JP2000204404A - Production of regenerated tungsten - cobalt raw powder from cemented carbide scrap, and production of tangsten base sintered heavy alloy obtained by this production - Google Patents

Production of regenerated tungsten - cobalt raw powder from cemented carbide scrap, and production of tangsten base sintered heavy alloy obtained by this production

Info

Publication number
JP2000204404A
JP2000204404A JP795099A JP795099A JP2000204404A JP 2000204404 A JP2000204404 A JP 2000204404A JP 795099 A JP795099 A JP 795099A JP 795099 A JP795099 A JP 795099A JP 2000204404 A JP2000204404 A JP 2000204404A
Authority
JP
Japan
Prior art keywords
powder
production
cemented carbide
raw powder
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP795099A
Other languages
Japanese (ja)
Other versions
JP3056476B1 (en
Inventor
Nobuyuki Yamagishi
宣行 山岸
Sekihin Yo
楊  積彬
Takashi Nakai
崇 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIGASHIFUJI MANUF Ltd
Original Assignee
HIGASHIFUJI MANUF Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIGASHIFUJI MANUF Ltd filed Critical HIGASHIFUJI MANUF Ltd
Priority to JP795099A priority Critical patent/JP3056476B1/en
Application granted granted Critical
Publication of JP3056476B1 publication Critical patent/JP3056476B1/en
Publication of JP2000204404A publication Critical patent/JP2000204404A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PROBLEM TO BE SOLVED: To obtain a regenerated W-Co raw powder from a WC-Co base cemented carbide alloy scrap at a low cost. SOLUTION: After oxidizing the WC-Co base cemented carbide alloy scrap in an oxidizing atmosphere at >=600 deg.C, a primary pulverizing is executed to obtain oxidized raw powder. Successively, after reducing this oxidized raw powder into the W-Co powder in a hydrogen-containing reducing atmosphere at 600-1000 deg.C, a secondary pulverizing is executed to obtain pulverized fine powder, and the regenerated W-Co raw powder is obtd. Since this treatment to generate the cemented carbide alloy scrap can be simplified without executing such complicated chemical or metallurgical processes as various treating methods conventionally executed, the high quality pulverized fine powder can easily and efficiently be obtd. at a low cost in the industrial mass-production scale.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、WC−Co系超硬
スクラップからの再生W−Co原料粉末の製造方法、お
よびそれを用いたタングステン基焼結重合金の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a recycled W-Co raw material powder from a WC-Co-based superhard scrap and a method for producing a tungsten-based sintered heavy metal using the same.

【0002】[0002]

【従来の技術】超硬合金の主原料となるW、Ta、Co
等は高価な工業材料であって、世界的にも稀少資源とさ
れている。
2. Description of the Related Art W, Ta, Co, which are the main raw materials of cemented carbide,
Are expensive industrial materials, and are regarded as rare resources worldwide.

【0003】近年の省資源化傾向の中で、これらレアメ
タルの有効利用を目的とした超硬合金スクラップの回収
およびその再利用方法(リサイクル)が検討されてお
り、従来より、WC−Co系超硬スクラップの再利用に
関しては、亜鉛処理法、化学処理法、コールドストリー
ム法、高熱処理法、アルカリ溶解法等、種々の方法が提
案されている。
[0003] With the recent trend toward resource saving, collection and reuse of hard metal scrap for the purpose of effective use of these rare metals has been studied. Regarding the reuse of hard scrap, various methods such as a zinc treatment method, a chemical treatment method, a cold stream method, a high heat treatment method, and an alkali dissolution method have been proposed.

【0004】これらの再利用処理方法の概要を説明すれ
ば、亜鉛処理法は、溶融亜鉛が超硬合金Co結合相と容
易に合金を形成するという性質を利用した方法で、超硬
合金の粉砕が容易であるという利点があるが、得られた
粉体は依然としてWCであって、本質的には超硬合金の
組成を変えるものではないので、タングステン基焼結合
金の原料としては利用できない。且つ、残留亜鉛の蒸発
等の後処理が必要であるためコスト高である。
[0004] The outline of these recycling treatment methods is as follows. The zinc treatment method is a method utilizing the property that molten zinc easily forms an alloy with a cemented carbide Co bonding phase. However, since the obtained powder is still WC and does not essentially change the composition of the cemented carbide, it cannot be used as a raw material for a tungsten-based sintered alloy. In addition, since post-treatment such as evaporation of residual zinc is required, the cost is high.

【0005】また、コールドストリーム法は、低温脆性
を利用して衝撃破砕する方法で、同様に超硬合金の組成
を変えるものではないので、タングステン基焼結合金の
原料としては利用できない。且つ、冷媒のコストも高
い。
Further, the cold stream method is a method of impact crushing utilizing low-temperature brittleness, and does not similarly change the composition of a cemented carbide, and cannot be used as a raw material for a tungsten-based sintered alloy. In addition, the cost of the refrigerant is high.

【0006】また、カーボン添加高熱処理法は、カーボ
ン添加の状態で2000℃近く加熱し、冷却する方法
で、タングステン基焼結合金の原料として利用できな
い。且つ、2000℃近くの加熱を行うため、エネルギ
ーコストが高い。
In addition, the carbon-added high heat treatment method is a method of heating and cooling near 2000 ° C. with carbon added, and cannot be used as a raw material for a tungsten-based sintered alloy. In addition, since heating is performed at about 2000 ° C., energy costs are high.

【0007】また、化学処理法は、焙焼−湿式処理を行
うもので、純度の高いタングステン粉が得られるが、歩
留まりが悪いためコスト高である。
In the chemical treatment method, roasting-wet treatment is performed, and a tungsten powder having high purity can be obtained, but the cost is high due to poor yield.

【0008】以上のように、これらの再利用処理方法の
多くは、超硬原料粉末の形態で再生するか、あるいは、
構成成分をそれぞれ抽出するための方法であって、酸処
理等の化学的プロセスや溶融等の冶金的なプロセスを伴
うことから、再生プロセスが複雑化し、工業的量産に不
向きであってコスト高であるという共通した問題を有し
ていた。
As described above, most of these recycling methods involve regenerating in the form of cemented carbide raw material powder,
It is a method for extracting each component, and involves a chemical process such as acid treatment and a metallurgical process such as melting, so that the regeneration process is complicated, unsuitable for industrial mass production, and high cost. Had a common problem.

【0009】[0009]

【発明が解決しようとする課題】ところで、近年、地球
環境や公害に対する規制が年々厳しくなり、人体に有害
な鉛含有高比重部品の廃止、これに替わる代替品が大き
な課題となっている。前記W合金は人体無害の高比重金
属であり、係るPb合金の代替えとして注目されている
が、上記処理法の問題よりW合金の原料コストがPbよ
り遥かに高くなり、これが代替え実用化に際しての大き
な妨げとなっている。
By the way, in recent years, regulations on the global environment and pollution have become stricter year by year, and the abolition of lead-containing high-specific-gravity parts harmful to the human body and the replacement thereof have become a major issue. The W alloy is a high specific gravity metal that is harmless to the human body, and is attracting attention as a substitute for the Pb alloy. However, due to the above-described processing method, the raw material cost of the W alloy is much higher than that of Pb. It is a major hindrance.

【0010】本発明は、WC−Co系超硬スクラップか
ら再生W−Co原料粉末を得るための好適な方法と、こ
の再生W−Co原料粉末を用いた低コストのタングステ
ン基焼結合金の製造方法を提供することを目的としたも
のである。
The present invention provides a method for obtaining a recycled W-Co raw material powder from a WC-Co cemented carbide scrap, and a method for producing a low-cost tungsten-based sintered alloy using the recycled W-Co raw material powder. It is intended to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明は、WC−Co系
超硬スクラップを低コストのタングステン基重合金の原
料として再利用することにより、上記課題を解決するも
のである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by reusing WC-Co-based superhard scrap as a raw material for low-cost tungsten-based heavy metal.

【0012】即ち、本発明では、WC−Co系超硬スク
ラップは、WC主体+Co結合相の組成が主であるが、
酸化性雰囲気中において600〜1000℃の温度範囲
で加熱することにより、容易にWC+CoからWO3
よびCoWO4 に変えることができる。
That is, in the present invention, the composition of the WC-Co-based cemented carbide is mainly composed of a WC main body and a Co binder phase.
By heating in an oxidizing atmosphere at a temperature in the range of 600 to 1000 ° C., WC + Co can be easily changed to WO 3 and CoWO 4 .

【0013】上記酸化処理にて得られたWO3 とCoW
4 の混合物はスタンプミルやボールミル等によって簡
単に酸化粗粉に粉砕(一次粉砕という)することができ
る。また、この一次粉砕時の平均粒径を600μm以下
(より好ましくは200μm以下)とすると、次工程の
還元処理を効率的、且つ安定的に行うことができる。
WO 3 and CoW obtained by the above oxidation treatment
The O 4 mixture can be easily pulverized into oxidized coarse powder by a stamp mill, a ball mill or the like (referred to as primary pulverization). When the average particle size at the time of the primary pulverization is 600 μm or less (more preferably, 200 μm or less), the reduction treatment in the next step can be performed efficiently and stably.

【0014】一次粉砕して得られた酸化粗粉を水素含有
雰囲気中において600〜1000℃の温度範囲で還元
処理することによって、W+Coを主体とする還元粉末
が得られる。得られた還元粉を再粉砕(二次粉砕とい
う)し、微粉末化(平均粒径5μm以下が望ましい)す
ることにより、再生W−Co原料粉末を製造することが
できる。本再生処理プロセスは単純で、容易に且つ効率
的な微粉末化が達成でき、工業的量産による低コスト化
が実現できるものである。
By subjecting the oxidized coarse powder obtained by the primary pulverization to a reduction treatment in a hydrogen-containing atmosphere at a temperature in the range of 600 to 1000 ° C., a reduced powder mainly composed of W + Co is obtained. The regenerated W-Co raw material powder can be produced by re-pulverizing the obtained reduced powder (referred to as secondary pulverization) and pulverizing the powder (preferably having an average particle diameter of 5 μm or less). The present regeneration process is simple, can easily and efficiently achieve fine powdering, and can realize cost reduction by industrial mass production.

【0015】また、本発明では、上記のように還元粉を
二次粉砕した後、定量分析を行い、使用目的に応じ前記
再生W−Co原料粉末にW粉、Ni粉、Co粉、Cu
粉、Fe粉、Mo粉等を添加して所定の組成になるよう
に調整し、ボールミルにより粉砕・混合・造粒し、圧粉
体にプレス成形した後、焼結することにより安価なタン
グステン基焼結重合金を製造するものである。
Further, in the present invention, after the reduced powder is secondarily pulverized as described above, quantitative analysis is performed, and depending on the purpose of use, W powder, Ni powder, Co powder, Cu powder are added to the recycled W-Co raw material powder.
Powder, Fe powder, Mo powder, etc. are added to adjust to a predetermined composition, ground, mixed, and granulated by a ball mill, pressed into a green compact, and then sintered to obtain an inexpensive tungsten base. This is for producing sintered heavy metal.

【0016】[0016]

【発明の実施の形態】本発明は、WC−Co系超硬スク
ラップを気相反応である酸化−還元法を用いて酸化・還
元する再生W−Co原料粉末の製造法、およびそれらを
用いたタングステン基焼結重合金の製造方法に係わるも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing a recycled W-Co raw material powder for oxidizing and reducing WC-Co-based cemented carbide by an oxidation-reduction method which is a gas phase reaction, and to use the same. The present invention relates to a method for producing a tungsten-based sintered heavy alloy.

【0017】以下、図1に基づいて本発明の実施形態を
説明する。図1は、本発明に係る再生W−Co原料粉末
の製造工程図である。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a production process diagram of a recycled W-Co raw material powder according to the present invention.

【0018】本工程図によれば、先ず、WC主体+5〜
10%Co系超硬スクラップを耐熱ステンレス、あるい
はセラミックス容器に充填し、600〜1000℃の酸
化性雰囲気中で加熱することにより、酸化処理を行う。
この時の酸化性雰囲気は常圧、望ましくは、加圧された
酸素ガス、水蒸気、大気の何れかを用いる。特に、酸化
性雰囲気を加圧することにより酸化速度が促進され、効
果的な酸化処理が行える。また、酸化助剤として超硬ス
クラップ中に硝酸ソーダ等のアルカリ類または塩類を少
量添加することにより、酸化速度をさらに促進できる。
According to this process chart, first, WC main body +5
An oxidation treatment is performed by filling a 10% Co-based carbide scrap into a heat-resistant stainless steel or ceramic container and heating it in an oxidizing atmosphere at 600 to 1000 ° C.
At this time, the oxidizing atmosphere is at normal pressure, preferably, any of pressurized oxygen gas, water vapor, and air. In particular, when the oxidizing atmosphere is pressurized, the oxidation rate is accelerated, and an effective oxidation treatment can be performed. The oxidation rate can be further enhanced by adding a small amount of an alkali or salt such as sodium nitrate to the cemented carbide scrap as an oxidation aid.

【0019】また、酸化炉は通常のバッチ型加熱炉が使
用可能であるが、回転式の加熱炉を使用して、酸化され
剥離した酸化粉を連続的に採取できるようにすると効率
的である。係る酸化処理により、容易にWC+CoをW
3 およびCoWO4 に変えることができる。
Although an ordinary batch type heating furnace can be used as the oxidation furnace, it is efficient if a rotary heating furnace is used so that oxidized and separated oxide powder can be continuously collected. . WC + Co can be easily converted to W
It can be changed to O 3 and CoWO 4 .

【0020】ここで、酸化温度について検討すると、6
00℃以下の酸化性雰囲気中では酸化速度が極端に緩慢
となり、十分な酸化物が得られないこと、また、100
0℃以上では酸化物の焼結が進み、後工程の一次粉砕が
困難になること等の理由から、好適温度範囲を600〜
1000℃としたが、より好ましくは700〜900℃
の範囲に設定すると良い。図2に上記酸化温度における
酸化時間と酸化粉回収率のとの関係を示す。尚、本図
は、酸化炉として密閉型バッチ炉を使用し、且つ、酸化
性雰囲気として2kg/cm2 に加圧の酸素ガスを用い
た場合の特性を示している。
Here, when examining the oxidation temperature, 6
In an oxidizing atmosphere at a temperature of 00 ° C. or less, the oxidation rate becomes extremely slow, and a sufficient oxide cannot be obtained.
If the temperature is 0 ° C. or higher, the sintering of the oxide proceeds, and the primary pulverization in the subsequent step becomes difficult.
1000 ° C., more preferably 700-900 ° C.
It is good to set in the range. FIG. 2 shows the relationship between the oxidation time at the oxidation temperature and the oxide powder recovery rate. This figure shows the characteristics when a closed batch furnace is used as the oxidation furnace and oxygen gas pressurized to 2 kg / cm 2 is used as the oxidizing atmosphere.

【0021】次に、前記酸化処理にて得られたWO3
CoWO4 主体の酸化粉を通常の機械式スタンプミル、
ボールミル、またはジョークラッシャ、ロールクラッシ
ャを用いて常温大気中で一次粉砕し、還元用の粗粉とす
る。この一次粉砕時の平均粒径は600μm以下、より
好ましくは200μm以下とすることにより、次工程の
還元処理を確実、且つ効率的に行える。
Next, the WO 3 + obtained by the oxidation treatment
CoWO 4 mainly oxidized powder is converted into a normal mechanical stamp mill,
It is first ground in a normal temperature atmosphere using a ball mill, a jaw crusher, or a roll crusher to obtain a coarse powder for reduction. By setting the average particle size at the time of the primary pulverization to 600 μm or less, more preferably 200 μm or less, the reduction treatment in the next step can be performed reliably and efficiently.

【0022】次いで、一次粉砕して得られた酸化粗粉を
600〜1000℃の水素含有雰囲気中で還元処理し、
W+Co主体の還元粉末を得る。この時の還元雰囲気
は、100%水素が最も望ましいが、75%水素含有の
アンモニア分解ガスでも良い。尚、還元炉は通常のバッ
チ炉、あるいはブッシャ式連続炉が使用可能である。
Next, the oxidized coarse powder obtained by primary pulverization is reduced in a hydrogen-containing atmosphere at 600 to 1000 ° C.,
A reduced powder mainly composed of W + Co is obtained. The reducing atmosphere at this time is most preferably 100% hydrogen, but may be an ammonia decomposition gas containing 75% hydrogen. As the reduction furnace, a normal batch furnace or a busher-type continuous furnace can be used.

【0023】ここで、還元温度について検討すると、既
述した酸化処理の場合と同様、600℃以下の還元性雰
囲気中では還元速度が極端に緩慢となり、残留酸素量が
多くなるため、高純度のW+Co粉末が得られないこ
と、また、1000℃以上では還元粉の焼結が進み、後
工程の二次粉砕が困難になること等の理由から、好適な
還元雰囲気温度を600〜1000℃に設定したが、よ
り好ましくは700〜900℃である。
Considering the reduction temperature, as in the case of the above-described oxidation treatment, the reduction rate becomes extremely slow in a reducing atmosphere at 600 ° C. or lower, and the amount of residual oxygen increases. A suitable reducing atmosphere temperature is set to 600 to 1000 ° C. because W + Co powder cannot be obtained, and sintering of the reduced powder proceeds at 1000 ° C. or higher, and secondary pulverization in the subsequent step becomes difficult. However, the temperature is more preferably 700 to 900 ° C.

【0024】次いで、前記したW+Co主体の還元粉末
をボールミルにて平均粒径5μm以下の微粉末に再粉砕
(二次粉砕という)した後、定量分析による組成同定を
行い、使用目的に応じてW粉、Ni粉、Co粉、Cu
粉、Fe粉、Mo粉等を添加して組成調整した後、混
合、造粒などの工程を経て、タングステン基焼結重合金
の原料を得ることができる。
Next, the above-mentioned reduced powder mainly composed of W + Co is re-pulverized into a fine powder having an average particle diameter of 5 μm or less (referred to as secondary pulverization) by a ball mill, and the composition is identified by quantitative analysis. Powder, Ni powder, Co powder, Cu
After adjusting the composition by adding powder, Fe powder, Mo powder, and the like, a raw material of tungsten-based sintered heavy metal can be obtained through steps such as mixing and granulation.

【0025】尚、本実施形態では、超硬合金チップのス
クラップ再生について説明したが、その他、上記超硬合
金チップの作製時に発生する超硬合金用素材スクラップ
や超硬合金回収粉塵等のスクラップ再生に際しても勿論
適用可能である。
In this embodiment, the description has been given of the scrap recycling of the cemented carbide chip. However, in addition to the above, the scrap recycling such as the cemented carbide material scrap and the dust collected from the cemented carbide generated when the cemented carbide chip is manufactured. In this case, it is of course applicable.

【0026】[0026]

【実施例】次に、本発明の実施例を説明する。Next, an embodiment of the present invention will be described.

【0027】実施例1 10×10×5mm程度の大きさのWC−6%Co系超
硬合金チップ状スクラップ100Kgを耐熱ステンレス
製炉体が備えた回転型電気加熱炉内に充填し、空気を連
続送風しながら通電昇温し、900℃の酸化性雰囲気中
で約2時間加熱・酸化し、得られた酸化物をスタンプミ
ルにて約15分間粉砕(一次粉砕)して表1に示すよう
な粒度分布のWO3 +CoWO4 酸化粗粉を得た。
Example 1 A rotary electric heating furnace equipped with a heat-resistant stainless steel furnace was charged with 100 kg of WC-6% Co cemented carbide chip-shaped scrap having a size of about 10 × 10 × 5 mm, and was filled with air. The temperature was increased while applying continuous air, heated and oxidized in an oxidizing atmosphere at 900 ° C. for about 2 hours, and the obtained oxide was pulverized (primary pulverization) with a stamp mill for about 15 minutes, as shown in Table 1. WO 3 + CoWO 4 oxidized coarse powder having an excellent particle size distribution was obtained.

【表1】 次に、前記WO3 +CoWO4 酸化粗粉を耐熱ステンレ
ス製トレーに充填し、アンモニア分解ガス(75%H2
+25%N2 )による900℃の還元性囲気中にて約4
時間還元処理を行い、得られた還元粉をボールミルにて
約5時間再粉砕(二次粉砕)して平均粒径が5μm前後
のW−Co粉末を得た。
[Table 1] Next, the WO 3 + CoWO 4 oxidized coarse powder was filled in a heat-resistant stainless steel tray, and ammonia decomposition gas (75% H 2
+ 25% N 2 ) in a reducing atmosphere at 900 ° C. for about 4
The resulting reduced powder was re-ground (secondary grinding) for about 5 hours in a ball mill to obtain a W-Co powder having an average particle size of about 5 μm.

【0028】このようにして得られたW−Co粉末は、
Coが6.3重量%で、残りの殆どがWであって、残留
酸素は0.60重量%以下、残留トータル・炭素量は
0.1重量%以下といったような高品質の微粉末である
ことが確認された。
The W-Co powder thus obtained is
Co is 6.3% by weight, most of the remaining is W, high quality fine powder with residual oxygen of 0.60% by weight or less and residual total carbon content of 0.1% by weight or less. It was confirmed that.

【0029】次いで、この再生W−Co粉末にNi粉3
重量%と、Cu粉2重量%を添加して混合・造粒し、6
ton/cm2 の圧力で圧粉体にプレス成形した後、ブ
ッシャ型連続焼結炉により、1400〜1450℃のア
ンモニア分解ガス中で約25分間焼結・冷却し、焼結体
(タングステン基焼結重合金)を得た。
Next, Ni powder 3 was added to the recycled W-Co powder.
2% by weight of Cu powder and 2% by weight of Cu powder.
After press-molding into a green compact at a pressure of ton / cm 2 , it is sintered and cooled in an ammonia decomposition gas at 1400 to 1450 ° C. for about 25 minutes by a busher-type continuous sintering furnace to obtain a sintered body (tungsten-based sintered). (Coupling gold).

【0030】この焼結体は、密度が17.0g/cm3
以上、ビーカッス硬さが300以上、抗折強度が150
Kg/mm2 以上が得られており、これは、通常のW粉
を用いた同組成のタングステン基焼結重合金と比べても
特性的に何ら劣るものではなく、人体無害の高比重部品
として、例えば、自動車のホイルバランサ、ダイキャス
ト用成形金型、或いは携帯電話機の振動子等に適用する
ことにより、従来の鉛含有高比重部品の代替えとして十
分使用に供し得るものである。
This sintered body has a density of 17.0 g / cm 3.
As described above, the Beakus hardness is 300 or more, and the bending strength is 150
Kg / mm 2 or more is obtained, which is not inferior in characteristics even when compared with tungsten-based sintered heavy alloy of the same composition using ordinary W powder, and as a high specific gravity part harmless to the human body. For example, when applied to a wheel balancer of an automobile, a molding die for die casting, a vibrator of a mobile phone, or the like, it can be sufficiently used as a substitute for a conventional lead-containing high specific gravity part.

【0031】実施例2 10×10×5mm程度の大きさのWC−6%Co系超
硬合金チップ状スクラップ10Kgずつを耐熱ステンレ
ス製トレーに載せて密閉型酸化炉内に充填し、2Kg/
cm2 まで加圧した酸素ガスを導入しながら通電昇温
し、900℃の酸化性雰囲気中で約24時間加熱・酸化
し、得られた酸化物を100℃以下まで冷却した後、ス
タンプミルにて約15分間粉砕して表2に示すような粒
度分布のWO3 +WCoO4 酸化粗粉を得た。
Example 2 10 kg of WC-6% Co cemented carbide chip-shaped scrap having a size of about 10 × 10 × 5 mm was placed on a heat-resistant stainless steel tray and charged into a closed oxidation furnace.
The temperature was increased while introducing oxygen gas pressurized to 2 cm 2, heated and oxidized in an oxidizing atmosphere at 900 ° C. for about 24 hours, and the obtained oxide was cooled to 100 ° C. or less, and then was subjected to a stamp mill. And crushed for about 15 minutes to obtain WO 3 + WCoO 4 oxidized coarse powder having a particle size distribution as shown in Table 2.

【表2】 次に、このWO3 +WCoO4 酸化粗粉を前記実施例1
と同様の還元処理を行い5μm前後のW−Co粉末を得
た。この場合も、残留酸素は0.60重量%以下、残留
トータル・炭素量は0.1重量%以下、Coは6.3重
量%含有、残りがWで、実施例1と同様に高品質の微粉
末が再生できた。
[Table 2] Next, this WO 3 + WCoO 4 oxidized coarse powder was used in Example 1 described above.
The same reduction treatment as described above was performed to obtain a W-Co powder of about 5 μm. Also in this case, the residual oxygen is 0.60% by weight or less, the residual total carbon content is 0.1% by weight or less, Co contains 6.3% by weight, and the balance is W. Fine powder could be regenerated.

【0032】また、この再生W−Co粉末を用いた焼結
体も前記実施例1と同様の特性が得られた。
The sintered body using the recycled W-Co powder also had the same characteristics as in the first embodiment.

【0033】[0033]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、超硬合金スクラップから再生W−Co原
料粉末を製造するに際し、WC−Co系超硬合金スクラ
ップを600℃以上の酸化性雰囲気中で酸化した後、一
次粉砕を行い、さらに、600〜1000℃の水素含有
還元性雰囲気中でW−Co粉に還元した後、二次粉砕を
行って微粉末化するようにしたので、従来実施されてい
た諸処理方法に伴う複雑な化学的、あるいは冶金的プロ
セスを無くし、再生処理プロセスを単純化できるため、
容易に且つ効率的に高品質の微粉末化が達成でき、工業
的量産による低コストが実現可能となる。
As described above, according to the first aspect of the present invention, when producing the recycled W-Co raw material powder from the cemented carbide scrap, the WC-Co-based cemented carbide scrap is heated to 600 ° C. or more. After oxidizing in an oxidizing atmosphere, primary pulverization is performed, and further reduced to W-Co powder in a hydrogen-containing reducing atmosphere at 600 to 1000 ° C., and then secondary pulverized to be finely pulverized. As a result, the complicated chemical or metallurgical processes involved in the various treatment methods conventionally used can be eliminated, and the regeneration process can be simplified.
High quality pulverization can be achieved easily and efficiently, and low cost can be realized by industrial mass production.

【0034】また、請求項2に記載の発明によれば、前
記再生W−Co粉を焼結することのより、低コストのタ
ングステン基焼結重合金を製造することができる。この
タングステン基焼結重合金は通常のW粉を用いた同組成
の超硬合金と比べて特性的にも何等遜色はなく、低コス
トの高比重部品として自動車のホイルバランサ、ダイキ
ャスト用金型材、或いは携帯電話機の振動子等の用途に
好適であり、従来の鉛含有高比重部品の代替品として十
分使用に供し得るものである。
Further, according to the second aspect of the present invention, by sintering the recycled W-Co powder, a low cost tungsten-based sintered heavy metal can be manufactured. This tungsten-based sintered heavy alloy is not inferior in characteristics to ordinary cemented carbide of the same composition using W powder, and is a low-cost, high-specific-gravity part for automobile wheel balancers and die-casting mold materials. Alternatively, it is suitable for applications such as a vibrator of a mobile phone, and can be sufficiently used as a substitute for a conventional lead-containing high specific gravity part.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る再生W−Co原料粉末の製造工程
を示す図である。
FIG. 1 is a view showing a process for producing a recycled W—Co raw material powder according to the present invention.

【図2】超硬チップスクラップの酸化処理時間と酸化粉
回収率の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the oxidation treatment time of carbide chip scrap and the oxide powder recovery rate.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年11月25日(1999.11.
25)
[Submission date] November 25, 1999 (1999.11.
25)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【課題を解決するための手段】本発明は、WC−Co系
超硬スクラップを低コストのタングステン基重合金の原
料として再利用することにより、上記課題を解決するも
のであり、請求項1に記載の発明は、WC−Co系超硬
合金スクラップを600〜1000℃の酸化性雰囲気中
で酸化した後、一次粉砕を行い平均粒径を600μm以
下とし、さらに、600〜1000℃の水素含有還元性
雰囲気中でW−Co粉に還元した後、二次粉砕を行って
微粉末化することを特徴とするものである。この際に、
請求項2に記載の発明は、上記酸化を、700℃〜90
0℃の酸化性雰囲気中で行なった後に、平均粒径が20
0μm以下となるように一次粉砕することを特徴とする
ものである。また、請求項3に記載の発明は、WC−C
o系超硬合金スクラップを600〜1000℃の酸化性
雰囲気中で酸化した後、一次粉砕を行い平均粒径を60
0μm以下とし、さらに600〜1000℃の水素含有
還元性雰囲気中でW−Co粉に還元した後、二次粉砕を
行って微粉末化してW−Co原料粉末を再生し、次い
で、この再生W−Co原料粉末を使用することを特徴と
するものであり、さらに請求項4に記載の発明は、上記
酸化を、700℃〜900℃の酸化性雰囲気中で行なっ
た後に、平均粒径が200μm以下となるように一次粉
砕することを特徴とするものである。
The present invention SUMMARY OF], by reusing the WC-Co-based cemented carbide scrap as a low-cost tungsten-based polymer alloy of the starting state, and are not to solve the above problems, according to claim 1 The invention described in (1) is a WC-Co based carbide
Alloy scrap in an oxidizing atmosphere at 600 to 1000 ° C
After primary oxidation, primary pulverization is performed to reduce the average particle size to 600 μm or less.
Below, and hydrogen-containing reducing property at 600-1000 ° C
After reducing to W-Co powder in the atmosphere, secondary grinding is performed
It is characterized by being pulverized. At this time,
In the invention according to claim 2, the oxidation is performed at a temperature of 700 ° C to 90 ° C.
After performing in an oxidizing atmosphere at 0 ° C., the average particle size is 20
The primary pulverization is performed so as to be 0 μm or less.
Things. The third aspect of the present invention provides a WC-C
O-based cemented carbide scrap is oxidizable at 600-1000 ° C
After being oxidized in an atmosphere, primary pulverization is performed to obtain an average particle size of 60.
0 μm or less, and further containing hydrogen at 600 to 1000 ° C.
After reduction to W-Co powder in a reducing atmosphere, secondary pulverization
To make fine powder to regenerate the W-Co raw material powder,
The use of the recycled W-Co raw material powder is characterized in that
The invention according to claim 4 is the above-mentioned invention.
Oxidation is performed in an oxidizing atmosphere at 700 ° C. to 900 ° C.
After that, the primary powder is adjusted so that the average particle size becomes 200 μm or less.
It is characterized by crushing.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】一次粉砕して得られた酸化粗粉を水素含有
雰囲気中において600〜1000℃の温度範囲で還元
処理することによって、W+Coを主体とする還元粉末
が得られる。そして、請求項1または2に記載の発明に
よれば、得られた還元粉を再粉砕(二次粉砕という)
し、微粉末化(平均粒径5μm以下が望ましい)するこ
とにより、再生W−Co原料粉末を製造することができ
る。本再生処理プロセスは単純で、容易に且つ効果的な
微粉末化が達成でき、工業的量産による低コスト化が実
現できるものである。
By subjecting the oxidized coarse powder obtained by the primary pulverization to a reduction treatment in a hydrogen-containing atmosphere at a temperature in the range of 600 to 1000 ° C., a reduced powder mainly composed of W + Co is obtained. The invention according to claim 1 or 2
According to it, the obtained reduced powder is reground (called secondary grinding)
Then, by making the powder into a fine powder (preferably having an average particle diameter of 5 μm or less), a recycled W—Co raw material powder can be produced. The present regeneration process is simple, can easily and effectively achieve fine powdering, and can achieve cost reduction by industrial mass production.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】また、請求項3または4に係る本発明で
は、上記のように還元粉を二次粉砕した後、定量分析を
行い、使用目的に応じ前記再生W−Co原料粉末にW
粉、Ni粉、Co粉、Cu粉、Fe粉、Mo粉等を添加
して所定の組成になるように調整し、ボールミルにより
粉砕・混合・造粒し、圧粉体にプレス成形した後、焼結
することにより安価なタングステン基焼結重合金を製造
するものである。
In the present invention according to claim 3 or 4, after the reduced powder is secondarily pulverized as described above, quantitative analysis is performed, and W is added to the recycled W-Co raw material powder according to the purpose of use.
Powder, Ni powder, Co powder, Cu powder, Fe powder, Mo powder, etc. are added to adjust to a predetermined composition, crushed / mixed / granulated by a ball mill, and pressed into a green compact, By sintering, an inexpensive tungsten-based sintered heavy metal is manufactured.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0033】[0033]

【発明の効果】以上説明したように、請求項1または2
に記載の発明によれば、超硬合金スクラップから再生W
−Co原料粉末を製造するに際し、WC−Co系超硬合
金スクラップを600〜1000℃の酸化性雰囲気中で
酸化した後、一次粉砕を行い平均粒径を600μm以下
とし、さらに、600〜1000℃の水素含有還元性雰
囲気中でW−Co粉に還元した後、二次粉砕を行って微
粉末化するようにしたので、従来実施されていた諸処理
方法に伴う複雑な化学的、あるいは冶金的プロセスを無
くし、再生処理プロセスを単純化できるため、容易に且
つ効果的に高品質のW−Co微粉末化が達成でき、工業
的量産による低コストが実現可能となる。
As described above, claim 1 or claim 2
According to the invention described in the above, the recycled W from the cemented carbide scrap
-In producing Co raw material powder, WC-Co cemented carbide scrap is oxidized in an oxidizing atmosphere at 600 to 1000 ° C , and then primary pulverized to have an average particle size of 600 µm or less.
And then, further, after reduction to the W-Co powder in a hydrogen containing reducing atmosphere of 600 to 1000 ° C., since such fine powdered performing secondary crushing, due to various processing method which is conventionally carried out Eliminates complicated chemical or metallurgical processes and simplifies the regeneration process, making it possible to easily and effectively achieve high-quality W-Co fine powder, and achieve low cost by industrial mass production. Become.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】また、請求項3または4の記載の発明によ
れば、前記再生W−Co粉を焼結することにより、低コ
ストのタングステン基焼結重合金を製造することができ
る。このタングステン基焼結重合金は通常のW粉を用い
た同組成の超硬合金と比べて特性的にも何等遜色はな
く、低コストの高比重部品として自動車のホイルバラン
サ、ダイキャスト用金型材、或いは携帯電話機の振動子
等の用途に好適であり、従来の鉛含有高比重部品の代替
品として十分使用に供し得るものである。
According to the third or fourth aspect of the present invention,
Then, by sintering the recycled W-Co powder, a low cost tungsten-based sintered heavy metal can be manufactured. This tungsten-based sintered heavy alloy is not inferior in characteristics to ordinary cemented carbide of the same composition using W powder, and is a low-cost, high-specific-gravity part for automobile wheel balancers and die-casting mold materials. Alternatively, it is suitable for applications such as a vibrator of a mobile phone, and can be sufficiently used as a substitute for a conventional lead-containing high specific gravity part.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 27/04 101 C22C 27/04 101 32/00 32/00 W // C22B 7/00 C22B 7/00 A (72)発明者 中井 崇 静岡県裾野市千福46番地の1 株式会社東 富士製作所内 Fターム(参考) 4K001 AA07 AA29 BA22 CA15 DA10 4K017 AA04 BA04 BB06 CA07 EA03 EA08 EH01 EH18 FB06 4K018 AA20 BA04 BA09 BB08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 27/04 101 C22C 27/04 101 32/00 32/00 W // C22B 7/00 C22B 7/00 A (72) Inventor Takashi Nakai 46-1, Chifuku, Susono City, Shizuoka Prefecture F-term in Higashi Fuji Manufacturing Co., Ltd. 4K001 AA07 AA29 BA22 CA15 DA10 4K017 AA04 BA04 BB06 CA07 EA03 EA08 EH01 EH18 FB06 4K018 AA20 BA04 BA09 BB08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 WC−Co系超硬合金スクラップを60
0℃以上の酸化性雰囲気中で酸化した後、一次粉砕を行
い、さらに、600〜1000℃の水素含有還元性雰囲
気中でW−Co粉に還元した後、二次粉砕を行って微粉
末化することを特徴とする超硬合金スクラップからの再
生W−Co原料粉末の製造方法。
1. A WC-Co cemented carbide scrap of 60
After being oxidized in an oxidizing atmosphere of 0 ° C. or more, primary pulverization is performed, and further reduced to W—Co powder in a hydrogen-containing reducing atmosphere at 600 to 1000 ° C., and then secondary pulverized to form a fine powder. A method for producing recycled W-Co raw material powder from cemented carbide scrap.
【請求項2】 WC−Co系超硬合金スクラップを60
0℃以上の酸化性雰囲気中で酸化した後、一次粉砕を行
い、さらに600〜1000℃の水素含有還元性雰囲気
中でW−Co粉に還元した後、二次粉砕を行って微粉末
化してW−Co原料粉末を再生し、次いで、この再生W
−Co原料粉末を使用することを特徴とするタングステ
ン基焼結重合金の製造方法。
2. A WC-Co cemented carbide scrap of 60
After being oxidized in an oxidizing atmosphere of 0 ° C. or more, primary pulverization is performed, and further reduced to W—Co powder in a hydrogen-containing reducing atmosphere at 600 to 1000 ° C., and then secondary pulverized to be finely pulverized. The W-Co raw material powder is regenerated, and then the regenerated W
-A method for producing tungsten-based sintered heavy metal, characterized by using Co raw material powder.
JP795099A 1999-01-14 1999-01-14 Method for producing recycled W—Co raw material powder from cemented carbide scrap and method for producing tungsten-based sintered heavy alloy using the same Expired - Fee Related JP3056476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP795099A JP3056476B1 (en) 1999-01-14 1999-01-14 Method for producing recycled W—Co raw material powder from cemented carbide scrap and method for producing tungsten-based sintered heavy alloy using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP795099A JP3056476B1 (en) 1999-01-14 1999-01-14 Method for producing recycled W—Co raw material powder from cemented carbide scrap and method for producing tungsten-based sintered heavy alloy using the same

Publications (2)

Publication Number Publication Date
JP3056476B1 JP3056476B1 (en) 2000-06-26
JP2000204404A true JP2000204404A (en) 2000-07-25

Family

ID=11679784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP795099A Expired - Fee Related JP3056476B1 (en) 1999-01-14 1999-01-14 Method for producing recycled W—Co raw material powder from cemented carbide scrap and method for producing tungsten-based sintered heavy alloy using the same

Country Status (1)

Country Link
JP (1) JP3056476B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700197B1 (en) * 2005-07-30 2007-03-27 한국기계연구원 Process for Manufacturing Sintered Materials Containing Cobalt Component
KR101007155B1 (en) 2008-10-29 2011-01-12 한국기계연구원 Fabrication of fine Fe-Ni powder made by oxidation-reduction treatment process using Fe-Ni metal scrap
WO2011053231A1 (en) * 2009-10-26 2011-05-05 Minpro Aktiebolag Recycling of tungsten carbides
WO2011083376A1 (en) * 2010-01-08 2011-07-14 Jayakannan Arumugavelu A process for recycling of tungsten carbide alloy
KR101241746B1 (en) 2012-03-21 2013-03-15 주식회사 이맥머트리얼솔루션 Tungsten powder product method using waste tungsten
JP2013159788A (en) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp Method of producing tungsten oxide, and method of producing tungsten employing the same
CN103290226A (en) * 2013-06-20 2013-09-11 北京工业大学 Method for recovering and regenerating ultrafine grained cemented carbide containing crystal grain growth inhibitor
KR101465625B1 (en) 2012-11-22 2014-11-27 한국생산기술연구원 Manufacturing method of WC-hard metal powder using hard metal scrap
JP2015044739A (en) * 2014-10-27 2015-03-12 Jx日鉱日石金属株式会社 Method of producing tungsten oxide
CN104862569A (en) * 2015-05-17 2015-08-26 江西理工大学 Molybdenum-based material used for hot extrusion die and surface carburizing treatment technology

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213833B1 (en) 2010-04-10 2012-12-18 최미영 Process for recycling cemented carbide
RU2489504C2 (en) * 2011-10-24 2013-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУВПО "КнАГТУ") Utilisation method of wastes of hard alloys containing tungsten carbide and cobalt as binding agent
RU2479652C1 (en) * 2011-12-21 2013-04-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Electrochemical processing method of metal wastes of tungsten-copper alloy wastes
CN111426192A (en) * 2020-04-13 2020-07-17 湖南天益高技术材料制造有限公司 Method for recycling waste hard alloy roll collars
CN112974814A (en) * 2021-04-25 2021-06-18 陕西斯瑞新材料股份有限公司 Method for preparing regenerated copper-tungsten alloy powder
CN113477933A (en) * 2021-07-02 2021-10-08 西安华力装备科技有限公司 Process method for preparing fine tungsten alloy powder from waste residues
CN113996797B (en) * 2021-10-15 2023-09-15 中国兵器科学研究院宁波分院 Low-cost recovery and re-pulverizing process for titanium alloy spherical coarse powder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700197B1 (en) * 2005-07-30 2007-03-27 한국기계연구원 Process for Manufacturing Sintered Materials Containing Cobalt Component
KR101007155B1 (en) 2008-10-29 2011-01-12 한국기계연구원 Fabrication of fine Fe-Ni powder made by oxidation-reduction treatment process using Fe-Ni metal scrap
US8685137B2 (en) 2009-10-26 2014-04-01 Minpro Aktiebolag Recycling of tungsten carbides
WO2011053231A1 (en) * 2009-10-26 2011-05-05 Minpro Aktiebolag Recycling of tungsten carbides
CN102665973A (en) * 2009-10-26 2012-09-12 明普罗公司 Recycling of tungsten carbides
CN102665973B (en) * 2009-10-26 2014-07-16 明普罗公司 Recycling of tungsten carbides
WO2011083376A1 (en) * 2010-01-08 2011-07-14 Jayakannan Arumugavelu A process for recycling of tungsten carbide alloy
CN102725429A (en) * 2010-01-08 2012-10-10 贾亚卡纳安·阿鲁穆加维卢 A process for recycling of tungsten carbide alloy
JP2013159788A (en) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp Method of producing tungsten oxide, and method of producing tungsten employing the same
KR101241746B1 (en) 2012-03-21 2013-03-15 주식회사 이맥머트리얼솔루션 Tungsten powder product method using waste tungsten
KR101465625B1 (en) 2012-11-22 2014-11-27 한국생산기술연구원 Manufacturing method of WC-hard metal powder using hard metal scrap
CN103290226A (en) * 2013-06-20 2013-09-11 北京工业大学 Method for recovering and regenerating ultrafine grained cemented carbide containing crystal grain growth inhibitor
JP2015044739A (en) * 2014-10-27 2015-03-12 Jx日鉱日石金属株式会社 Method of producing tungsten oxide
CN104862569A (en) * 2015-05-17 2015-08-26 江西理工大学 Molybdenum-based material used for hot extrusion die and surface carburizing treatment technology

Also Published As

Publication number Publication date
JP3056476B1 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JP3056476B1 (en) Method for producing recycled W—Co raw material powder from cemented carbide scrap and method for producing tungsten-based sintered heavy alloy using the same
JP4974798B2 (en) Tantalum powder
CN1699000B (en) Method for preparing a metallic article having an other additive constituent, without any melting
JP5149164B2 (en) Method for recovering useful materials from rare earth-iron-boron magnet scrap
CA1309882C (en) Powder particles for fine-grained hard material alloys and a process for the preparation of such particles
JPH0261531B2 (en)
JP2000226601A (en) Production of reproduced tungsten raw material powder from tungsten alloy scrap and production of tungsten base sintered heavy alloy using same
JP2004002927A (en) Method for processing super hard alloy scrap
CA1233679A (en) Wrought p/m processing for prealloyed powder
WO2017027914A1 (en) Method for recovery of metal-containing material from a composite material
US20090311123A1 (en) Method for producing metal alloy and intermetallic products
US4595413A (en) Group IVb transition metal based metal and processes for the production thereof
JPH03122205A (en) Manufacture of ti powder
CN113414386B (en) Method for preparing block alloy by gradient reduction of oxide at low temperature
US20120251380A1 (en) Recycling of tungsten carbides
US20050061109A1 (en) Method for production of metallic elements of high purity such as chromes
JPH07278601A (en) Titanium-base powder and production thereof
JP2003055747A (en) Sintered tool steel and production method therefor
JP2927400B2 (en) Method for regenerating cemented carbide composition and method for producing cemented carbide
JP3793813B2 (en) High strength titanium alloy and method for producing the same
JP3721993B2 (en) Method for producing sponge iron and reduced iron powder
US4792351A (en) Hydrometallurgical process for producing irregular morphology powders
JPS61502615A (en) Titanium, hafnium and zirconium group 4B transition metal group passivated metal powder for powder metallurgy and method for producing the same
JPH03193842A (en) Ti-al matrix composite and its manufacture
JPH04371536A (en) Production of tial intermetallic compound powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees