JP2000199056A - Rare earth-ferromagnetic metallic target - Google Patents

Rare earth-ferromagnetic metallic target

Info

Publication number
JP2000199056A
JP2000199056A JP11000905A JP90599A JP2000199056A JP 2000199056 A JP2000199056 A JP 2000199056A JP 11000905 A JP11000905 A JP 11000905A JP 90599 A JP90599 A JP 90599A JP 2000199056 A JP2000199056 A JP 2000199056A
Authority
JP
Japan
Prior art keywords
rare earth
ferromagnetic metal
target
ferromagnetic metallic
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11000905A
Other languages
Japanese (ja)
Inventor
Tomonori Ueno
友典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11000905A priority Critical patent/JP2000199056A/en
Publication of JP2000199056A publication Critical patent/JP2000199056A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth-ferromagnetic metallic target capable of increasing the utilizing efficiency more than the conventional case while securing the uniformity of the compositional distribution of a thin film to be formed at the time of sputtering. SOLUTION: This invention relates to a rare earth-ferromagnetic metallic target consisting essentially of at least one kind of rare earth elements and at least one kind of ferromagnetic metallic elements selected from (Co, Fe and Ni), in which at least one kind of powder contg. intermetallic compds. of the rare earth elements and ferromagnetic metallic elements is sintered, has a structure consisting essentially of rare earth phases substantially composed of rare earth elements, ferromagnetic metallic phases consisting essentially of ferromagnetic metallic metals and intermetallic compd. phases of rare earth elements and ferromagnetic metallic elements, and in which voids are dispersed, and the void volume of the target is 5 to 20%. Preferably, the powder contg. the intermetallic compd. phases of rare earth elements and ferromagnetic metallic elements has a compsn. showing the eutectic crystals of rare earth elements and ferromagnetic metallic elements. In the target, the maximum permeability can be controlled to <=10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光磁気記録媒体の
形成等に用いられる希土類−強磁性金属系ターゲットに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-ferromagnetic metal target used for forming a magneto-optical recording medium.

【0002】[0002]

【従来の技術】情報記憶媒体等に用いられる希土類―強
磁性金属系非晶質膜は、光磁気記録媒体の中でも飽和磁
化が小さく垂直磁化膜が得られ、媒体ノイズも低いとい
うことで種々の研究・開発が行われてきた。この希土類
―強磁性金属系非晶質膜は、通常マグネトロンスパッタ
リングという手法によって製造される。この方法は、た
とえば狙いの組成となるように調整したスパッタリング
ターゲットを用い、このターゲット表面に漏洩磁束を生
じさせ、この漏洩磁束によってAr等のプラズマをター
ゲット表面に集中させ、効率よくターゲット表面をスパ
ッタするものである。そして、プラズマによって叩き出
されたスパッタ粒子を基板上に付着させることで、基板
上に薄膜を得ることができる。
2. Description of the Related Art Rare earth-ferromagnetic metal-based amorphous films used for information storage media and the like have various types of magneto-optical recording media because they have a small saturation magnetization and a perpendicular magnetization film can be obtained, and the medium noise is low. Research and development have been performed. This rare earth-ferromagnetic metal-based amorphous film is usually manufactured by a technique called magnetron sputtering. In this method, for example, a sputtering target adjusted to have a desired composition is used, a leakage magnetic flux is generated on the surface of the target, and plasma such as Ar is concentrated on the target surface by the leakage magnetic flux, so that the target surface is efficiently sputtered. Is what you do. Then, a thin film can be obtained on the substrate by attaching the sputtered particles sputtered by the plasma to the substrate.

【0003】[0003]

【発明が解決しようとする課題】上述したマグネトロン
スパッタリング法では、ターゲット表面にいかに効率よ
く漏洩磁束を得てターゲットの利用効率を上げるかが大
きな課題である。漏洩磁束を大きくする手法の一つとし
て、特開平2−200778号には、希土類系合金の強
磁性体ターゲットの気孔率を1〜60%とすることで、
最大透磁率を下げる技術が提案されている。この方法
は、最大透磁率を低減する手法としては有効である。し
かし、単純に最大透磁率を下げるだけでは、光磁気記録
媒体を形成するターゲットとしては不十分である。
In the magnetron sputtering method described above, it is a major problem how to efficiently obtain a leakage magnetic flux on the target surface and increase the utilization efficiency of the target. As one of techniques for increasing the leakage magnetic flux, Japanese Patent Application Laid-Open No. 2-200778 discloses that the porosity of a rare-earth alloy ferromagnetic target is set to 1 to 60%.
Techniques for reducing the maximum magnetic permeability have been proposed. This method is effective as a method for reducing the maximum magnetic permeability. However, simply lowering the maximum magnetic permeability is not sufficient as a target for forming a magneto-optical recording medium.

【0004】たとえば、希土類−強磁性金属系のターゲ
ットを光磁気記録媒体用の薄膜を形成しようとする場
合、通常のターゲットとは異なり、均一相の組織を有す
るのではなく、希土類元素相と、希土類元素と強磁性金
属でなる金属間化合物相と、強磁性金属相のそれぞれの
相の存在比を制御して存在させた方が、形成される薄膜
の組成が均一になるという現象が知られている。
For example, when a rare-earth-ferromagnetic metal-based target is to be formed into a thin film for a magneto-optical recording medium, unlike a normal target, it does not have a uniform phase structure but a rare-earth element phase. It has been known that the composition of a thin film to be formed is more uniform when the existence ratio of the intermetallic compound phase composed of a rare earth element and a ferromagnetic metal and the ferromagnetic metal phase is controlled to be present. ing.

【0005】この現象に対応するターゲットとして、た
とえば特開平62−70550号のように、希土類元素
粉末と強磁性粉末である鉄粉末とを焼結し、次いで加熱
処理によって、さらに希土類元素と強磁性元素との金属
間化合物相量を制御したターゲットが知られている。ま
た、本出願人は特開平1−25977号において、希土
類元素と強磁性金属の共晶組織、即ち実質的に希土類元
素相(希土類元素のα相)と希土類金属と強磁性金属と
の金属間化合物相の組織を有する原料粉末と、強磁性金
属粉末とを焼結させて希土類元素と強磁性金属でなる金
属間化合物相と、強磁性金属相のそれぞれの相の存在さ
せる手法を提案している。
As a target corresponding to this phenomenon, for example, as disclosed in Japanese Patent Application Laid-Open No. 62-70550, a rare earth element powder and an iron powder which is a ferromagnetic powder are sintered, and then the rare earth element and the ferromagnetic powder are heated. A target in which the amount of an intermetallic compound phase with an element is controlled is known. Further, the present applicant discloses in Japanese Patent Application Laid-Open No. 1-25977 that the eutectic structure of a rare earth element and a ferromagnetic metal, that is, the interphase between a rare earth element phase (α phase of a rare earth element) and a rare earth metal and a ferromagnetic metal, Proposal of a method of sintering a raw material powder having a structure of a compound phase and a ferromagnetic metal powder to make each of an intermetallic compound phase composed of a rare earth element and a ferromagnetic metal and a ferromagnetic metal phase exist. I have.

【0006】さらに、本出願人は、上述した組織を制御
したターゲットの利用効率の低下を防ぐ手法として、強
磁性金属の粒子を微細化する方法(特開平5−2719
15号、特開平6−184740号)、組織中に存在す
る強磁性金属相に希土類元素を少量添加する方法(特開
平5−320888号、特開平7−90567号)等を
提案している。これらのいずれの方法も、最大透磁率を
下げるという点で有効な手法である。
Furthermore, the present applicant has proposed a method of miniaturizing ferromagnetic metal particles (Japanese Patent Laid-Open No. 5-2719) as a method for preventing a decrease in the utilization efficiency of a target whose texture is controlled as described above.
No. 15, JP-A-6-184740) and a method of adding a small amount of a rare earth element to a ferromagnetic metal phase present in the structure (JP-A-5-320888, JP-A-7-90567). Each of these methods is an effective method in reducing the maximum magnetic permeability.

【0007】しかし、さらなる利用効率の向上の要求が
求められており、利用効率と形成する薄膜の組成分布の
均一性の両立に対しては十分とは言えないものがあっ
た。そこで、本発明の目的は、スパッタ時に形成される
薄膜の組成分布を均一性を確保しつつ、従来よりもさら
に利用効率を高めることができる希土類−強磁性金属系
ターゲットを提供することである。
[0007] However, there is a demand for further improvement in utilization efficiency, and there has been a case where it is not sufficient to achieve both utilization efficiency and uniformity of the composition distribution of a thin film to be formed. Therefore, an object of the present invention is to provide a rare earth-ferromagnetic metal-based target capable of further improving the utilization efficiency as compared with the conventional one while ensuring uniform composition distribution of a thin film formed during sputtering.

【0008】[0008]

【課題を解決するための手段】本発明者等は、希土類金
属相、強磁性金属相、希土類元素と強磁性金属元素との
金属間化合物相の構成比率を制御でき、さらに最大透磁
率を下げる手法を検討した。そして、予め希土類元素と
強磁性金属との化合物を原料に形成しておくことで、タ
ーゲット組織中に空隙を分散させて最大透磁率を低くし
ても、金属相、強磁性金属相、希土類元素と強磁性金属
元素との金属間化合物相の構成比率を容易に調整でき、
組成の均一な薄膜を得ることができること見いだし本発
明に到達した。
The present inventors can control the composition ratio of a rare earth metal phase, a ferromagnetic metal phase, an intermetallic compound phase of a rare earth element and a ferromagnetic metal element, and further reduce the maximum magnetic permeability. The method was studied. By forming a compound of a rare earth element and a ferromagnetic metal in advance as a raw material, even if the voids are dispersed in the target structure to lower the maximum magnetic permeability, the metal phase, the ferromagnetic metal phase, the rare earth element And the composition ratio of the intermetallic compound phase with the ferromagnetic metal element can be easily adjusted,
The inventors have found that a thin film having a uniform composition can be obtained, and have reached the present invention.

【0009】即ち本発明は、少なくとも1種の希土類元
素と、(Co、Fe、Ni)から選ばれる少なくとも1
種の強磁性金属元素とを主成分とする希土類−強磁性金
属系ターゲットであって、希土類元素と強磁性金属元素
との金属間化合物を含有する少なくとも1種の粉末が焼
結され、実質的に希土類元素をからなる希土類相、強磁
性金属を主体とする強磁性金属相、希土類元素と強磁性
金属元素との金属間化合物相を主体とし、且つ前記組織
中に空隙が分散された組織からなり、ターゲットの空隙
率が4〜20%である希土類−強磁性金属系ターゲット
である。
That is, the present invention provides at least one rare earth element and at least one rare earth element selected from (Co, Fe, Ni).
A rare earth-ferromagnetic metal-based target containing at least one ferromagnetic metal element as a main component, wherein at least one powder containing an intermetallic compound of the rare earth element and the ferromagnetic metal element is sintered; Rare earth phase composed of a rare earth element, a ferromagnetic metal phase mainly composed of a ferromagnetic metal, an intermetallic compound phase mainly composed of a rare earth element and a ferromagnetic metal element, and from a structure in which voids are dispersed in the structure. And a porosity of the target of 4 to 20%.

【0010】本発明において好ましくは、希土類元素−
強磁性金属元素からなる金属間化合物相を含有する上記
粉末は、希土類元素と強磁性金属元素との共晶を発現す
る組成とする。上述した本発明のターゲットは、最大透
磁率を10以下とすることができる。
In the present invention, the rare earth element is preferably
The above-mentioned powder containing an intermetallic compound phase composed of a ferromagnetic metal element has a composition that expresses a eutectic of a rare earth element and a ferromagnetic metal element. The target of the present invention described above can have a maximum magnetic permeability of 10 or less.

【0011】[0011]

【発明の実施の形態】本発明の重要な特徴は、上述した
ように、原料粉末中に希土類元素と強磁性金属元素との
金属間化合物を存在させた粉末を用いて、空隙率を5〜
20%のターゲットを得たことにある。たとえば、希土
類元素粉末と強磁性金属粉末を原料として焼結した場
合、焼結による空孔の減少と、希土類元素と強磁性金属
との反応による金属間化合物の生成とが同時に進行す
る。このとき反応性の高い希土類元素粉末は、急速に強
磁性金属粉末と反応し、金属間化合物相を増加しつつ緻
密化することになる。したがって、金属間化合物相の量
と焼結の進行による空隙量の調整が極めて厳しいものと
なる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An important feature of the present invention is that, as described above, a porosity of 5 to 5 is obtained by using a powder in which an intermetallic compound of a rare earth element and a ferromagnetic metal element is present in a raw material powder.
20% of the target has been obtained. For example, when sintering a rare earth element powder and a ferromagnetic metal powder as raw materials, the reduction of vacancies by sintering and the generation of an intermetallic compound by the reaction between the rare earth element and the ferromagnetic metal proceed simultaneously. At this time, the highly reactive rare earth element powder rapidly reacts with the ferromagnetic metal powder and becomes denser while increasing the intermetallic compound phase. Therefore, the adjustment of the amount of the intermetallic compound phase and the amount of voids due to the progress of sintering becomes extremely severe.

【0012】一方、本発明のように原料粉末中に希土類
元素と強磁性金属元素との金属間化合物を存在させた粉
末を用いると、焼結界面における原料同士の濃度差が緩
和され、金属間化合物相が急速に増加しないため、空孔
の存在量の制御が容易になるのである。さらに、予め所
定量の金属間化合物を原料粉末に存在させておき、焼結
時に液相が発現しない温度で焼結すれば、焼結時での金
属間化合物の形成はほとんどなく、空隙の形成のため
に、実質的に密度のみをコントロールすれば所定の相比
を得ることができるという利点もある。もちろんこの時
には、必要に応じて原料粉末として強磁性金属相および
希土類相の相量として不足する強磁性金属あるいは希土
類金属を混合して焼結することになる。
On the other hand, when a powder in which an intermetallic compound of a rare earth element and a ferromagnetic metal element is present in the raw material powder as in the present invention, the difference in concentration between the raw materials at the sintering interface is reduced, and Since the compound phase does not increase rapidly, it is easy to control the amount of vacancies. Furthermore, if a predetermined amount of an intermetallic compound is previously present in the raw material powder and sintering is performed at a temperature at which a liquid phase does not appear during sintering, there is almost no formation of an intermetallic compound during sintering and formation of voids. Therefore, there is also an advantage that a predetermined phase ratio can be obtained by substantially controlling only the density. Needless to say, at this time, if necessary, a ferromagnetic metal or a rare earth metal, which is insufficient in the amount of the ferromagnetic metal phase and the rare earth phase as the raw material powder, is mixed and sintered.

【0013】本発明のより好ましい形態は、希土類元素
−強磁性金属元素からなる金属間化合物相を含有する粉
末は、希土類元素と強磁性金属元素との共晶を発現する
組成とすることである。希土類元素と希土類元素−強磁
性金属元素からなる金属間化合物との共晶点温度が希土
類金属相、強磁性金属相と比べ、低温であるため、焼結
温度を低くすることが可能となり、焼結時の反応を抑え
つつ焼結を進行させることができ、空隙率の調整がより
し易くなるためである。
In a more preferred embodiment of the present invention, the powder containing the intermetallic compound phase composed of a rare earth element and a ferromagnetic metal element has a composition that expresses a eutectic of the rare earth element and the ferromagnetic metal element. . Since the eutectic point of the rare earth element and the intermetallic compound composed of the rare earth element and the ferromagnetic metal element is lower than that of the rare earth metal phase and the ferromagnetic metal phase, the sintering temperature can be lowered, and the sintering temperature can be reduced. This is because sintering can proceed while suppressing the reaction during sintering, and the porosity can be easily adjusted.

【0014】なお、本発明において、空隙率を5〜20
%としたのは、空隙率が5%未満であると、最大透磁率
の低下にあまり寄与せず、また、20%を越えるとスパ
ッタ中の異常放電数(アークの発生数)が急激に増加す
るためである。好ましくは6〜10%である。本発明の
ターゲットにおいては、主要元素以外に、たとえば、A
l、Ti、Cr、Nb、Taから選ばれる元素の1種以
上を含ませることができる。これらの元素は、形成する
薄膜の耐食性の向上に効果がある元素としてしばしば導
入される元素である。これらの添加元素は、単体として
導入しても良いし、強磁性金属あるいは希土類元素との
合金として導入することも可能である。
In the present invention, the porosity is 5-20.
The percentage is that if the porosity is less than 5%, it does not contribute much to the decrease in the maximum magnetic permeability, and if it exceeds 20%, the number of abnormal discharges (number of arcs generated) during sputtering increases sharply. To do that. Preferably it is 6 to 10%. In the target of the present invention, for example, A
One or more elements selected from the group consisting of 1, Ti, Cr, Nb, and Ta can be contained. These elements are elements that are often introduced as elements that are effective in improving the corrosion resistance of the thin film to be formed. These additional elements may be introduced as a simple substance or as an alloy with a ferromagnetic metal or a rare earth element.

【0015】[0015]

【実施例】(実施例1)アトマイズ法によって得られた
Tb−40Fe(at%)共晶組織粉、純Fe粉、純C
o粉およびFe−16Cr(at%)合金粉をFe−2
1.5Tb−7.0Co−3.0Cr(at%)となる
ように混合した粉末を、熱間静水圧プレスにより、10
0MPa、3時間、500℃および600℃の条件で焼
結し、ターゲットを得た。
EXAMPLES (Example 1) Tb-40Fe (at%) eutectic structure powder, pure Fe powder, pure C obtained by the atomizing method
o powder and Fe-16Cr (at%) alloy powder to Fe-2
The powder mixed to be 1.5Tb-7.0Co-3.0Cr (at%) was subjected to hot isostatic pressing to obtain 10%.
Sintering was performed at 0 MPa, 3 hours, at 500 ° C. and 600 ° C., to obtain a target.

【0016】500℃で焼結したターゲットの50倍の
ミクロ組織を図1に示し、600℃で焼結したターゲッ
トの50倍のミクロ組織を図2に示す。それぞれの空隙
率は、同組成の溶解材の密度をアルキメデス法にてもと
めたものを密度ρt、製造したターゲットついて同様に
して得られた密度ρから次式で求めた。結果を表1に示
す。 空隙率=(ρt−ρ)×100/ρt また、磁気特性の測定により、最大透磁率を求めた。結
果を表1に示す。
FIG. 1 shows a 50-fold microstructure of the target sintered at 500 ° C., and FIG. 2 shows a 50-fold microstructure of the target sintered at 600 ° C. Each porosity was determined by the following equation from the density ρt obtained by measuring the density of the melted material having the same composition by the Archimedes method and the density ρ obtained in the same manner for the manufactured target. Table 1 shows the results. Porosity = (ρt−ρ) × 100 / ρt The maximum magnetic permeability was determined by measuring the magnetic properties. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】それぞれのターゲットを、Ar圧0.3P
a、投入電力500W、T/S距離60mm、膜厚1μ
m狙いで成膜し、基板中心から10mm間隔で5点の組
成分析を行った。その組成分析で、Tb組成の最大値と
最小値を表2に示す。さらに、5分間のスパッタでの異
常放電数(アーク数)も表2に示す。
Each target was set to an Ar pressure of 0.3 P
a, input power 500W, T / S distance 60mm, film thickness 1μ
A film was formed aiming at m, and composition analysis was performed at five points at intervals of 10 mm from the center of the substrate. Table 2 shows the maximum and minimum values of the Tb composition in the composition analysis. Table 2 also shows the number of abnormal discharges (number of arcs) during 5 minutes of sputtering.

【0019】[0019]

【表2】 [Table 2]

【0020】図1および図2に示すように、焼結温度を
変えて製造した本発明のターゲットは、原料同士の界面
で化合物を殆ど生成していない。また、表1に示すよう
に焼結温度を調整することで、空隙率の異なるターゲッ
トが得られ、同時に最大透磁率を低下できることがわか
る。また、表2に示すように、両方のターゲットにおい
て、Tbの濃度分布はほぼ均一性保たれていることが確
認できる。
As shown in FIGS. 1 and 2, the target of the present invention manufactured by changing the sintering temperature hardly generates a compound at the interface between the raw materials. Further, it can be seen that by adjusting the sintering temperature as shown in Table 1, targets having different porosity can be obtained, and at the same time, the maximum magnetic permeability can be reduced. In addition, as shown in Table 2, it can be confirmed that the Tb concentration distribution is almost uniform in both targets.

【0021】(実施例2)表3に示す原料粉末および焼
結条件でFe−21.5Tb−7.0Co−3.0Cr
(at%)のターゲットを作製した。ただし、原料粉末
はアトマイズ法で作製した。いずれのターゲットも実質
的に金属間化合物相、強磁性金属相、希土類金属相が存
在する組織を有するものとなった。
(Example 2) Fe-21.5Tb-7.0Co-3.0Cr under the raw material powders and sintering conditions shown in Table 3.
(At%) target was produced. However, the raw material powder was produced by an atomizing method. Each of the targets had a structure in which an intermetallic compound phase, a ferromagnetic metal phase, and a rare earth metal phase were substantially present.

【0022】[0022]

【表3】 [Table 3]

【0023】作製したターゲットの空隙率および最大透
磁率を表4に示す。それぞれのターゲットを、Ar圧
0.3Pa、投入電力500W、T/S距離60mm、
膜厚1μm狙いで成膜し、基板中心から10mm間隔で
5点の組成分析を行った。その組成分析で、Tb組成の
最大値と最小値を表5に示す。さらに、5分間のスパッ
タでの異常放電数(アーク数)も表5に示す。
Table 4 shows the porosity and the maximum magnetic permeability of the produced target. Each target was subjected to Ar pressure 0.3 Pa, input power 500 W, T / S distance 60 mm,
A film was formed with the aim of a film thickness of 1 μm, and composition analysis was performed at five points at intervals of 10 mm from the center of the substrate. Table 5 shows the maximum and minimum values of the Tb composition in the composition analysis. Table 5 also shows the number of abnormal discharges (number of arcs) during 5 minutes of sputtering.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】表3および4より、本発明のターゲットは
最大透磁率が低く、成膜時のTbの濃度分布もほぼ均一
性保たれていることが確認できる。また、ターゲットの
空隙率が4%より大きいとと最大透磁率が高くなり、ま
た、20%を越えるとアークが発生し出すことがわか
る。
From Tables 3 and 4, it can be confirmed that the target of the present invention has a low maximum magnetic permeability, and the Tb concentration distribution during film formation is almost uniform. It can also be seen that if the porosity of the target is greater than 4%, the maximum magnetic permeability increases, and if it exceeds 20%, an arc is generated.

【0027】[0027]

【発明の効果】本発明により、形成する薄膜の組成分布
を決定する相構成およびスパッタ特性を保ったまま、マ
グネトロンスパッタに好適な低い最大透磁率を有する希
土類−遷移金属系ターゲットを提供することが可能とな
った。
According to the present invention, it is possible to provide a rare earth-transition metal based target having a low maximum magnetic permeability suitable for magnetron sputtering while maintaining the phase structure and the sputtering characteristics for determining the composition distribution of the thin film to be formed. It has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のターゲットの金属ミクロ組織を示す写
真である。
FIG. 1 is a photograph showing a metal microstructure of a target of the present invention.

【図2】本発明のターゲットの別の金属ミクロ組織を示
す写真である。
FIG. 2 is a photograph showing another metal microstructure of the target of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1種の希土類元素と、(C
o、Fe、Ni)から選ばれる少なくとも1種の強磁性
金属元素とを主成分とする希土類−強磁性金属系ターゲ
ットであって、希土類元素と強磁性金属元素との金属間
化合物を含有する少なくとも1種の粉末が焼結され、実
質的に希土類元素からなる希土類相、強磁性金属を主体
とする強磁性金属相、希土類元素と強磁性金属元素との
金属間化合物相を主体とし、且つ前記組織中に空隙が分
散された組織からなり、ターゲットの空隙率が5〜20
%であることを特徴とする希土類−強磁性金属系ターゲ
ット。
(1) at least one rare earth element;
o, Fe, Ni) is a rare earth-ferromagnetic metal target mainly containing at least one ferromagnetic metal element selected from the group consisting of at least one ferromagnetic metal element, and at least one containing an intermetallic compound of a rare earth element and a ferromagnetic metal element. One kind of powder is sintered, a rare earth phase substantially composed of a rare earth element, a ferromagnetic metal phase mainly composed of a ferromagnetic metal, an intermetallic compound phase of a rare earth element and a ferromagnetic metal element mainly, and Consisting of a structure in which voids are dispersed in the structure, and the porosity of the target is 5 to 20
% Rare earth-ferromagnetic metal target.
【請求項2】 希土類元素と強磁性金属元素との金属間
化合物相を含有する粉末は、希土類元素と強磁性金属元
素との共晶を発現する組成であることを特徴とする請求
項1に記載の希土類−強磁性金属系ターゲット。
2. The powder according to claim 1, wherein the powder containing the intermetallic compound phase of the rare earth element and the ferromagnetic metal element has a composition exhibiting a eutectic of the rare earth element and the ferromagnetic metal element. The rare earth-ferromagnetic metal-based target described in the above.
【請求項3】 最大透磁率が10以下であることを特徴
とする請求項1から3に記載の希土類−強磁性金属系タ
ーゲット。
3. The rare earth-ferromagnetic metal-based target according to claim 1, wherein the maximum magnetic permeability is 10 or less.
JP11000905A 1999-01-06 1999-01-06 Rare earth-ferromagnetic metallic target Pending JP2000199056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11000905A JP2000199056A (en) 1999-01-06 1999-01-06 Rare earth-ferromagnetic metallic target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11000905A JP2000199056A (en) 1999-01-06 1999-01-06 Rare earth-ferromagnetic metallic target

Publications (1)

Publication Number Publication Date
JP2000199056A true JP2000199056A (en) 2000-07-18

Family

ID=11486706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11000905A Pending JP2000199056A (en) 1999-01-06 1999-01-06 Rare earth-ferromagnetic metallic target

Country Status (1)

Country Link
JP (1) JP2000199056A (en)

Similar Documents

Publication Publication Date Title
JP5359890B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
KR0129795B1 (en) Target for magneto optical recording media &amp; method for production the same
TWI608113B (en) Sputtering target
JP6437427B2 (en) Sputtering target for magnetic recording media
JP5397755B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
JP2533922B2 (en) Sintered target member and manufacturing method thereof
US5607780A (en) Target for magneto-optical recording medium and process for production thereof
JP3076141B2 (en) Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same
JP2000199056A (en) Rare earth-ferromagnetic metallic target
TWI605143B (en) Magnetic recording media sputtering target
JP2011068985A (en) Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM
JP2011026702A (en) SPUTTERING TARGET MATERIAL OF Fe-Co-Ni-BASED ALLOY
US5710384A (en) Magneto-optical recording medium target and manufacture method of same
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP2001226764A (en) Sintered compact for sputtering target material, its manufacturing method, and sputtering target
JP6575775B2 (en) Soft magnetic film
JPH06248445A (en) Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JP2002212716A (en) Sintered sputtering target material for forming recording layer of magneto-optical recording medium exhibiting excellent cracking resistance under high sputtering power
JP2000038660A (en) CoPt SPUTTERING TARGET, ITS PRODUCTION AND CoPt-MAGNETIC RECORDING MEDIUM
JPH05320888A (en) Target for magneto-optical recording medium
JPH11286776A (en) Sputtering target for forming magnet-optical recording medium