JP2000193585A - Optical measuring apparatus - Google Patents

Optical measuring apparatus

Info

Publication number
JP2000193585A
JP2000193585A JP10367245A JP36724598A JP2000193585A JP 2000193585 A JP2000193585 A JP 2000193585A JP 10367245 A JP10367245 A JP 10367245A JP 36724598 A JP36724598 A JP 36724598A JP 2000193585 A JP2000193585 A JP 2000193585A
Authority
JP
Japan
Prior art keywords
light
wavelength
temperature
emission wavelength
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10367245A
Other languages
Japanese (ja)
Inventor
Sadao Takeuchi
貞夫 竹内
Manami Kobayashi
まなみ 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10367245A priority Critical patent/JP2000193585A/en
Publication of JP2000193585A publication Critical patent/JP2000193585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To make compensable a measuring error caused by a temp. change of an optical measuring apparatus and to make performable the compensation of a measuring error without using a thermostatic device. SOLUTION: The optical measuring apparatus is equipped with a light emitting part 2 for irradiating test specimen 9 with light, a measuring probe 5 equipped with a light detecting part having at least two light detecting parts 31, 32, a signal processing part 1 subjecting the detection signal detected by the light detecting part to signal processing and an emission wavelength calculating part 4 calculating the emission wavelength to the temp. of a light emitting part. The emission wavelength emitted at the present temp. by the light emitting part is calculated in the emission wavelength calculating part and signal processing is performed based on the calculated emission wavelength by the signal processing part and, on the basis of the temp.-wavelength characteristics of the light emitting part, the emission wavelength subjected to temp. correction is calculated from the temp. of the light emitting part and, by performing measurement based on the emission wavelength, the measuring error caused by a temp. range is compensated without using a thermostatic apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体に光を照射
し、被検体によって散乱,反射,あるいは吸収された光
を受光して、被検体や組織を光学的に測定する光学的測
定装置に関し、生体酸素モニター等の生体測定装置に適
用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring device for irradiating a subject with light, receiving light scattered, reflected, or absorbed by the subject and optically measuring the subject or tissue. Can be applied to a biological measurement device such as a biological oxygen monitor.

【0002】[0002]

【従来の技術】生体等に可視光から近赤外光の波長の光
を照射し、生体内部で吸収あるいは散乱した後、生体内
部から出てくる光を受光し、この検出光の吸収スペクト
ルを測定することによって、生体の組織を調べたり診断
を行う生体モニターが知られている。この生体モニター
として酸素モニターが知られている。従来の酸素モニタ
ーでは、酸素化ヘモグロビンや脱酸素化ヘモグロビン等
の相対変化や絶対量を測定することが知られている。
2. Description of the Related Art A living body or the like is irradiated with light having a wavelength from visible light to near-infrared light, absorbed or scattered inside the living body, and then receives light coming from inside the living body. 2. Description of the Related Art There is known a living body monitor for examining or diagnosing a tissue of a living body by measuring. An oxygen monitor is known as this biological monitor. It is known that a conventional oxygen monitor measures a relative change and an absolute amount of oxygenated hemoglobin, deoxygenated hemoglobin, and the like.

【0003】酸素モニターによる測定では、光源から複
数の波長の光を被検体に照射し、各波長で得られる検出
光の光強度を演算処理して、酸素化ヘモグロビンや脱酸
素化ヘモグロビン等を求める。光源として半導体レーザ
ーを用いたものが知られており、複数の波長の光を得る
ために発光中心波長が異なる半導体レーザー素子を用い
ている(特開平8−10244号)。
In the measurement using an oxygen monitor, a subject is irradiated with light of a plurality of wavelengths from a light source, and the light intensity of detection light obtained at each wavelength is arithmetically processed to obtain oxygenated hemoglobin, deoxygenated hemoglobin, and the like. . A device using a semiconductor laser as a light source is known, and a semiconductor laser device having a different emission center wavelength is used to obtain light of a plurality of wavelengths (Japanese Patent Application Laid-Open No. H8-10244).

【0004】[0004]

【発明が解決しようとする課題】光学的測定装置は、半
導体レーザー素子から照射されるレーザー光の波長は、
測定中において変化せず一定であるとして測定し、演算
処理を行っている。しかしながら、一般に、半導体レー
ザー素子から照射されるレーザー光は温度変化のよっ
て、その中心波長がシフトすることが知られている。例
えば、発振波長の温度特性が2.5nm/10°となる
100mw出力のGaAlAsレーザーダイオードが知られてい
る。そのため、室温や光学的測定装置の温度が変化する
と、半導体レーザー素子の発振波長がシフトし、照射さ
れるレーザー光の波長λにずれが生じることになる。こ
のレーザー光の波長λのずれは、光学的測定装置の測定
結果に誤差を生じさせるという問題がある。酸素モニタ
ーでは、酸素化ヘモグロビンや脱酸素化ヘモグロビンの
測定結果に誤差を生じることとなる。
SUMMARY OF THE INVENTION In an optical measuring device, the wavelength of laser light emitted from a semiconductor laser element is:
Measurement is performed assuming that it does not change during measurement and is constant, and arithmetic processing is performed. However, it is generally known that the center wavelength of laser light emitted from a semiconductor laser element shifts due to a temperature change. For example, a 100 mw output GaAlAs laser diode having an oscillation wavelength temperature characteristic of 2.5 nm / 10 ° is known. Therefore, when the room temperature or the temperature of the optical measurement device changes, the oscillation wavelength of the semiconductor laser element shifts, and a shift occurs in the wavelength λ of the irradiated laser light. The shift of the wavelength λ of the laser light has a problem that an error occurs in the measurement result of the optical measuring device. In the oxygen monitor, an error occurs in the measurement results of oxygenated hemoglobin and deoxygenated hemoglobin.

【0005】半導体レーザー素子に電子冷熱素子と温調
回路とによる温度調整装置を設けて恒温に維持すること
によって、レーザー光の波長シフトを防止する方法も考
えられる。しかしながら、光学的測定装置が備える半導
体レーザー素子は複数の波長を用いているため、恒温装
置等の大型の温度調整装置が必要となり、コストも上昇
するという問題がある。
[0005] A method of preventing a wavelength shift of laser light by providing a semiconductor laser element with a temperature adjusting device including an electronic cooling / heating element and a temperature control circuit and maintaining the temperature at a constant temperature is also conceivable. However, since the semiconductor laser element included in the optical measuring device uses a plurality of wavelengths, a large-sized temperature adjusting device such as a constant temperature device is required, and there is a problem that the cost increases.

【0006】そこで、本発明は前記した従来の問題点を
解決し、光学的測定装置の温度変化による測定誤差を補
償することを目的とし、また、測定誤差の補償を温度調
整装置を用いることなく行うことを目的とする。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the above-mentioned conventional problems and to compensate for a measurement error caused by a temperature change of an optical measuring device, and to compensate for the measuring error without using a temperature adjusting device. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明は、発光部の温度
−波長特性に基づいて、発光部の温度から温度補正され
た発光波長を求め、該発光波長に基づいて測定を行うこ
とによって、恒温装置を用いることなく温度変化による
測定誤差を補償するものである。
According to the present invention, a temperature-corrected emission wavelength is obtained from the temperature of the light emitting section based on the temperature-wavelength characteristics of the light emitting section, and measurement is performed based on the emission wavelength. This is to compensate for a measurement error due to a temperature change without using a thermostat.

【0008】本発明の光学的測定装置は、被検体に光を
照射する発光部と、少なくとも2つの光検出端とを有す
る検出部を備える測定プローブと、検出部で検出される
検出信号を信号処理する信号処理部と、発光部の温度に
対する発光波長を求める発光波長算出部とを備え、現在
温度において発光部が照射している発光波長を発光波長
算出部で算出し、信号処理部は算出した発光波長に基づ
いて信号処理を行う構成とする。
[0008] An optical measuring apparatus according to the present invention comprises a measuring probe having a light emitting section for irradiating a subject with light, a detecting section having at least two light detecting ends, and a detecting signal detected by the detecting section. A signal processing unit for processing; and an emission wavelength calculation unit for obtaining an emission wavelength with respect to the temperature of the emission unit. The emission wavelength calculation unit calculates the emission wavelength that the emission unit is irradiating at the current temperature, and the signal processing unit calculates The signal processing is performed based on the emission wavelength thus obtained.

【0009】図1は本発明の光学的測定装置の概略構成
図である。図1において、光学的測定装置は発光部2と
検出部3と信号処理部1と発光波長算出部4とを備え、
発光部2は被検体9に光を照射し、検出部3は被検体9
から出た光を検出して光強度Iの検出信号を信号処理部
1に送る。信号処理部1は検出信号を信号処理して、算
出手段1aによって被検体9が備える特性を測定する。
発光波長算出部4は、発光部2の温度に対応する波長λ
を求め、該波長λを信号処理部1に送る。信号処理部1
中の補正手段1bは、波長λに基づいて算出手段1aが
行う算出処理を補正し、発光部2の温度変化による測定
値の誤差を補償する。
FIG. 1 is a schematic structural view of an optical measuring device according to the present invention. In FIG. 1, the optical measuring device includes a light emitting unit 2, a detecting unit 3, a signal processing unit 1, and an emission wavelength calculating unit 4,
The light emitting unit 2 irradiates the subject 9 with light, and the detecting unit 3
And outputs a detection signal of the light intensity I to the signal processing unit 1. The signal processing unit 1 performs signal processing on the detection signal, and measures characteristics of the subject 9 by the calculation unit 1a.
The emission wavelength calculation unit 4 calculates a wavelength λ corresponding to the temperature of the emission unit 2.
And sends the wavelength λ to the signal processing unit 1. Signal processing unit 1
The middle correction unit 1b corrects the calculation process performed by the calculation unit 1a based on the wavelength λ, and compensates for an error in the measured value due to a temperature change of the light emitting unit 2.

【0010】本発明によれば、発光部の温度が変化して
発光波長が変化した場合であっても、変化した発光波長
に基づいて信号処理を行うことができるため、光学的測
定装置の温度変化による測定誤差を補償することができ
る。また、本発明の発光波長算出部は、発光部を一定温
度に維持するための恒温装置等の大型の温度調整装置を
要しないため、装置の小型化及びコストの低減化を行う
ことができる。
According to the present invention, even when the light emission wavelength changes due to a change in the temperature of the light emitting section, signal processing can be performed based on the changed light emission wavelength. Measurement errors due to changes can be compensated. In addition, the emission wavelength calculation unit of the present invention does not require a large-sized temperature adjustment device such as a thermostat for maintaining the emission unit at a constant temperature, so that the size and cost of the device can be reduced.

【0011】被検体9は生体等とすることができ、照射
された光を散乱,反射,吸収した後に外部に放出する。
光学的測定装置は、この被検体から出てくる光を検出
し、信号処理することによって被検体が備える特性を測
定する。
The subject 9 can be a living body or the like, and scatters, reflects, and absorbs the irradiated light, and then emits the light to the outside.
The optical measuring device detects the light coming out of the subject and performs signal processing to measure characteristics of the subject.

【0012】発光部2は特定波長を照射する半導体発光
素子を用いることができる。酸素モニターによって酸素
化ヘモグロビンや脱酸素化ヘモグロビンを測定する場合
には、例えば780nm,805nm,830nmの波
長を照射するレーザーダイオード等の半導体レーザー素
子を用いることができる。
The light emitting section 2 can use a semiconductor light emitting element for irradiating a specific wavelength. When oxygenated hemoglobin or deoxygenated hemoglobin is measured by an oxygen monitor, for example, a semiconductor laser element such as a laser diode that irradiates a wavelength of 780 nm, 805 nm, or 830 nm can be used.

【0013】受光部3は被検体から出た光を検出し、該
光の光強度を検出信号として求める。検出信号は、信号
増幅した後にA/D変換器によってデジタル化したデジ
タル信号とすることができる。発光波長算出部4は、発
光部2の温度を測定する測温手段4aと、測温手段4a
で求めた発光部2の温度Tに対応する発光する波長λを
求める温度−波長変換手段4bとを備える。温度Tにお
ける発光波長λは信号処理部1に送られる。
The light receiving section 3 detects light emitted from the subject, and obtains the light intensity of the light as a detection signal. The detection signal can be a digital signal that has been signal-amplified and then digitized by an A / D converter. The emission wavelength calculation unit 4 includes a temperature measurement unit 4a that measures the temperature of the light emission unit 2, and a temperature measurement unit 4a.
And a temperature-wavelength conversion means 4b for obtaining a wavelength λ of light emission corresponding to the temperature T of the light emitting section 2 obtained in step (1). The emission wavelength λ at the temperature T is sent to the signal processing unit 1.

【0014】信号処理部1は、光強度Iに基づいて被検
体の特性を算出する算出手段1a、及び該算出に用いる
パラメータを補正する補正手段1bを備える。補正手段
1bは、被検体の特性の算出に用いるパラメータにおい
て、波長λに依存するパラメータを発光波長算出部4で
求めた波長λによって補正する。算出手段1aは補正手
段1bで補正したパラメータを用いることによって、発
光部2の温度変化による波長λの変化を補正して、被検
体の特性測定の測定誤差を補償することができる。
The signal processing section 1 includes a calculating means 1a for calculating the characteristics of the subject based on the light intensity I, and a correcting means 1b for correcting parameters used for the calculation. The correction unit 1b corrects a parameter used for calculating the characteristics of the subject, which depends on the wavelength λ, with the wavelength λ obtained by the emission wavelength calculation unit 4. By using the parameters corrected by the correction unit 1b, the calculation unit 1a can correct a change in the wavelength λ due to a change in the temperature of the light emitting unit 2 and compensate for a measurement error in the characteristic measurement of the subject.

【0015】光学的測定装置が酸素モニターの場合に
は、異なる波長による光強度を用いることによって、生
体内の酸素化ヘモグロビンや脱酸素化ヘモグロビンの測
定することができる。発光部からの距離が異なる受光部
の光強度の差を、異なる発光波長について求めることに
よって、酸素化ヘモグロビンや脱酸素化ヘモグロビンの
濃度の絶対値を求めることができる。
When the optical measuring device is an oxygen monitor, it is possible to measure oxygenated hemoglobin and deoxygenated hemoglobin in a living body by using light intensities at different wavelengths. The absolute value of the concentration of oxygenated hemoglobin or deoxygenated hemoglobin can be determined by determining the difference between the light intensities of the light receiving units at different distances from the light emitting unit for different emission wavelengths.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照しながら詳細に説明する。図2は本発明の光
学的測定装置の構成ブロック図である。図1に示す光学
的測定装置は酸素モニターの例について示している。発
光部2は複数の波長λの光(図2ではλ1とλ2につい
て示している)を発光する部分であり、例えば発光中心
波長が異なる半導体レーザー素子21,22によって構
成することができ、切換によって波長λ1あるいは波長
λ2の光を光ファイバ等の光導体を介して測定プローブ
5に設けた発光端20に送光する。発光端20は、被検
体9内に光を照射する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 is a block diagram showing the configuration of the optical measuring device according to the present invention. The optical measuring device shown in FIG. 1 shows an example of an oxygen monitor. The light-emitting section 2 is a section that emits light of a plurality of wavelengths λ (shown in FIG. 2 for λ1 and λ2), and can be constituted by, for example, semiconductor laser elements 21 and 22 having different emission center wavelengths. The light having the wavelength λ1 or λ2 is transmitted to the light emitting end 20 provided on the measurement probe 5 via an optical conductor such as an optical fiber. The light emitting end 20 irradiates the inside of the subject 9 with light.

【0017】被検体9内に照射された光は、被検体9の
組織内で散乱,吸収,あるいは反射され、発光端20か
ら異なる距離で測定プローブ5に設置された受光端3
1,32で受光される。受光端31,32で受光された
光は光検出器(図示していない)で光−電気変換され、
信号増幅61,62及びA/D変換器71,72でデジ
タルの検出信号I1,I2が検出される。検出信号I
1,I2は信号処理部1に入力される。
The light radiated into the subject 9 is scattered, absorbed, or reflected in the tissue of the subject 9, and the light receiving end 3 provided on the measurement probe 5 at a different distance from the light emitting end 20.
Light is received at 1,32. The light received at the light receiving ends 31 and 32 is subjected to photo-electric conversion by a photo detector (not shown).
Digital detection signals I1 and I2 are detected by the signal amplifiers 61 and 62 and the A / D converters 71 and 72. Detection signal I
1 and I2 are input to the signal processing unit 1.

【0018】発光部2には、半導体レーザー素子21,
22の温度を検出するサーミスタ等の温度検出素子40
が設けられる。温度検出素子40で検出された温度T
は、信号増幅60及びA/D変換器70によってデジタ
ルの検出信号として温度−波長変換手段4bに入力され
る。
The light emitting section 2 includes a semiconductor laser element 21,
Temperature detecting element 40 such as a thermistor for detecting the temperature of 22
Is provided. Temperature T detected by temperature detection element 40
Is input to the temperature-wavelength conversion means 4b as a digital detection signal by the signal amplifier 60 and the A / D converter 70.

【0019】温度−波長変換手段4bは、発光部2が有
する半導体レーザー素子21,22の各温度−発振波長
特性を備え、入力した発光部2の温度Tに対応する発振
波長λを求める。図3は半導体レーザー素子の温度−発
振波長特性例を示す図であり、温度Ta,Tb,Tcに
対して発振波長はそれぞれλa,λb,λcであり、温
度Taから温度Tbあるいは温度Tcに変化すると、発
振波長はλaからλb及びλcに変化する。
The temperature-wavelength conversion means 4b has the respective temperature-oscillation wavelength characteristics of the semiconductor laser elements 21 and 22 of the light emitting section 2, and obtains the oscillation wavelength λ corresponding to the input temperature T of the light emitting section 2. FIG. 3 is a diagram showing an example of the temperature-oscillation wavelength characteristic of the semiconductor laser element. The oscillation wavelengths are λa, λb, λc for the temperatures Ta, Tb, Tc, respectively, and change from the temperature Ta to the temperature Tb or the temperature Tc. Then, the oscillation wavelength changes from λa to λb and λc.

【0020】温度Tから発振波長λへの変換は、各半導
体レーザー素子について温度−発振波長特性を測定し、
測定した特性をデータテーブルや関数、あるいは比例係
数等によって記憶しておき、測定した温度Tに対応する
波長λを出力する。
The conversion from the temperature T to the oscillation wavelength λ is performed by measuring the temperature-oscillation wavelength characteristics of each semiconductor laser element,
The measured characteristics are stored in a data table, a function, a proportional coefficient, or the like, and a wavelength λ corresponding to the measured temperature T is output.

【0021】信号処理部1は、検出信号I1,I2及び
波長λを入力し、所定の演算を行うことによって被検体
の特性算出を行う。この特性算出において、波長λはパ
ラメータとして用いられる。この波長λを、温度−波長
変換手段4bによって温度Tに対応した値に変更するこ
とによって、温度Tに対応した特性算出を行う。
The signal processing unit 1 receives the detection signals I1 and I2 and the wavelength λ and performs a predetermined calculation to calculate the characteristics of the subject. In this characteristic calculation, the wavelength λ is used as a parameter. By changing the wavelength λ to a value corresponding to the temperature T by the temperature-wavelength conversion means 4b, the characteristic calculation corresponding to the temperature T is performed.

【0022】以下、光学的測定装置として酸素モニター
の場合について、被検体の測定特性として酸素化ヘモグ
ロビンや脱酸素化ヘモグロビンの濃度の絶対値を求める
場合について、図4の信号処理部の構成ブロック図を用
いて説明する。
FIG. 4 is a block diagram showing the configuration of the signal processing unit shown in FIG. 4 in the case where an oxygen monitor is used as an optical measuring device, and the case where the absolute value of the concentration of oxygenated hemoglobin or deoxygenated hemoglobin is determined as the measurement characteristic of the subject. This will be described with reference to FIG.

【0023】図4において、信号処理部1は、酸素化ヘ
モグロビンや脱酸素化ヘモグロビンの濃度の絶対値を算
出する算出手段1aと、算出手段1aに用いるパラメー
タを温度に対応した補正を行う補正手段1bとを備え
る。
In FIG. 4, a signal processing unit 1 includes a calculating unit 1a for calculating an absolute value of the concentration of oxygenated hemoglobin or deoxygenated hemoglobin, and a correcting unit for correcting a parameter used for the calculating unit 1a in accordance with a temperature. 1b.

【0024】算出手段1aは、検出信号I1,I2を入
力してΔyを算出するするΔy算出手段11と、算出し
たΔyを用いてm(λ)を算出するm(λ)算出手段1
2と、算出したm(λ)を用いて酸素化ヘモグロビンや
脱酸素化ヘモグロビンの濃度の絶対値を求める濃度算出
手段13とを備える。
The calculating means 1a receives the detection signals I1 and I2 and calculates Δy to calculate Δy, and the m (λ) calculating means 1 calculates m (λ) using the calculated Δy.
2 and a concentration calculating means 13 for calculating the absolute value of the concentration of oxygenated hemoglobin or deoxygenated hemoglobin using the calculated m (λ).

【0025】Δy算出手段11は、以下の式(1)で示
される、検出信号I1,I2の各自然対数の値lnI1,
lnI2の差Δyを算出する。 Δy=−(lnI2−lnI1) …(1) m(λ)算出手段12は、求めたΔyを用いて、以下の
式(2)で示される、Δyの二次関数m(λ)を算出す
る。 m(λ)=(1/f(λ))・(p・Δy2+q・Δy+r) …(2) なお、f(λ)は散乱補正係数であって波長に依存する
項であり、時間分解測定によってあらかじめ求めてお
く。波長が780nm,805nm,830nmの場合
の散乱補正係数f(λ)はそれぞれ1.013,1,
0.956の値である。また、p,q,rは係数であ
る。
The Δy calculating means 11 calculates the natural logarithm value lnI1, of each of the detection signals I1, I2 represented by the following equation (1).
The difference Δy of lnI2 is calculated. Δy = − (lnI2−lnI1) (1) The m (λ) calculating means 12 calculates a quadratic function m (λ) of Δy represented by the following equation (2) using the obtained Δy. . m (λ) = (1 / f (λ)) · (p · Δy 2 + q · Δy + r) (2) where f (λ) is a scattering correction coefficient and a wavelength-dependent term, and is time-resolved. Determine in advance by measurement. The scattering correction coefficients f (λ) at wavelengths of 780 nm, 805 nm, and 830 nm are 1.013, 1,
The value is 0.956. Further, p, q, and r are coefficients.

【0026】酸素化ヘモグロビン,脱酸素化ヘモグロビ
ンの濃度について3つの異なる波長(λ1,λ2,λ
3)によって酸素化ヘモグロビンや脱酸素化ヘモグロビ
ンの濃度で測定した場合には、酸素化ヘモグロビンの濃
度〔HbO2 〕及び脱酸素化ヘモグロビンの濃度〔H
b〕は、以下の連立方程式で表される。 (1/2.303)・m(λ1)/f(λ1)=ε1(λ1)・〔HbO2 〕 +ε2(λ1)・〔Hb〕 (1/2.303)・m(λ2)/f(λ2)=ε1(λ2)・〔HbO2 〕 +ε2(λ2)・〔Hb〕 (1/2.303)・m(λ3)/f(λ3)=ε1(λ3)・〔HbO2 〕 +ε2(λ3)・〔Hb〕 …(3) となる。ここで、ε1(λi),ε2(λi)(i=
1,2,3)はそれぞれ酸素化ヘモグロビン及び脱酸素
化ヘモグロビンの各波長λ1,λ2,λ3での分子吸収
係数であり、波長に依存する項である。なお、式(3)
において、(1/2.303)は左辺の自然対数と右辺の常用対
数とを合わせるための換算係数である。
The concentrations of oxygenated hemoglobin and deoxygenated hemoglobin were measured at three different wavelengths (λ1, λ2, λ
In the case of measuring the concentration of oxygenated hemoglobin or deoxygenated hemoglobin according to 3), the concentration of oxygenated hemoglobin [HbO 2 ] and the concentration of deoxygenated hemoglobin [H
b] is expressed by the following simultaneous equations. (1 / 2.303) · m (λ1) / f (λ1) = ε1 (λ1) · [HbO 2 ] + ε2 (λ1) · [Hb] (1 / 2.303) · m (λ2) / f (λ2) = ε1 (Λ2) · [HbO 2 ] + ε2 (λ2) · [Hb] (1 / 2.303) · m (λ3) / f (λ3) = ε1 (λ3) · [HbO 2 ] + ε2 (λ3) · [Hb] (3) Here, ε1 (λi), ε2 (λi) (i =
1, 2, 3) are the molecular absorption coefficients of oxygenated hemoglobin and deoxygenated hemoglobin at wavelengths λ1, λ2, λ3, respectively, and are terms dependent on the wavelength. Equation (3)
, (1 / 2.303) is a conversion coefficient for matching the natural logarithm on the left side with the common logarithm on the right side.

【0027】上記式(3)は2つの未知数に対して3つ
の式であるから、最小自乗法によって、以下の式
(4),(5)となる。 〔HbO2 〕=(1/2.303)・〔k1・m(λ1)/f(λ1) +k2・m(λ2)/f(λ2) +k3・m(λ3)/f(λ3)〕 …(4) 〔Hb 〕 =(1/2.303)・〔k1’・m(λ1)/f(λ1) +k2’・m(λ2)/f(λ2) +k3’・m(λ3)/f(λ3)〕 …(5) なお、式(3),(4),(5)は酸素化ヘモグロビン
及び脱酸素化ヘモグロビンの2成分系に限らず、測定波
長数を増やして、チトクロム・オキシダーゼや水を加え
た式とすることもできる。
Since the above equation (3) is three equations for two unknowns, the following equations (4) and (5) are obtained by the least square method. [HbO 2 ] = (1 / 2.303) · [k1 · m (λ1) / f (λ1) + k2 · m (λ2) / f (λ2) + k3 · m (λ3) / f (λ3)] (4) [Hb ] = (1 / 2.303) · [k1 ′ · m (λ1) / f (λ1) + k2 ′ · m (λ2) / f (λ2) + k3 ′ · m (λ3) / f (λ3)] (5) Equations (3), (4), and (5) are not limited to the two-component system of oxygenated hemoglobin and deoxygenated hemoglobin, but may be obtained by increasing the number of measurement wavelengths and adding cytochrome oxidase and water. Can also.

【0028】図5は酸素化ヘモグロビン及び脱酸素化ヘ
モグロビンの波長−吸収係数特性を示す図である。温度
Taにおける波長λaでの吸収係数はそれぞれε1(λ
a),ε2(λa)であり、温度Taから温度Tbある
いは温度Tcに変化すると、吸収係数はε1(λa),
ε2(λa)からε1(λb),ε2(λb)、及びε
1(λc),ε2(λc)に変化する。
FIG. 5 is a graph showing wavelength-absorption coefficient characteristics of oxygenated hemoglobin and deoxygenated hemoglobin. The absorption coefficient at the wavelength Ta at the temperature Ta is ε1 (λ
a), ε2 (λa), and when the temperature changes from the temperature Ta to the temperature Tb or the temperature Tc, the absorption coefficient becomes ε1 (λa),
ε2 (λa) to ε1 (λb), ε2 (λb), and ε
1 (λc) and ε2 (λc).

【0029】濃度算出手段13は、上記式(3)あるい
は式(4),(5)の演算を行って、酸素化ヘモグロビ
ンの濃度〔HbO2 〕や脱酸素化ヘモグロビンの濃度
〔Hb〕を算出する。上記算出において、m(λ)は、
m(λ)算出手段12から入力し、散乱補正係数f
(λ)及び吸収係数ε(λ)等のパラメータはパラメー
タ算出手段14から入力する。
The concentration calculating means 13 calculates the concentration of oxygenated hemoglobin [HbO 2 ] and the concentration of deoxygenated hemoglobin [Hb] by performing the calculation of the above formula (3) or formulas (4) and (5). I do. In the above calculation, m (λ) is
input from the m (λ) calculating means 12 and the scattering correction coefficient f
The parameters such as (λ) and the absorption coefficient ε (λ) are input from the parameter calculation means 14.

【0030】パラメータ算出手段14は、散乱補正係数
f(λ)及び吸収係数ε(λ)等のパラメータを波長λ
の変化に応じた値に変更して、発光部2の温度変化に対
応した補正を行う。パラメータの波長λに対応する算出
は、波長λとパラメータ(f(λ),(λ))との関係
をあらかじめ求めておき、該関係をデータテーブルや関
数、あるいは比例係数等によって記憶しておき、波長λ
に対応するパラメータを出力する。
The parameter calculating means 14 converts parameters such as a scattering correction coefficient f (λ) and an absorption coefficient ε (λ) into a wavelength λ.
Is changed to a value corresponding to the change of the light emitting unit 2 and the correction corresponding to the temperature change of the light emitting unit 2 is performed. In the calculation corresponding to the wavelength λ of the parameter, the relationship between the wavelength λ and the parameter (f (λ), (λ)) is obtained in advance, and the relationship is stored in a data table, a function, a proportional coefficient, or the like. , Wavelength λ
Outputs the parameter corresponding to.

【0031】したがって、波長依存性がある散乱補正係
数f(λ)や吸収係数ε(λ)は、パラメータ算出手段
14の補正手段1bによって温度Tに対応する波長λに
応じた値に補正されているため、濃度算出部13は温度
変化に依存しない酸素化ヘモグロビンの濃度〔Hb
2 〕や脱酸素化ヘモグロビンの濃度〔Hb〕の濃度値
を算出することができる。
Therefore, the wavelength-dependent scattering correction coefficient f (λ) and absorption coefficient ε (λ) are corrected by the correction means 1b of the parameter calculation means 14 to values corresponding to the wavelength λ corresponding to the temperature T. Therefore, the concentration calculator 13 calculates the concentration of oxygenated hemoglobin [Hb
The concentration value of the concentration [Hb] of O 2 ] or deoxygenated hemoglobin can be calculated.

【0032】なお、上記実施の形態では、酸素化ヘモグ
ロビンの濃度〔HbO2 〕や脱酸素化ヘモグロビンの濃
度〔Hb〕の濃度値を測定する場合について示している
が、本発明の光学的測定装置は、被検体の他の特性につ
いても、温度変化による測定誤差を補償することができ
る。
In the above embodiment, the case of measuring the concentration of oxygenated hemoglobin [HbO 2 ] and the concentration of deoxygenated hemoglobin [Hb] is described. Can compensate for measurement errors due to temperature changes for other characteristics of the subject.

【0033】また、本発明の光学的測定装置は、温度−
波長変換手段等の発光波長算出部で求めた波長λに基づ
いて、被検体の特性を算出するためのパラメータを補正
する構成とすることによって、恒温装置等の大型の装置
を用いることなく測定誤差の補償を行うことができる。
Further, the optical measuring device of the present invention has a temperature-
Based on the wavelength λ obtained by the emission wavelength calculation unit such as the wavelength conversion unit, the configuration for correcting the parameter for calculating the characteristics of the subject is used, so that the measurement error can be obtained without using a large-sized apparatus such as a thermostat. Can be compensated.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
光学的測定装置の温度変化による測定誤差を補償するこ
とができる。また、測定誤差の補償を恒温装置を用いる
ことなく行うことができる。
As described above, according to the present invention,
Measurement errors due to temperature changes of the optical measuring device can be compensated. Further, the measurement error can be compensated without using a thermostat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学的測定装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an optical measurement device of the present invention.

【図2】本発明の光学的測定装置の構成ブロック図であ
る。
FIG. 2 is a block diagram illustrating a configuration of an optical measurement device according to the present invention.

【図3】半導体レーザー素子の温度−発振波長特性例を
示す図である。
FIG. 3 is a diagram showing an example of a temperature-oscillation wavelength characteristic of a semiconductor laser device.

【図4】本発明の信号処理部の構成ブロック図である。FIG. 4 is a configuration block diagram of a signal processing unit of the present invention.

【図5】酸素化ヘモグロビン及び脱酸素化ヘモグロビン
の波長−吸収係数特性を示す図である。
FIG. 5 is a graph showing wavelength-absorption coefficient characteristics of oxygenated hemoglobin and deoxygenated hemoglobin.

【符号の説明】[Explanation of symbols]

1…信号処理部、1a…算出手段、1b…補正手段、2
…発光部、3…検出部、4…発光波長算出部、4a…測
温手段、4b…温度−波長変換手段、5…測定プロー
ブ、8…表示部、9…被検体、11…Δy算出手段、1
2…m(λ)算出手段、13…濃度算出手段、14…パ
ラメータ算出手段、20…発光端、21,22…半導体
レーザー素子、31,32…受光端、40…温度検出素
子、60,61,62…信号増幅器、70,71,72
…A/D変換器。
DESCRIPTION OF SYMBOLS 1 ... Signal processing part, 1a ... Calculation means, 1b ... Correction means, 2
... Light-emitting section, 3 ... Detection section, 4 ... Emission wavelength calculation section, 4a ... Temperature measurement means, 4b ... Temperature-wavelength conversion means, 5 ... Measurement probe, 8 ... Display section, 9 ... Subject, 11 ... Δy calculation means , 1
2 ... m (λ) calculating means, 13 ... concentration calculating means, 14 ... parameter calculating means, 20 ... light emitting end, 21,22 ... semiconductor laser element, 31,32 ... light receiving end, 40 ... temperature detecting element, 60,61 , 62 ... signal amplifier, 70, 71, 72
... A / D converter.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G045 AA04 CA02 CB01 DA51 FA12 FA14 FA25 FA26 GA06 GA10 GC10 GC11 JA02 2G059 AA01 AA06 BB12 CC07 CC18 EE01 EE02 EE12 GG01 GG02 HH01 HH02 HH09 KK03 MM01 MM09 MM12 NN02 NN05 4C038 KK01 KL07 KM03 KX01 KY07 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G045 AA04 CA02 CB01 DA51 FA12 FA14 FA25 FA26 GA06 GA10 GC10 GC11 JA02 2G059 AA01 AA06 BB12 CC07 CC18 EE01 EE02 EE12 GG01 GG02 HH01 HH02 HH09 KK03 MM01 MM09 MM01 MM03 KX01 KY07

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体に光を照射する発光部と、少なく
とも2つの光検出端とを有する検出部と備える測定プロ
ーブと、前記受光部で検出される検出信号を信号処理す
る信号処理部と、発光部の温度に対する発光波長を求め
る発光波長算出部とを備え、前記発光波長算出部は、発
光部の温度に対応した発光波長を算出し、前記信号処理
部は、発光波長算出部で算出した発光波長に基づいて信
号処理を行う、光学的測定装置。
1. A measuring probe comprising: a light emitting section for irradiating a subject with light; a detecting section having at least two light detecting ends; and a signal processing section for performing signal processing on a detection signal detected by the light receiving section. A light emission wavelength calculation unit for calculating a light emission wavelength with respect to the temperature of the light emission unit, wherein the light emission wavelength calculation unit calculates a light emission wavelength corresponding to the temperature of the light emission unit, and the signal processing unit is calculated by the light emission wavelength calculation unit. An optical measurement device that performs signal processing based on the emitted light wavelength.
JP10367245A 1998-12-24 1998-12-24 Optical measuring apparatus Pending JP2000193585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10367245A JP2000193585A (en) 1998-12-24 1998-12-24 Optical measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10367245A JP2000193585A (en) 1998-12-24 1998-12-24 Optical measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000193585A true JP2000193585A (en) 2000-07-14

Family

ID=18488838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10367245A Pending JP2000193585A (en) 1998-12-24 1998-12-24 Optical measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000193585A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103094A (en) * 2011-11-16 2013-05-30 Sony Corp Measurement device, measurement method, program, and recording medium
JP2020510466A (en) * 2017-02-10 2020-04-09 カラグ・アクチェンゲゼルシャフトCarag Ag Apparatus and method for measuring blood oxygen saturation of tissue of subject

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103094A (en) * 2011-11-16 2013-05-30 Sony Corp Measurement device, measurement method, program, and recording medium
JP2020510466A (en) * 2017-02-10 2020-04-09 カラグ・アクチェンゲゼルシャフトCarag Ag Apparatus and method for measuring blood oxygen saturation of tissue of subject
US11259722B2 (en) 2017-02-10 2022-03-01 Carag Ag Apparatus and method for measuring the blood oxygen saturation in a subject's tissue

Similar Documents

Publication Publication Date Title
JP5175179B2 (en) Improved blood oxygenation monitoring method by spectrophotometry
US5842979A (en) Method and apparatus for improved photoplethysmographic monitoring of oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin
CA2621171C (en) Optical probe for optical imaging system
US7095491B2 (en) Device and method for measuring constituents in blood
EP0816829B1 (en) Tissue chromophore measurement system
US7671984B2 (en) Spectrometric measuring probe and method for recalibrating the same
US7613487B2 (en) Instrument for noninvasively measuring blood sugar level
US20080200781A1 (en) Glucose Sensor
US20080269580A1 (en) System for Non-Invasive Measurement of Bloold Glucose Concentration
US8426819B2 (en) Method for the non-invasive optic determination of the temperature of a medium
CN103209641B (en) Biological light measuring device and operation method therefor
JPWO2007141859A1 (en) Biological component measuring device that can measure biological components accurately and non-invasively
US20040186361A1 (en) Method and apparatus for measuring a concentration of a component in a subject
JP2004261364A (en) Concentration information measuring apparatus
WO2014097965A1 (en) Oxygen saturation-measuring device and oxygen saturation-calculating method
JP2008157809A (en) Laser output control device and optical measuring unit
JP2000193585A (en) Optical measuring apparatus
WO2006097437A1 (en) Monitoring of predetermined substances in blood
JP2014032146A (en) Concentration measuring device, and method for controlling the concentration measuring device
JP6741485B2 (en) Pulse photometer and reliability evaluation method for calculated values of blood light-absorbing substance concentration
JP2005111165A (en) Instrument and method for measuring scattering absorbing medium
JP2795197B2 (en) Optical scattering / absorber measuring device
JP3635331B2 (en) Substance measuring device
JP2003114191A (en) Method and instrument for nondestructively measuring sugar content of vegetable and fruit
JP4328129B2 (en) Scattering absorber measurement apparatus calibration method, calibration apparatus, and scattering absorber measurement system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070316