,
(Width 25 mm, length 40 mm) 3, combined with the inverted T-shaped joint 1, and applied a fluoride-based flux in the same manner as the brazing condition, and then heated to a temperature of 600 ° C. in a nitrogen gas atmosphere. 2 minutes, and as shown in FIG. 2, the cross-sectional areas A 1 and A 2 of the fillet portions 7 and 8 melt-formed at the corners of the inverted T-shaped joint 1 by heating were measured, and before the brazing heating, From the ratio to the cross-sectional area A 0 of the brazing material, the flow coefficient K (K =
(A 1 + A 2 ) / A 0 ) is obtained. The larger the flow coefficient K, the higher the ratio of the molten brazing material, the better the flowability of the braze, and the more excellent the brazeability. In the brazing of a three-layer clad material for an ordinary heat exchanger for an automobile, if the flow coefficient K is less than 0.20, poor brazing such as breakage of a fillet (formation of a fillet unformed portion) tends to occur. Is less than 0.20 or the one where the fillet is actually cut was evaluated as insufficient brazing (x), and the flow coefficient K of 0.20 or more was evaluated as good brazing.

【0032】(3)耐食性 クラッド材の外面側(ろう材側)の耐食性は、前記ろう
付け加熱後の逆T字型継手について、内面側(犠牲陽極
材側)をシールした後、JIS H8681に従ってC
ASS試験を2週間実施し、試験後のクラッド材の一般
部(フィレット部以外の部分)の最大腐食深さを測定
し、また、フィレット部については、フィレット面積の
50%以上が腐食により消滅したものを耐食性不十分
(×)と評価し、消滅面積がフィレット面積の50%未
満のものを耐食性良好と評価した。
(3) Corrosion Resistance The corrosion resistance on the outer surface side (the brazing material side) of the clad material is determined according to JIS H8681 after sealing the inner surface side (the sacrificial anode material side) of the inverted T-shaped joint after the brazing and heating. C
The ASS test was performed for 2 weeks, and the maximum corrosion depth of the general portion (the portion other than the fillet portion) of the clad material after the test was measured. In the fillet portion, 50% or more of the fillet area disappeared due to corrosion. Those having poor corrosion resistance (x) were evaluated as having poor corrosion resistance, and those having disappearance areas of less than 50% of the fillet area were evaluated as having good corrosion resistance.

【0033】内面側(犠牲陽極材側)の耐食性は、クラ
ッド材単板にフッ化物系フラックス(濃度1%)を塗布
して窒素ガス中で、ろう付け温度の600℃(材料温
度)に5分間加熱した後、外面側(ろう材側)をシール
し、Cl- :100ppm、SO4 2-:100ppm、
HCO3 - :100ppm、Cu2+:10ppmを含む
水溶液中に浸漬して、80℃の温度に8時間保持し、そ
の後室温まで放冷しながら16時間放置するというサイ
クルを2か月間繰り返した後、最大腐食深さを測定し
た。
The corrosion resistance on the inner surface side (the sacrificial anode material side) is determined by applying a fluoride-based flux (concentration: 1%) to a clad veneer and applying a brazing temperature of 600 ° C. (material temperature) in nitrogen gas. After heating for one minute, the outer surface side (the brazing material side) was sealed, and Cl : 100 ppm, SO 4 2− : 100 ppm,
After repeating a cycle of immersing in an aqueous solution containing HCO 3 : 100 ppm and Cu 2+ : 10 ppm, maintaining the temperature at 80 ° C. for 8 hours, and then allowing it to stand for 16 hours while allowing to cool to room temperature, for 2 months The maximum corrosion depth was measured.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】表4および表5にみられるように、本発明
に従う試験材はいずれも、ろう付け後に138MPa以
上の優れた引張強さを示し、腐食試験における内面側の
最大腐食深さは0.05〜0.13mmであり優れた耐
食性をそなえている。ろう付け性についても、良好な接
合部が形成された。また、本発明のクラッド材は、加工
性良好であり、製造上何ら問題を生じることがなかっ
た。
As can be seen from Tables 4 and 5, the test materials according to the present invention all show excellent tensile strength of 138 MPa or more after brazing, and the maximum corrosion depth on the inner surface side in the corrosion test is 0. It is 0.5 to 0.13 mm and has excellent corrosion resistance. As for brazing properties, good joints were formed. In addition, the clad material of the present invention had good workability and did not cause any problem in production.

【0040】比較例1 連続鋳造により、表6に示す組成を有する芯材用アルミ
ニウム合金、表7に示す組成を有するろう材用アルミニ
ウム合金および表8に示す組成を有する犠牲陽極材用ア
ルミニウム合金を造塊し、実施例1と同一の条件によ
り、厚さ0.25mmのアルミニウム合金クラッド材
(H14)を作製した。得られたクラッド材(試験材)
について、実施例1の方法に従って、ろう付け後の引張
強さを測定し、ろう付け性および耐食性の評価を行っ
た。結果を表9〜10に示す。
Comparative Example 1 By continuous casting, an aluminum alloy for a core material having a composition shown in Table 6, an aluminum alloy for a brazing material having a composition shown in Table 7, and an aluminum alloy for a sacrificial anode material having a composition shown in Table 8 were obtained by continuous casting. Under the same conditions as in Example 1, a 0.25 mm thick aluminum alloy clad material (H14) was produced. Obtained clad material (test material)
, The tensile strength after brazing was measured according to the method of Example 1, and the brazing property and the corrosion resistance were evaluated. The results are shown in Tables 9 to 10.

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【表7】 [Table 7]

【0043】[0043]

【表8】 [Table 8]

【0044】[0044]

【表9】 《表注》流動係数 ※:フィレット切れ[Table 9] << Table note >> Flow coefficient *: Fillet cut

【0045】[0045]

【表10】 [Table 10]

【0046】表9〜10にみられるように、本発明の条
件を外れた試験材は、ろう付け後の強度、ろう付け性、
耐食性のいずれかが劣っている。試験材No.34 およびN
o.41は、芯材のMn量が少ないため、ろう付け後の強度
が低い。試験材No.35 およびNo.42 は、芯材のMn量が
多いため、加工性が劣り健全な板材の製造ができなかっ
た。試験材No.36 およびNo.43 は、それぞれ芯材のCu
量が少ないため、ろう付け後の強度が低く、腐食試験に
おいて、外面側に貫通孔が生じ、内面側の最大腐食深さ
も大きい。試験材No.37 およびNo.44 は、それぞれ芯材
のCu量が多いため、ろう付け時の加熱において、芯材
に局部溶融が生じた。試験材No.38 およびNo.45 は、芯
材のSi量が少ないため、ろう付け後の強度が低い。試
験材No.39 およびNo.46 は、芯材のSi量が多いため、
ろう付け時の加熱において、芯材に局部溶融が生じた。
試験材No.40 およびNo.50 は、芯材のMg量が多いた
め、ろう付け性が劣り、ろう付けにおいて十分なフィレ
ットが形成されず、フィレット切れが生じた。また、試
験材No.40 は、芯材のFe量が多いため、耐食性が劣
り、内面側に貫通孔が生じた。
As can be seen from Tables 9 to 10, the test materials which did not satisfy the conditions of the present invention exhibited strength after brazing, brazing property,
One of the corrosion resistance is inferior. Test material No.34 and N
In o.41, the strength after brazing is low because the Mn content of the core material is small. Test materials No. 35 and No. 42 were inferior in workability and could not produce sound plate materials because of the large amount of Mn in the core material. Test materials No. 36 and No. 43 were each made of Cu
Since the amount is small, the strength after brazing is low, and in the corrosion test, a through hole is formed on the outer surface side, and the maximum corrosion depth on the inner surface side is large. Test materials No. 37 and No. 44 each had a large amount of Cu in the core material, so that local melting occurred in the core material during heating during brazing. Test materials No. 38 and No. 45 have low strength after brazing because the amount of Si in the core material is small. Test materials No. 39 and No. 46 have a large amount of Si in the core material,
Upon heating during brazing, local melting occurred in the core material.
In Test materials No. 40 and No. 50, since the amount of Mg in the core material was large, the brazing properties were inferior, and sufficient fillets were not formed during brazing, and the fillets were cut. Further, in Test Material No. 40, since the amount of Fe in the core material was large, the corrosion resistance was poor, and a through hole was formed on the inner surface side.

【0047】試験材No.47 は、芯材のFe量が多いた
め、耐食性が劣り、外面側で貫通孔が生じた。試験材N
o.48 は、芯材のTi量が少ないため、外面側および内
面側の最大腐食深さが本発明のTi含有芯材からなるク
ラッド材に比べて大きくなっている。試験材No.49 は、
芯材のTiの含有量が多いため、圧延が困難となり、健
全なクラッド材が製造できなかった。試験材No.50 は、
芯材がJIS3003合金に相当し、Cuの含有量が少
ないため、ろう付け後の強度が低い。またFe量が多い
ため耐食性が劣り、内面側に貫通孔が生じた。さらにM
g量が多いため、ろう付け性が劣り、ろう付けにおいて
フィレット切れが生じた。
In Test Material No. 47, since the amount of Fe in the core material was large, the corrosion resistance was poor, and a through hole was formed on the outer surface side. Test material N
In o.48, since the amount of Ti in the core material is small, the maximum corrosion depth on the outer surface side and the inner surface side is larger than that of the clad material comprising the Ti-containing core material of the present invention. Test material No.49
Since the content of Ti in the core material was large, rolling became difficult, and a sound clad material could not be produced. Test material No.50 is
Since the core material corresponds to JIS3003 alloy and has a low Cu content, the strength after brazing is low. Further, since the amount of Fe was large, the corrosion resistance was poor, and a through hole was formed on the inner surface side. And M
Due to the large amount of g, the brazing property was inferior and the fillet was broken during brazing.

【0048】試験材No.51 は、ろう材のSi量が少ない
ため、流動係数が小さく、ろう付け性が劣る。試験材N
o.52 は、ろう材のSi量が多いため、圧延加工性がわ
るく、健全なクラッド材が製造できなかった。試験材N
o.53 は、ろう材のFe量が少ないため、流動係数が小
さく、ろう付け性が劣る、試験材No.54 は、ろう材のF
e量が多いため、耐食性が劣り、外面側のフィレット部
の腐食が顕著であった。試験材No.55 は、ろう材のMg
量が多いため、また試験材No.56 は、ろう材のCa量が
多いため、ろう付け性が劣り、全くフィレットが形成さ
れず、未接合状態となった。
Test material No. 51 has a low flow coefficient and a low brazing property because the amount of Si in the brazing material is small. Test material N
In No. 52, since the amount of Si in the brazing material was large, rolling workability was poor, and a sound clad material could not be produced. Test material N
o.53 has a low flow coefficient due to the low Fe content of the brazing material, and has poor brazing properties.
Due to the large amount of e, the corrosion resistance was poor and the corrosion of the fillet portion on the outer surface side was remarkable. Test material No. 55 was made of Mg
The test material No. 56 was inferior in brazing property due to a large amount of Ca and a large amount of Ca in the brazing material.

【0049】試験材No.57 は、ろう材のBi量が少ない
ため、Biを含有する本発明のクラッド材に比べて流動
係数が小さく、ろう付け性が劣る。試験材No.58 は、ろ
う材のBi量が多いため、外面側のフィレット部の自己
腐食が激しい。試験材No.59およびNo.60 は、それぞれ
犠牲陽極材のSi量およびFe量が多いため、また試験
材No.62 は犠牲陽極材のZn量が多いため、試験材No.6
3 は犠牲陽極材のIn量が多いため、試験材No.64 は犠
牲陽極材のSn量が多いため、いずれも耐食性が劣り、
内面側の犠牲陽極材の腐食消耗が激しく、犠牲陽極効果
が長期に持続しない。試験材No.61 は、犠牲陽極材のM
g量が多いため、ろう付けにおいて全くフィレットが形
成されず、未接合状態となった。また、犠牲陽極材のZ
n、In、Snの含有量が少ないため、犠牲陽極効果が
十分に発揮されず、内面側に貫通孔が生じた。
Test material No. 57 has a smaller flow coefficient and lower brazing properties than the clad material of the present invention containing Bi because the amount of Bi in the brazing material is small. In test material No. 58, since the amount of Bi in the brazing material was large, self-corrosion of the fillet portion on the outer surface side was severe. Test materials No. 59 and No. 60 each had a large amount of Si and Fe in the sacrificial anode material, and test material No. 62 had a large amount of Zn in the sacrificial anode material.
No. 3 has a large amount of In in the sacrificial anode material, and test material No. 64 has a large amount of Sn in the sacrificial anode material.
Corrosion of the sacrificial anode material on the inner surface side is severe, and the sacrificial anode effect is not maintained for a long time. Test material No.61 is M of sacrificial anode material.
Due to the large amount of g, no fillet was formed at the time of brazing, resulting in an unjoined state. The sacrificial anode material Z
Since the contents of n, In, and Sn were small, the sacrificial anode effect was not sufficiently exhibited, and a through hole was formed on the inner surface side.

【0050】[0050]

【発明の効果】本発明によれば、ろう付け後の強度が高
く、ろう付け性と耐食性に優れた熱交換器用アルミニウ
ム合金クラッド材が提供される。このクラッド材は、自
動車用アルミニウム合金製熱交換器の流体通路を構成す
るチューブ材として特に好適に使用できる。
According to the present invention, there is provided an aluminum alloy clad material for a heat exchanger having high strength after brazing, excellent brazing properties and corrosion resistance. This clad material can be particularly suitably used as a tube material constituting a fluid passage of a heat exchanger made of an aluminum alloy for automobiles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のろう付け性の評価試験において使用す
る逆T字型継手(試験前)を示す断面図である。
FIG. 1 is a cross-sectional view showing an inverted T-shaped joint (before the test) used in an evaluation test of brazeability of the present invention.

【図2】本発明のろう付け性の評価試験において使用す
る逆T字型継手(試験後)を示す断面図である。
FIG. 2 is a cross-sectional view showing an inverted T-shaped joint (after the test) used in an evaluation test of brazing property of the present invention.

【符号の説明】[Explanation of symbols]

1 逆T字型継ぎ手 2 アルミ合金クラッド材(耐食性に優れた熱交換
器用高強度アルミニウム合金クラッド材) 3 3003合金材 4 ろう材 5 犠牲陽極材 6 芯材 7、8 フィレット部
REFERENCE SIGNS LIST 1 inverted T-shaped joint 2 aluminum alloy clad material (high-strength aluminum alloy clad material for heat exchanger with excellent corrosion resistance) 3 3003 alloy material 4 brazing material 5 sacrificial anode material 6 core material 7, 8 fillet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B32B 15/01 B32B 15/01 Z F28F 19/06 F28F 19/06 A // B23K 101:14 103:10 (72)発明者 田中 宏和 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 Fターム(参考) 4F100 AB02A AB02B AB02C AB09A AB09B AB09C AB10A AB10B AB10C AB11A AB11B AB11C AB12A AB14A AB17A AB18B AB21B AB31A AB31B AB31C AB40B AB40C BA03 BA07 BA10A BA10C BA14 EC01 GB90 JB02 JL12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B32B 15/01 B32B 15/01 Z F28F 19/06 F28F 19/06 A // B23K 101: 14 103: 10 (72) Inventor Hirokazu Tanaka 5-11-3, Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries, Ltd. F-term (reference) AB31B AB31C AB40B AB40C BA03 BA07 BA10A BA10C BA14 EC01 GB90 JB02 JL12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 芯材の一方の面に犠牲陽極材をクラッド
し、他方の面にAl−Si系のろう材をクラッドしたア
ルミニウム合金クラッド材であって、芯材は、Mn:0.6
〜2.0 %(重量%、以下同じ)、Cu:0.3〜1.0 %、S
i:0.06 〜1.0 %を含有し、Feの含有量を0.4 %以
下、Mgの含有量を0.04%以下に規制し、残部アルミニ
ウムおよび不可避的不純物からなるアルミニウム合金で
構成され、犠牲陽極材は、Zn:0.5〜4.0 %、In:0.0
05〜0.1 %、Sn:0.01 〜0.1 %のうちの1種または2
種以上を含有し、Siの含有量を0.3 %以下、Feの含
有量を0.5 %以下、Mgの含有量を0.04%以下に規制
し、残部アルミニウムおよび不可避的不純物からなるア
ルミニウム合金で構成され、ろう材は、Si:6〜14%、
Fe:0.06 〜0.7 %を含有し、Mgの含有量を0.04%以
下、Caの含有量を0.006 %以下に規制し、残部Alお
よび不可避的不純物からなるアルミニウム合金で構成さ
れることを特徴とするろう付け性と耐食性に優れた熱交
換器用アルミニウム合金クラッド材。
An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material and an Al-Si brazing material is clad on the other surface, wherein the core material has Mn: 0.6.
~ 2.0% (wt%, the same applies hereinafter), Cu: 0.3 ~ 1.0%, S
i: contains 0.06 to 1.0%, regulates the content of Fe to 0.4% or less and the content of Mg to 0.04% or less, and is composed of an aluminum alloy consisting of the remaining aluminum and unavoidable impurities. Zn: 0.5 to 4.0%, In: 0.0
05-0.1%, Sn: one or two of 0.01-0.1%
Containing at least one species, the content of Si is limited to 0.3% or less, the content of Fe is regulated to 0.5% or less, and the content of Mg is regulated to 0.04% or less. The brazing material is Si: 6-14%,
Fe: 0.06 to 0.7%, the content of Mg is regulated to 0.04% or less, the content of Ca is regulated to 0.006% or less, and the balance is made of aluminum alloy consisting of Al and unavoidable impurities. Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance.
【請求項2】 ろう材が、さらにBi:0.01 〜0.4 %を
含有することを特徴とする請求項1記載のろう付け性と
耐食性に優れた熱交換器用アルミニウム合金クラッド
材。
2. The aluminum alloy clad material for heat exchangers according to claim 1, wherein the brazing material further contains Bi: 0.01 to 0.4%.
【請求項3】 芯材が、さらにTi:0.06 〜0.35%を含
有することを特徴とする請求項1または2記載のろう付
け性と耐食性に優れた熱交換器用アルミニウム合金クラ
ッド材。
3. The aluminum alloy clad material for heat exchangers according to claim 1, wherein the core material further contains 0.06 to 0.35% of Ti.
JP11003769A 1999-01-11 1999-01-11 Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance Pending JP2000204427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11003769A JP2000204427A (en) 1999-01-11 1999-01-11 Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11003769A JP2000204427A (en) 1999-01-11 1999-01-11 Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance

Publications (1)

Publication Number Publication Date
JP2000204427A true JP2000204427A (en) 2000-07-25

Family

ID=11566390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11003769A Pending JP2000204427A (en) 1999-01-11 1999-01-11 Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance

Country Status (1)

Country Link
JP (1) JP2000204427A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086295A (en) * 2000-09-11 2002-03-26 Furukawa Electric Co Ltd:The Anticorrosive aluminum alloy brazing filler metal for heat exchanger and highly corrosion preventing aluminum alloy composite material for heat exchanger
JP2002542393A (en) * 1999-04-14 2002-12-10 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Brazing sheet
WO2005077569A1 (en) * 2004-02-12 2005-08-25 Showa Denko K.K. Clad material, method for manufacturing said clad material, and apparatus for mnufacturing said clad material
WO2005078372A1 (en) * 2004-02-12 2005-08-25 Showa Denko K.K. Heat exchanger and method for manufacturing the same
JP2005257257A (en) * 2004-02-12 2005-09-22 Showa Denko Kk Heat exchanger and its manufacturing method
US6957762B2 (en) * 2003-02-10 2005-10-25 Delphi Technologies, Inc. Vacuum brazing method for aluminum-based material
EP1666620A1 (en) * 2003-09-26 2006-06-07 Kobe Alcoa Transportation Products Ltd. Aluminum brazing sheet
JP2007521396A (en) * 2003-11-28 2007-08-02 アルカン レナリュ Aluminum alloy strip for brazing
WO2007142002A1 (en) * 2006-06-07 2007-12-13 Nippon Light Metal Company, Ltd. Clad aluminum alloy material for heat exchanger and process for producing the same
JP2011012327A (en) * 2009-07-06 2011-01-20 Mitsubishi Alum Co Ltd Brazing sheet having excellent brazability, and method for producing the brazing sheet
US20110240280A1 (en) * 2010-03-31 2011-10-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy brazing sheet and heat exchanger
JP2012513539A (en) * 2008-12-23 2012-06-14 ノベリス・インコーポレイテッド Clad metal sheet and heat exchanger tube made from it.
WO2017149030A1 (en) * 2016-03-03 2017-09-08 Vetco Gray Scandinavia As System and method for cathodic protection by distributed sacrificial anodes
US9790599B2 (en) 2008-01-18 2017-10-17 Hydro Aluminum Deutschland GmbH Composition having a corrosion protection layer and process for the production thereof
JP2018071946A (en) * 2016-11-04 2018-05-10 株式会社Uacj押出加工 Heat conducting aluminum alloy pipe for open rack vaporizer, and producing method thereof as well as open rack vaporizer
EP1484571B1 (en) * 2003-06-06 2018-07-25 UACJ Corporation Aluminium heat exchanger excellent in corrosion resistance
CN111235437A (en) * 2020-03-18 2020-06-05 河南誉金技术服务有限公司 Al-Mn pipe alloy for household air-conditioning heat exchanger and preparation method thereof
CN114369746A (en) * 2021-12-31 2022-04-19 安徽科蓝特铝业有限公司 High-temperature aluminum alloy for floor heating pipe and production process thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202285A (en) * 1999-04-12 2011-10-13 Aleris Aluminum Koblenz Gmbh Brazing sheet
JP2002542393A (en) * 1999-04-14 2002-12-10 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Brazing sheet
JP4485671B2 (en) * 2000-09-11 2010-06-23 古河スカイ株式会社 Anti-corrosion aluminum alloy brazing material for heat exchanger and high corrosion resistance aluminum alloy composite for heat exchanger
JP2002086295A (en) * 2000-09-11 2002-03-26 Furukawa Electric Co Ltd:The Anticorrosive aluminum alloy brazing filler metal for heat exchanger and highly corrosion preventing aluminum alloy composite material for heat exchanger
US6957762B2 (en) * 2003-02-10 2005-10-25 Delphi Technologies, Inc. Vacuum brazing method for aluminum-based material
EP1484571B1 (en) * 2003-06-06 2018-07-25 UACJ Corporation Aluminium heat exchanger excellent in corrosion resistance
US8283049B2 (en) 2003-09-26 2012-10-09 Kobe Steel, Ltd. Aluminum brazing sheet
EP1666620A1 (en) * 2003-09-26 2006-06-07 Kobe Alcoa Transportation Products Ltd. Aluminum brazing sheet
EP1666620A4 (en) * 2003-09-26 2007-08-29 Kobe Alcoa Transp Products Ltd Aluminum brazing sheet
JP2007521396A (en) * 2003-11-28 2007-08-02 アルカン レナリュ Aluminum alloy strip for brazing
WO2005078372A1 (en) * 2004-02-12 2005-08-25 Showa Denko K.K. Heat exchanger and method for manufacturing the same
US7438121B2 (en) 2004-02-12 2008-10-21 Showa Denko K.K. Heat exchanger and method for manufacturing the same
JP2005257257A (en) * 2004-02-12 2005-09-22 Showa Denko Kk Heat exchanger and its manufacturing method
WO2005077569A1 (en) * 2004-02-12 2005-08-25 Showa Denko K.K. Clad material, method for manufacturing said clad material, and apparatus for mnufacturing said clad material
WO2007142002A1 (en) * 2006-06-07 2007-12-13 Nippon Light Metal Company, Ltd. Clad aluminum alloy material for heat exchanger and process for producing the same
US9790599B2 (en) 2008-01-18 2017-10-17 Hydro Aluminum Deutschland GmbH Composition having a corrosion protection layer and process for the production thereof
JP2012513539A (en) * 2008-12-23 2012-06-14 ノベリス・インコーポレイテッド Clad metal sheet and heat exchanger tube made from it.
JP2011012327A (en) * 2009-07-06 2011-01-20 Mitsubishi Alum Co Ltd Brazing sheet having excellent brazability, and method for producing the brazing sheet
US20110240280A1 (en) * 2010-03-31 2011-10-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy brazing sheet and heat exchanger
WO2017149030A1 (en) * 2016-03-03 2017-09-08 Vetco Gray Scandinavia As System and method for cathodic protection by distributed sacrificial anodes
CN109154089A (en) * 2016-03-03 2019-01-04 韦特柯格雷斯堪的纳维亚有限公司 The system and method for carrying out cathodic protection by the sacrificial anode of distribution
AU2017226940B2 (en) * 2016-03-03 2022-11-17 Vetco Gray Scandinavia As System and method for cathodic protection by distributed sacrificial anodes
JP2018071946A (en) * 2016-11-04 2018-05-10 株式会社Uacj押出加工 Heat conducting aluminum alloy pipe for open rack vaporizer, and producing method thereof as well as open rack vaporizer
CN111235437A (en) * 2020-03-18 2020-06-05 河南誉金技术服务有限公司 Al-Mn pipe alloy for household air-conditioning heat exchanger and preparation method thereof
CN114369746A (en) * 2021-12-31 2022-04-19 安徽科蓝特铝业有限公司 High-temperature aluminum alloy for floor heating pipe and production process thereof

Similar Documents

Publication Publication Date Title
JP4023760B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP2000204427A (en) Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP5279278B2 (en) Brazing sheet for tube material of heat exchanger and method of manufacturing heat exchanger using the same
JPH11293372A (en) Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance
JP2000008130A (en) Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JP4424568B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JPH11315335A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2000167688A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP3326106B2 (en) Aluminum alloy clad material for heat exchanger with excellent strength and corrosion resistance
JP3222768B2 (en) Aluminum alloy clad material excellent in brazing property and method for producing the same
JPH1180870A (en) Aluminum alloy clad material for heat exchanger excellent in strength and corrosion resistance
JPH0741919A (en) Manufacture of heat exchanger tube material for noncorrosive flux brazing
JPH11315337A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP3859781B2 (en) Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material
JP4440550B2 (en) Aluminum heat exchanger
JP2000026931A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2000202682A (en) Aluminum alloy brazing filler metal and aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance using the brazing filler metal for clad material
JP2000135588A (en) High strength aluminum alloy clad material for heat exchanger superior in corrosion resistance
JP2001170794A (en) High-strength aluminum alloy clad material for heat exchanger excellent in tube manufacturing property and corrosion resistance
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance