JP2004261364A - Concentration information measuring apparatus - Google Patents

Concentration information measuring apparatus Download PDF

Info

Publication number
JP2004261364A
JP2004261364A JP2003054543A JP2003054543A JP2004261364A JP 2004261364 A JP2004261364 A JP 2004261364A JP 2003054543 A JP2003054543 A JP 2003054543A JP 2003054543 A JP2003054543 A JP 2003054543A JP 2004261364 A JP2004261364 A JP 2004261364A
Authority
JP
Japan
Prior art keywords
light
detection signal
light detection
incident
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003054543A
Other languages
Japanese (ja)
Inventor
Susumu Suzuki
進 鈴木
Takeo Ozaki
健夫 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003054543A priority Critical patent/JP2004261364A/en
Publication of JP2004261364A publication Critical patent/JP2004261364A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concentration information measuring apparatus that can precisely correct the influence of diffused external light on a real-time basis and can make highly precise measurement in both contacting measurement and noncontacting measurement. <P>SOLUTION: This concentration measuring apparatus is provided with a main body section 2, a probe 3, and a spectrum correcting phantom 4. A light projecting optical fiber 10 and a photodetecting optical fiber 20 are incorporated in the probe 3 and visible light is intermittently made incident to a light scattering and absorbing body from a while LED 14 through the light projecting optical fiber 10. In addition, photodetected signals are generated by means of a CCD linear sensor 26 etc., based on the light received by the light projecting optical fiber 10. Moreover, a CPU 32 corrects a first photodetected signal by subtracting a second photodetected signal while the visible light is not made incident from the first photodetected signal while the visible light enters and calculates the concentration information of a component to be measured based on the corrected first photodetected signal. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する濃度情報測定装置に関する。
【0002】
【従来の技術】
散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する測定方法として、被測定成分の光吸収特性を利用して濃度情報を得る可視分光法や近赤外分光法がある。この測定方法においては、可視光や近赤外光などの光を散乱吸収体に入射してその内部を伝搬させ、出射された光の強度等を検出し、その検出結果から散乱吸収体の濃度情報が得られる。
【0003】
このような分光法による測定対象の1つに、酸素との結合の有無により吸収スペクトルが変化するヘモグロビンがあり、この性質を利用した近赤外酸素モニタや可視酸素モニタが開発されている。
【0004】
すなわち、前者の近赤外酸素モニタは、生体の主な吸収物質であるヘモグロビンと水の吸収がともに小さい近赤外(NIR)光を用いて脳や筋肉等の深部組織を非侵襲的に測定するものである。一方、後者の可視酸素モニタは、可視光はヘモグロビンによる吸収が大きいため測定領域は表層や露出組織に限定されるものの、局所的な測定に適するという利点を有している。また、可視光領域(500〜600nm帯)は、ヘモグロビンの酸素化状態によりその吸収スペクトルが最も特異的に変化する領域であるため、定量性が高い測定法として種々の可視酸素モニタが報告されている(例えば、特開昭61−272029号公報(特許文献1)、特開平5−52739号公報(特許文献2))。
【0005】
一方、このような分光法においては外乱光により測定精度が低下するという問題があり、特開2001−70251号公報(特許文献3)には、皮膚と接触するプローブ端面の縁辺の厚さを厚くした測色プローブが開示されている。
【0006】
【特許文献1】
特開昭61−272029号公報
【特許文献2】
特開平5−52739号公報
【特許文献3】
特開2001−70251号公報
【0007】
【発明が解決しようとする課題】
しかしながら、手術部位や内視鏡観察部位等の強い照明光に曝される組織を測定しようとすると、上記特許文献3に記載の測色プローブを用いたとしても外乱光のプローブへの混入は十分に防止されず、このような外乱光によりデータが歪められるため、測定精度の向上に限界があるという問題があった。
【0008】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、散乱吸収体内における被測定成分の濃度情報を分光法により非侵襲的に測定する際に、外乱光による影響をリアルタイムにかつ精度良く補正することができ、接触測定のみならず非接触測定においても精度の高い測定が可能な濃度情報測定装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、散乱吸収体に光を間欠的に入射するようにし、その光が入射されている間の光検出信号からその光が入射されていない間の光検出信号を差し引くことにより外乱光による影響をリアルタイムにかつ精度良く補正することが可能となり、上記目的が達成されることを見出すに至り、本発明に到達した。
【0010】
すなわち、本発明は、散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する濃度情報測定装置において、
前記散乱吸収体に対して所定波長領域の光を入射する光入射手段と、
前記散乱吸収体内部を伝搬した光を受光する受光手段と、
前記受光手段に光学的に結合されており、前記受光手段において受光された光に基づいて光検出信号を生成する信号生成手段と、
前記信号生成手段からの前記光検出信号に基づいて前記被測定成分の濃度情報を演算する演算手段と、
を備え、
前記光入射手段が前記所定波長領域の光を間欠的に入射し、前記演算手段において、前記光が入射されている間の第1の光検出信号から前記光が入射されていない間の第2の光検出信号を差し引いて前記第1の光検出信号を補正し、補正された前記第1の光検出信号に基づいて前記被測定成分の濃度情報を演算することを特徴とするものである。
【0011】
上記本発明の濃度情報測定装置においては、光入射手段により所定波長領域の光が間欠的に散乱吸収体に対して入射され、その光が入射されている間のみならず入射されていない間においても受光手段によって散乱吸収体内部を伝搬した光が受光され、信号生成手段によって前記光が入射されている間の第1の光検出信号と前記光が入射されていない間の第2の光検出信号とが生成される。そして、このようにして得られる第1の光検出信号においては真の測定対象の光に対応する信号と外乱光に対応する信号とが重畳されているのに対し、第2の光検出信号においては外乱光に対応する信号のみが存在することから、第1の光検出信号から第2の光検出信号を差し引くことにより第1の光検出信号から真の測定対象の光に対応する信号のみが精度良く抽出される。そして、このような補正は、入射光の少なくとも1回のON/OFF動作に伴って実行することができ、また、ON/OFF動作を繰り返すことによってリアルタイムに連続的に実行することができる。したがって、この補正により外乱光による影響がリアルタイムにかつ精度良く除かれ、このように補正された第1の光検出信号に基づいて被測定成分の濃度情報を演算することにより接触測定のみならず非接触測定においても精度の高い測定が可能となる。
【0012】
本発明において散乱吸収体に対して入射される光は可視光でも近赤外光でもよいが、可視光領域(500〜600nm帯)の光が好ましい。図1に示すように、可視光領域においてヘモグロビンの酸素化状態によりその吸収スペクトルが最も特異的に変化するため、可視光によれば表層や露出組織に対して局所的に定量性に優れた測定が可能となる傾向にある。なお、図1において、StOは酸素飽和度、OHbは酸素化ヘモグロビン、HHbは脱酸素化ヘモグロビンを示す。
【0013】
また、本発明の濃度情報測定装置において用いる光入射手段の光源は、安定した出力で間欠的に精度良く光を発することができるものが好ましく、可視光領域の光については白色光源が好ましく、白色LEDがより好ましい。
【0014】
更に、本発明において光を間欠的に散乱吸収体に対して入射する際の周波数は特に制限されないが、1Hz以上が好ましい。係る周波数が1Hz未満では外乱光の変化に補正速度が追随できず、十分な精度での補正ができなくなる傾向にある。
【0015】
本発明の濃度情報測定装置における演算手段においては、前記第1の光検出信号から前記第2の光検出信号を差し引いて前記第1の光検出信号を補正するが、その際、所定積算期間内における前記第1の光検出信号の積算値から前記第2の光検出信号の積算値を差し引いて前記第1の光検出信号の積算値を補正することが好ましい。このように所定積算期間内における光検出信号の積算値を用いることにより、測定誤差等により各光検出信号がある程度ばらついていても精度良く補正することが可能となる。したがって、このようにして補正された前記第1の光検出信号の積算値に基づいて被測定成分の濃度情報を演算すれば、測定精度がより向上する傾向にある。なお、係る積算期間は特に制限されないが、通常、1秒〜1分程度の範囲内で選択され、前記光源をON/OFF動作する周期の数倍〜数十倍程度の積算期間が好ましい。
【0016】
本発明の濃度情報測定装置は、前記光入射手段の光源スペクトルと前記測定装置の装置特性とを校正するためのスペクトル校正ファントムを更に備えていることが好ましい。このようなスペクトル校正ファントムを備えていれば、測定開始前に光源のスペクトルの変化や装置に使用されるファイバの変化等による影響を除くための校正データを予め取得しておくことが可能となる。
【0017】
そして、このようにスペクトル校正ファントムを備えている場合、本発明に係る演算手段においては、下記式(1):
【0018】
【数3】

Figure 2004261364
【0019】
または下記式(2):
【数4】
Figure 2004261364
【0020】
[式(1)および式(2)中、A(λ)は前記光が入射されている間の前記第1の光検出信号、B(λ)は前記光が入射されていない間の前記第2の光検出信号、S(λ)は補正された前記第1の光検出信号、C(λ)は前記スペクトル校正ファントムを用いて予め得られた校正データ、xはf(前記光を間欠的に入射する周波数(Hz))×t(所定の積算期間(s))の値をそれぞれ示す。]
によって前記第1の光検出信号を補正することが好ましい。上記の式(1)または式(2)によれば、所定の積算期間内における光検出信号の積算値により精度良く補正されると共に校正データによる校正が実行され、より効率良く第1の光検出信号の補正値が得られる。したがって、このようにして補正された前記第1の光検出信号に基づいて被測定成分の濃度情報を演算すれば、測定精度がより向上する傾向にある。
【0021】
なお、本発明の濃度情報測定装置によって測定される被測定成分の濃度情報は特に制限されず、例えばヘモグロビンを被測定成分とし、その濃度情報として酸素化ヘモグロビンの相対濃度、脱酸素化ヘモグロビンの相対濃度およびヘモグロビンの酸素飽和度からなる群から選択される少なくとも一つの情報を高い精度で測定することができる。
【0022】
【発明の実施の形態】
以下、図面を用いて本発明の濃度情報測定装置の好適な実施形態について説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明は省略する。
【0023】
図2は、本発明の濃度情報測定装置の好適な一実施形態の構成を示すブロック図である。本実施形態による濃度情報測定装置は、散乱吸収体に可視光領域の波長の光を入射し、散乱吸収体内を通って出射される光のスペクトルを検出することにより被測定成分による光への影響を調べ、これに基づいて被測定成分の濃度情報を算出する装置である。また、本実施形態による濃度測定装置は、散乱吸収体として例えば生体を測定対象とし、被測定成分の濃度情報として例えば酸素化ヘモグロビン(OHb)、脱酸素化ヘモグロビン(HHb)およびヘモグロビン酸素飽和度(StO)を測定するための可視分光酸素モニタとして利用することができる。
【0024】
図2に示された濃度情報測定装置1は、本体部2及びプローブ3を備えており、プローブ3には光照射用の光ファイバ10及び光検出用の光ファイバ20が組み込まれている。
【0025】
光照射用の光ファイバ10は散乱吸収体に対して光を入射するための光入射手段であり、光ファイバ10の一端は光コネクタ12を介して本体部2内に配置された光源である白色LED14に光学的に結合されており、光ファイバ10を伝搬した光はその先端から散乱吸収体に入射される。
【0026】
また、光検出用の光ファイバ20は散乱吸収体内部を伝搬した光を受光するための受光手段であり、光ファイバ20の一端は光コネクタ22を介して本体部2内に配置された分光器24に光学的に結合されており、光ファイバ20の先端で受光された光は分光器24に伝搬される。
【0027】
そして、分光器24にはCCDリニアセンサ26、増幅器27およびA/D変換回路28が接続されており、これらが受光された光のスペクトル情報に基づいて光検出信号を生成するための信号生成手段として用いられる。すなわち、分光器24に伝搬された光は分光器24により分光され、CCDリニアセンサ26によりスペクトル情報として検出され、増幅器27により増幅された後にA/D変換回路28によりアナログ信号からデジタル信号に変換されて光検出信号が生成される。
【0028】
また、本体部2には、光源のスペクトルと装置の特性を校正するためのスペクトル校正ファントム4が装備されている。スペクトル校正ファントム4は、白色散乱板(白色アクリル樹脂製)で構成された箱状のファントムであり、測定前にプローブ3を挿入して予め校正データを取得するために使用される。
【0029】
更に、本体部2は、白色LEDドライバ16、操作スイッチ30、CPU32、表示手段34、データ出力手段36、並びにデータバス38を備えている。すなわち、白色LEDドライバ16は白色LED14を駆動するための手段であり、データバス38に電気的に接続されており、同じくデータバス38に電気的に接続されているCPU32から白色LED14の駆動を指示するための指示信号(ON/OFF信号)を受ける。また、操作スイッチ30は、光を間欠的に入射する周波数(ON/OFF信号の一周期)や積算期間を設定するための手段であり、データバス38に電気的に接続されている。
【0030】
CPU32は、A/D変換回路28から受けた光検出信号に基づいて散乱吸収体内部に含まれる被測定成分の濃度情報を演算するための演算手段であり、演算結果がデータバス38を介して表示手段34及びデータ出力手段36へ送られる。なお、光検出信号に基づく濃度情報の演算方法については後述する。また、表示手段34は、データバス38に電気的に接続されており、データバス38を介してCPU32から送られた濃度情報に関する演算結果を表示する。なお、表示手段34における表示画面の例については後述する。また、データ出力手段36もデータバス38に電気的に接続されており、データバス38を介してCPU32から送られた濃度情報に関する演算結果を濃度情報測定装置1の外部へ必要に応じて出力する。
【0031】
以上、本実施形態における濃度情報測定装置1の構成について説明したが、続いて濃度情報測定装置1の動作について説明する。図3は、濃度情報測定装置1における動作の好適な一実施形態を示すフローチャートである。
【0032】
図2および図3を参照して説明すると、電源投入後(S101)、先ず、プローブ3の先端部をスペクトル校正ファントム4に挿入してその中に光(白色光)を照射し、スペクトル校正ファントム4内における反射光に基づいて校正データ(C(λ))を取得し、保存する(S102)。係る校正データは光源のスペクトルの変化や装置に使用されるファイバの変化等による影響を除くためのものであり、一般に下記式:
校正データ(C(λ))=光源スペクトル×装置特性(F(λ))
により表される。
【0033】
次に、プローブ3の先端部を散乱吸収体(例えば、生体の表層または露出表面)に当接せしめ、測定を開始する(S103)。測定中は、図4に示すように、CPU32の制御により白色LED14を一定周期(例えば10Hz)でON/OFF動作せしめ、光照射用光ファイバ10から光(白色光)を散乱吸収体に対して間欠的に入射する(S104)。
【0034】
そして、散乱吸収体内部を伝搬した光は光検出用光ファイバ20により受光され、図4に示すように、光が入射されている間(t〜t、t〜t、t〜t)の第1の光検出信号(A(λ))と光が入射されていない間(t〜t、t〜t)の第2の光検出信号(B(λ))とが取得され、保存される(S105)。
【0035】
このようにして得られる第1の光検出信号は一般に下記式:
(λ)=S(λ)・C(λ)+E(λ)・F(λ)
[上式中、A(λ)は第1の光検出信号、S(λ)は真の測定対象の光に対応する信号、C(λ)は校正データ、E(λ)は外乱光に対応する信号、F(λ)は装置特性をそれぞれ示す。]
により表され、一方、第2の光検出信号は一般に下記式:
(λ)=E(λ)・F(λ)
[上式中、B(λ)は第2の光検出信号、E(λ)は外乱光に対応する信号、F(λ)は装置特性をそれぞれ示す。]
により表される。
【0036】
このように、第1の光検出信号においては真の測定対象の光に対応する信号と外乱光に対応する信号とが重畳されているのに対し、第2の光検出信号においては外乱光に対応する信号のみが存在することから、下記式(1):
【0037】
【数5】
Figure 2004261364
【0038】
[式(1)中、A(λ)は第1の光検出信号、B(λ)は前記第2の光検出信号、S(λ)は補正された前記第1の光検出信号、C(λ)は校正データ、xはf(前記光を間欠的に入射する周波数(Hz))×t(所定の積算期間(s))の値をそれぞれ示す。]
によって第1の光検出信号から第2の光検出信号を差し引くことにより、第1の光検出信号から真の測定対象の光に対応する信号(S(λ))のみが精度良く抽出される(S106)。
【0039】
その際、本実施形態においては積算期間を1秒間とし、積算期間内における前記光検出信号の積算値(積算回数:x=10)を用いることにより、測定誤差等により各光検出信号がある程度ばらついていても精度良く補正することが可能となる。このようにして得られた補正後の検出光スペクトルのデータの一例並びにそれから求めた吸収スペクトルのデータの一例をそれぞれ図5および図6に示す。
【0040】
次に、このようにして得られた補正後の前記第1の光検出信号(S(λ))に基づいて、酸素化ヘモグロビン(OHb)の相対濃度(Cox)、脱酸素化ヘモグロビン(HHb)の相対濃度(C)、並びにヘモグロビン酸素飽和度(StO)を演算により求める(S107)。この演算の方法は特に制限されないが、例えば、上記補正後の前記第1の光検出信号(S(λ))に対して、図1に示す酸素化ヘモグロビン(OHb)および脱酸素化ヘモグロビン(HHb)の基準スペクトルと1次オフセット成分(xλ+y)による最小2乗カーブフィッティング演算により、上記濃度情報が求められる。すなわち、下記式:
ΣS(λ)→Cox・OHb(λ)+C・HHb(λ)+xλ+y
において、右辺でCox、C、x、yを変量とし、右辺の値とΣS(λ)の値の2乗誤差を最小とするCoxおよびCをそれぞれ酸素化ヘモグロビンの相対濃度(Cox)および脱酸素化ヘモグロビンの相対濃度(C)とするものである。
【0041】
また、総ヘモグロビン濃度(C)はCox+Cの値として求められ、その値を用いてヘモグロビン酸素飽和度(StO)がCox/Cの値として算出される。
【0042】
そして、濃度情報測定装置1による濃度情報の測定を終了(S108→S109)するまで上記のステップ(S104〜S107)を繰り返すことにより、1秒の更新速度で酸素化ヘモグロビンの相対濃度(Cox)、脱酸素化ヘモグロビンの相対濃度(C)、総ヘモグロビン濃度(C)並びにヘモグロビン酸素飽和度(StO)がリアルタイムに連続的に求められる(S108→S104〜S107→S108)。このようにして得られた酸素化ヘモグロビンの相対濃度(Cox)、脱酸素化ヘモグロビンの相対濃度(C)および総ヘモグロビン濃度(C)のデータの一例を図7に、ヘモグロビン酸素飽和度(StO)のデータの一例を図8にそれぞれ示す。
【0043】
本発明の濃度情報測定装置1を用いた測定方法においては、上述の補正により外乱光による影響がリアルタイムにかつ精度良く除かれるため、このように補正された第1の光検出信号に基づいて演算することにより接触測定のみならず非接触測定においても高い精度で被測定成分の濃度情報が得られる。
【0044】
以上、本発明の濃度情報測定装置の好適な一実施形態について説明したが、本発明は上記実施形態に限定されるものではない。すなわち、例えば、補正の際に用いる数式は前記式(1)に限定されず、下記式(2):
【0045】
【数6】
Figure 2004261364
【0046】
[式(2)中、A(λ)は前記光が入射されている間の前記第1の光検出信号、B(λ)は前記光が入射されていない間の前記第2の光検出信号、S(λ)は補正された前記第1の光検出信号、C(λ)は前記スペクトル校正ファントムを用いて予め得られた校正データ、xはf(前記光を間欠的に入射する周波数(Hz))×t(所定の積算期間(s))の値をそれぞれ示す。]
であってもよい。この式(2)によっても、前記式(1)を用いた場合と同様に精度良く補正および校正が実行され、効率良く第1の光検出信号の補正値が得られる。したがって、このようにして補正された前記第1の光検出信号に基づいても、高い精度で被測定成分の濃度情報が求められる。
【0047】
また、散乱吸収体に対して入射される光は可視光に限定されず、近赤外光でもよい。その場合、上記のような局所的な測定ではなく、脳や筋肉等の深部組織を非侵襲的な測定に有効となる傾向にある。
【0048】
更に、用いる光は連続光に限定されず、単一波長光やパルス光であってもよい。
【0049】
【発明の効果】
以上説明したように、本発明による濃度情報測定装置によれば、散乱吸収体内における被測定成分の濃度情報を分光法により非侵襲的に測定する際に、外乱光による影響をリアルタイムにかつ精度良く補正することができ、接触測定のみならず非接触測定においても精度の高い測定が可能となる。
【0050】
したがって、本発明による濃度情報測定装置は、例えば、体外表皮や手術中の露出臓器、内視鏡・カテーテルで観察可能な組織、さらには穿刺可能なファイバプローブを用いた内部組織における濃度情報の測定等に有効である。
【図面の簡単な説明】
【図1】ヘモグロビンの酸素飽和度による吸収スペクトルの変化を示すグラフである。
【図2】本発明の濃度情報測定装置の好適な一実施形態の構成を示すブロック図である。
【図3】本発明の濃度情報測定装置の動作の好適な一実施形態を示すフローチャートである。
【図4】光源の動作と得られる光検出信号の関係を示すグラフである。
【図5】実施形態において得られた補正後の検出光スペクトルの一例を示すグラフである。
【図6】実施形態において得られた補正後の吸収スペクトルの一例を示すグラフである。
【図7】実施形態において得られた酸素化ヘモグロビンの相対濃度(Cox)、脱酸素化ヘモグロビンの相対濃度(C)および総ヘモグロビン濃度(C)のデータの一例を示すグラフである。
【図8】実施形態において得られたヘモグロビン酸素飽和度(StO)のデータの一例を示すグラフである。
【符号の説明】
1…濃度情報測定装置、2…本体部、3…プローブ、4…スペクトル校正ファントム、10…光照射用光ファイバ、12…光コネクタ、14…白色LED、16…白色LEDドライバ、20…光検出用光ファイバ、22…光コネクタ、24…分光器、26…CCDリニアセンサ、27…増幅器、28…A/D変換回路、30…操作スイッチ、32…CPU、34…表示手段、36…データ出力手段、38…データバス。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a concentration information measuring device for non-invasively measuring concentration information of a component to be measured in a scattering medium.
[0002]
[Prior art]
As a measurement method for non-invasively measuring the concentration information of the component to be measured in the scattering medium, there are visible spectroscopy and near-infrared spectroscopy in which the concentration information is obtained by using the light absorption characteristics of the component to be measured. In this measurement method, light such as visible light or near-infrared light is incident on the scattering medium and propagates through the scattering medium, and the intensity of the emitted light is detected. Information is obtained.
[0003]
One of the objects to be measured by such a spectroscopic method is hemoglobin, whose absorption spectrum changes depending on the presence or absence of bonding to oxygen, and a near-infrared oxygen monitor and a visible oxygen monitor utilizing this property have been developed.
[0004]
In other words, the former near-infrared oxygen monitor non-invasively measures deep tissues such as brain and muscle using near-infrared (NIR) light that has low absorption of both hemoglobin and water, which are the main absorption substances of the living body. Is what you do. On the other hand, the latter visible oxygen monitor has an advantage that it is suitable for local measurement, although the measurement region is limited to the surface layer and the exposed tissue because visible light is largely absorbed by hemoglobin. Further, since the visible light region (500 to 600 nm band) is a region in which the absorption spectrum changes most specifically depending on the oxygenation state of hemoglobin, various visible oxygen monitors have been reported as a highly quantitative measurement method. (For example, Japanese Patent Application Laid-Open No. 61-272029 (Patent Document 1) and Japanese Patent Application Laid-Open No. 5-52739 (Patent Document 2)).
[0005]
On the other hand, in such a spectroscopic method, there is a problem that the measurement accuracy is reduced due to disturbance light, and Japanese Patent Application Laid-Open No. 2001-70251 (Patent Document 3) increases the thickness of the edge of the probe end surface that comes into contact with the skin. The disclosed colorimetric probe is disclosed.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 61-272029 [Patent Document 2]
JP-A-5-52739 [Patent Document 3]
JP 2001-70251 A
[Problems to be solved by the invention]
However, when trying to measure a tissue exposed to strong illumination light, such as a surgical site or an endoscopic observation site, even if the colorimetric probe described in Patent Document 3 is used, the disturbance light is not sufficiently mixed into the probe. However, the data is distorted by the disturbance light, and there is a problem that the improvement of the measurement accuracy is limited.
[0008]
The present invention has been made in view of the above-described problems of the related art, and when measuring the concentration information of the component to be measured in the scattering medium non-invasively by spectroscopy, the influence of disturbance light in real time and It is an object of the present invention to provide a concentration information measuring device capable of performing accurate correction and performing highly accurate measurement not only in contact measurement but also in noncontact measurement.
[0009]
[Means for Solving the Problems]
The present inventors have intensively studied to achieve the above object, and as a result, light is intermittently incident on the scattering medium, and the light is incident from a light detection signal while the light is incident. By subtracting the light detection signal during the absence, the effect of disturbance light can be corrected in real time and with high accuracy, and it has been found that the above object is achieved, and the present invention has been achieved.
[0010]
That is, the present invention is a concentration information measuring device that non-invasively measures the concentration information of the component to be measured in the scattering medium,
Light incident means for incident light of a predetermined wavelength region on the scattering medium,
Light receiving means for receiving light propagated inside the scattering medium,
A signal generating unit that is optically coupled to the light receiving unit and generates a light detection signal based on the light received by the light receiving unit;
A calculating means for calculating density information of the measured component based on the light detection signal from the signal generating means,
With
The light incident means intermittently enters the light of the predetermined wavelength region, and the calculating means calculates a second light output from the first light detection signal while the light is incident and a second light detection signal while the light is not incident. The first light detection signal is corrected by subtracting the first light detection signal, and the density information of the measured component is calculated based on the corrected first light detection signal.
[0011]
In the concentration information measuring device of the present invention, light in a predetermined wavelength region is intermittently incident on the scattering medium by the light incident means, and not only during the time when the light is incident but also during the time when the light is not incident. Also, the light transmitted through the scattering medium is received by the light receiving means, and the first light detection signal while the light is incident and the second light detection signal while the light is not incident are received by the signal generation means. And a signal is generated. In the first light detection signal obtained in this manner, the signal corresponding to the true measurement target light and the signal corresponding to the disturbance light are superimposed, whereas the second light detection signal Since only the signal corresponding to the disturbance light exists, subtracting the second light detection signal from the first light detection signal yields only the signal corresponding to the true measurement target light from the first light detection signal. It is extracted with high accuracy. Such a correction can be performed in accordance with at least one ON / OFF operation of the incident light, and can be continuously performed in real time by repeating the ON / OFF operation. Therefore, this correction removes the influence of disturbance light in real time and with high accuracy, and calculates the concentration information of the component to be measured based on the first light detection signal corrected in this way, thereby enabling not only contact measurement but also non-contact measurement. High-precision measurement is also possible in contact measurement.
[0012]
In the present invention, light incident on the scattering medium may be visible light or near-infrared light, but light in the visible light region (500 to 600 nm band) is preferable. As shown in FIG. 1, since the absorption spectrum of hemoglobin changes most specifically in the visible light region depending on the oxygenation state of the hemoglobin, the measurement using the visible light locally has excellent quantitative properties on the surface layer and the exposed tissue. Tend to be possible. In FIG. 1, StO 2 indicates oxygen saturation, O 2 Hb indicates oxygenated hemoglobin, and HHb indicates deoxygenated hemoglobin.
[0013]
Further, the light source of the light incident means used in the concentration information measuring device of the present invention is preferably capable of emitting light intermittently and accurately with a stable output, and a white light source is preferable for light in the visible light region. LEDs are more preferred.
[0014]
Further, in the present invention, the frequency at which light is intermittently incident on the scattering medium is not particularly limited, but is preferably 1 Hz or more. If the frequency is less than 1 Hz, the correction speed cannot follow the change in the disturbance light, and correction with sufficient accuracy tends to be impossible.
[0015]
The calculating means in the concentration information measuring device of the present invention corrects the first light detection signal by subtracting the second light detection signal from the first light detection signal. Preferably, the integrated value of the first light detection signal is corrected by subtracting the integrated value of the second light detection signal from the integrated value of the first light detection signal. As described above, by using the integrated value of the light detection signals within the predetermined integration period, it is possible to accurately correct even if each light detection signal varies to some extent due to a measurement error or the like. Therefore, if the density information of the component to be measured is calculated based on the integrated value of the first light detection signal corrected as described above, the measurement accuracy tends to be further improved. The integration period is not particularly limited, but is generally selected within a range of about 1 second to 1 minute, and is preferably an integration period that is several times to several tens times the period of the ON / OFF operation of the light source.
[0016]
It is preferable that the concentration information measuring device of the present invention further includes a spectrum calibration phantom for calibrating a light source spectrum of the light incident means and device characteristics of the measuring device. If such a spectrum calibration phantom is provided, it is possible to obtain calibration data in advance to eliminate the influence of a change in the spectrum of the light source or a change in the fiber used in the apparatus before the start of measurement. .
[0017]
When the spectrum calibration phantom is provided as described above, the arithmetic means according to the present invention employs the following equation (1):
[0018]
[Equation 3]
Figure 2004261364
[0019]
Or the following formula (2):
(Equation 4)
Figure 2004261364
[0020]
[In Equations (1) and (2), A n (λ) is the first light detection signal while the light is incident, and B n (λ) is the first light detection signal while the light is not incident. The second light detection signal, S n (λ) is the corrected first light detection signal, C (λ) is calibration data previously obtained using the spectrum calibration phantom, and x is f (the light Represents the value of frequency (Hz) intermittently incident × t (predetermined integration period (s)). ]
Preferably, the first light detection signal is corrected by the following. According to the above formula (1) or formula (2), the correction is accurately performed by the integrated value of the light detection signal within the predetermined integration period, and the calibration based on the calibration data is executed, so that the first light detection is more efficiently performed. A signal correction value is obtained. Therefore, if the density information of the component to be measured is calculated based on the first light detection signal corrected in this manner, the measurement accuracy tends to be further improved.
[0021]
The concentration information of the component to be measured measured by the concentration information measuring device of the present invention is not particularly limited. For example, hemoglobin is a component to be measured, and the relative concentration of oxygenated hemoglobin and the relative concentration of deoxygenated hemoglobin are used as the concentration information. At least one information selected from the group consisting of concentration and oxygen saturation of hemoglobin can be measured with high accuracy.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the concentration information measuring device of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
[0023]
FIG. 2 is a block diagram showing the configuration of a preferred embodiment of the concentration information measuring device of the present invention. The concentration information measuring device according to the present embodiment is configured to apply light having a wavelength in the visible light region to the scattering medium and detect the spectrum of light emitted through the scattering medium, thereby affecting the light by the component to be measured. And calculates concentration information of the component to be measured based on this. In addition, the concentration measuring device according to the present embodiment targets, for example, a living body as a scattering medium, and, for example, oxygenated hemoglobin (O 2 Hb), deoxygenated hemoglobin (HHb), and hemoglobin oxygen saturation as concentration information of the component to be measured. It can be used as a visible spectroscopic oxygen monitor for measuring the degree (StO 2 ).
[0024]
The concentration information measuring device 1 shown in FIG. 2 includes a main body 2 and a probe 3, and the probe 3 incorporates an optical fiber 10 for light irradiation and an optical fiber 20 for light detection.
[0025]
The optical fiber 10 for irradiating light is a light incident means for making light incident on the scattering medium, and one end of the optical fiber 10 is a white light source which is disposed in the main body 2 via the optical connector 12. Light that is optically coupled to the LED 14 and propagates through the optical fiber 10 is incident on the scattering medium from its tip.
[0026]
The optical fiber 20 for light detection is a light receiving means for receiving light propagated inside the scattering medium, and one end of the optical fiber 20 is connected to the spectroscope disposed in the main body 2 via the optical connector 22. The light that is optically coupled to the light 24 and received at the tip of the optical fiber 20 is propagated to the spectroscope 24.
[0027]
A CCD linear sensor 26, an amplifier 27, and an A / D conversion circuit 28 are connected to the spectroscope 24, and these are signal generation means for generating a light detection signal based on spectrum information of the received light. Used as That is, the light propagated to the spectroscope 24 is separated by the spectroscope 24, detected as spectrum information by the CCD linear sensor 26, amplified by the amplifier 27, and then converted from an analog signal to a digital signal by the A / D conversion circuit 28. As a result, a light detection signal is generated.
[0028]
Further, the main body 2 is equipped with a spectrum calibration phantom 4 for calibrating the spectrum of the light source and the characteristics of the device. The spectrum calibration phantom 4 is a box-shaped phantom formed of a white scattering plate (made of white acrylic resin), and is used for inserting the probe 3 before measurement and acquiring calibration data in advance.
[0029]
Further, the main body 2 includes a white LED driver 16, an operation switch 30, a CPU 32, a display unit 34, a data output unit 36, and a data bus 38. That is, the white LED driver 16 is means for driving the white LED 14, is electrically connected to the data bus 38, and instructs driving of the white LED 14 from the CPU 32 which is also electrically connected to the data bus 38. Instruction signal (ON / OFF signal). The operation switch 30 is a means for setting a frequency (one cycle of an ON / OFF signal) at which light is intermittently incident and an integration period, and is electrically connected to the data bus 38.
[0030]
The CPU 32 is a calculating means for calculating the concentration information of the component to be measured contained in the scattering medium based on the light detection signal received from the A / D conversion circuit 28, and outputs the calculation result via the data bus 38. It is sent to the display means 34 and the data output means 36. The method of calculating the density information based on the light detection signal will be described later. The display means 34 is electrically connected to the data bus 38, and displays a calculation result on the density information sent from the CPU 32 via the data bus 38. An example of a display screen on the display unit 34 will be described later. The data output means 36 is also electrically connected to the data bus 38, and outputs a calculation result regarding the density information sent from the CPU 32 via the data bus 38 to the outside of the density information measuring device 1 as necessary. .
[0031]
The configuration of the density information measuring device 1 according to the present embodiment has been described above. Next, the operation of the density information measuring device 1 will be described. FIG. 3 is a flowchart showing a preferred embodiment of the operation in the density information measuring device 1.
[0032]
With reference to FIGS. 2 and 3, after power is turned on (S101), first, the tip of the probe 3 is inserted into the spectrum calibration phantom 4 to irradiate light (white light) into it, and the spectrum calibration phantom is irradiated. Calibration data (C (λ)) is acquired based on the reflected light within 4 and stored (S102). Such calibration data is for eliminating the influence of a change in the spectrum of the light source, a change in the fiber used in the apparatus, and the like.
Calibration data (C (λ)) = Light source spectrum × Device characteristics (F (λ))
Is represented by
[0033]
Next, the tip of the probe 3 is brought into contact with a scattering medium (for example, a surface layer or an exposed surface of a living body) to start measurement (S103). During the measurement, as shown in FIG. 4, the white LED 14 is turned on / off at a constant period (for example, 10 Hz) under the control of the CPU 32, and the light (white light) is emitted from the light irradiation optical fiber 10 to the scattering medium. The light enters intermittently (S104).
[0034]
Then, the light that has propagated inside the scattering medium is received by the optical fiber 20 for light detection, and as shown in FIG. 4, while the light is being incident (t 1 to t 2 , t 3 to t 4 , t 5). the first light detection signal (a n (λ)) and while the light is not incident (t 2 ~t 3, t 4 ~t second optical detection signal of 5) (B n of ~t 6) ( λ)) are acquired and stored (S105).
[0035]
The first light detection signal obtained in this manner is generally expressed by the following equation:
A n (λ) = S n (λ) · C (λ) + E (λ) · F (λ)
[Where A n (λ) is the first light detection signal, S n (λ) is a signal corresponding to the true measurement target light, C (λ) is calibration data, and E (λ) is disturbance light. , F (λ) indicates device characteristics. ]
While the second light detection signal is generally represented by the following equation:
B n (λ) = E (λ) · F (λ)
[In the above equation, Bn (λ) indicates a second light detection signal, E (λ) indicates a signal corresponding to disturbance light, and F (λ) indicates a device characteristic. ]
Is represented by
[0036]
As described above, the signal corresponding to the true measurement target light and the signal corresponding to the disturbance light are superimposed in the first light detection signal, whereas the signal corresponding to the disturbance light is superimposed in the second light detection signal. Since only the corresponding signal exists, the following equation (1):
[0037]
(Equation 5)
Figure 2004261364
[0038]
[In equation (1), A n (λ) is the first light detection signal, B n (λ) is the second light detection signal, and S n (λ) is the corrected first light detection signal. , C (λ) indicates calibration data, and x indicates a value of f (frequency (Hz) at which the light is intermittently incident) × t (predetermined integration period (s)). ]
By subtracting the second light detection signal from the first light detection signal, only the signal (S n (λ)) corresponding to the true light to be measured is accurately extracted from the first light detection signal. (S106).
[0039]
At this time, in the present embodiment, the integration period is set to one second, and by using the integrated value of the light detection signals in the integration period (the number of times of integration: x = 10), each light detection signal varies to some extent due to a measurement error or the like. , It is possible to correct with high accuracy. FIGS. 5 and 6 show an example of the detected light spectrum data after correction and an example of the absorption spectrum data obtained therefrom, respectively.
[0040]
Next, based on the corrected first light detection signal (S n (λ)) obtained in this manner, the relative concentration (C ox ) of oxygenated hemoglobin (O 2 Hb), deoxygenation The relative concentration (C h ) of hemoglobin (HHb) and the oxygen saturation (StO 2 ) of hemoglobin are calculated (S107). Although the method of this calculation is not particularly limited, for example, for the first photodetection signal (S n (λ)) after the above correction, the oxygenated hemoglobin (O 2 Hb) and the deoxygenated The above-mentioned density information is obtained by a least-squares curve fitting calculation using a reference spectrum of hemoglobin (HHb) and a primary offset component (xλ + y). That is, the following equation:
ΣS n (λ) → C ox · O 2 Hb (λ) + C h · HHb (λ) + xλ + y
In the right-hand side in C ox, and C h, x, variable and y, right values and ΣS n (λ) C ox and C h a respective relative concentration of oxyhemoglobin to minimize the squared error values ( C ox ) and the relative concentration (C h ) of deoxygenated hemoglobin.
[0041]
The total hemoglobin concentration (C t) is obtained as the value of C ox + C h, the hemoglobin oxygen saturation (StO 2) is calculated as a value of C ox / C t using the value.
[0042]
Then, ends the measurement of the density information by the density information measuring apparatus 1 by repeating (S108 → S109) the above steps until (S104 to S107), the relative concentration of oxygenated hemoglobin at an update rate of one second (C ox) the relative concentration of the deoxygenated hemoglobin (C h), total hemoglobin concentration (C t) and the hemoglobin oxygen saturation (StO 2) is determined continuously in real time (S108 → S104~S107 → S108). FIG. 7 shows an example of the thus obtained data of the relative concentration of oxygenated hemoglobin (C ox ), the relative concentration of deoxygenated hemoglobin (C h ), and the total concentration of hemoglobin (C t ). An example of (StO 2 ) data is shown in FIG.
[0043]
In the measuring method using the density information measuring device 1 of the present invention, the influence of disturbance light is removed in real time and with high accuracy by the above-described correction, and therefore, the calculation is performed based on the first light detection signal corrected in this manner. By doing so, the concentration information of the component to be measured can be obtained with high accuracy not only in the contact measurement but also in the non-contact measurement.
[0044]
The preferred embodiment of the concentration information measuring device of the present invention has been described above, but the present invention is not limited to the above embodiment. That is, for example, the mathematical expression used in the correction is not limited to the expression (1), and the following expression (2):
[0045]
(Equation 6)
Figure 2004261364
[0046]
[In the formula (2), A n (λ) is the first light detection signal while the light is incident, and B n (λ) is the second light while the light is not incident. The detection signal, S n (λ) is the corrected first light detection signal, C (λ) is calibration data previously obtained using the spectrum calibration phantom, and x is f (the light is intermittently incident). Frequency (Hz)) × t (predetermined integration period (s)). ]
It may be. According to the equation (2), the correction and calibration are executed with high accuracy as in the case of using the equation (1), and the correction value of the first light detection signal can be obtained efficiently. Therefore, even based on the first light detection signal corrected in this way, the density information of the measured component can be obtained with high accuracy.
[0047]
The light incident on the scattering medium is not limited to visible light, but may be near-infrared light. In that case, it tends to be effective for non-invasive measurement of deep tissues such as brain and muscle, instead of the above-described local measurement.
[0048]
Further, the light used is not limited to continuous light, but may be single wavelength light or pulsed light.
[0049]
【The invention's effect】
As described above, according to the concentration information measuring device of the present invention, when non-invasively measuring the concentration information of the component to be measured in the scattering medium by spectroscopy, the influence of disturbance light is accurately and in real time. Correction can be performed, and highly accurate measurement can be performed not only in contact measurement but also in noncontact measurement.
[0050]
Therefore, the concentration information measuring device according to the present invention can be used, for example, to measure concentration information in the external epidermis, exposed organs during surgery, tissue observable with an endoscope / catheter, and internal tissue using a pierceable fiber probe. It is effective for etc.
[Brief description of the drawings]
FIG. 1 is a graph showing a change in an absorption spectrum according to oxygen saturation of hemoglobin.
FIG. 2 is a block diagram showing a configuration of a preferred embodiment of a concentration information measuring device of the present invention.
FIG. 3 is a flowchart showing a preferred embodiment of the operation of the density information measuring device of the present invention.
FIG. 4 is a graph showing a relationship between an operation of a light source and an obtained light detection signal.
FIG. 5 is a graph showing an example of a corrected detection light spectrum obtained in the embodiment.
FIG. 6 is a graph showing an example of the corrected absorption spectrum obtained in the embodiment.
FIG. 7 is a graph showing an example of data of relative concentrations of oxygenated hemoglobin (C ox ), relative concentrations of deoxygenated hemoglobin (C h ), and total hemoglobin concentrations (C t ) obtained in the embodiment.
FIG. 8 is a graph showing an example of hemoglobin oxygen saturation (StO 2 ) data obtained in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Density information measuring device, 2 ... Body part, 3 ... Probe, 4 ... Spectrum calibration phantom, 10 ... Optical fiber for light irradiation, 12 ... Optical connector, 14 ... White LED, 16 ... White LED driver, 20 ... Light detection Optical fiber, 22 optical connector, 24 spectroscope, 26 CCD linear sensor, 27 amplifier, 28 A / D conversion circuit, 30 operation switch, 32 CPU, 34 display means, 36 data output Means 38 data bus.

Claims (5)

散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する濃度情報測定装置において、
前記散乱吸収体に対して所定波長領域の光を入射する光入射手段と、
前記散乱吸収体内部を伝搬した光を受光する受光手段と、
前記受光手段に光学的に結合されており、前記受光手段において受光された光に基づいて光検出信号を生成する信号生成手段と、
前記信号生成手段からの前記光検出信号に基づいて前記被測定成分の濃度情報を演算する演算手段と、
を備え、
前記光入射手段が前記所定波長領域の光を間欠的に入射し、前記演算手段において、前記光が入射されている間の第1の光検出信号から前記光が入射されていない間の第2の光検出信号を差し引いて前記第1の光検出信号を補正し、補正された前記第1の光検出信号に基づいて前記被測定成分の濃度情報を演算することを特徴とする濃度情報測定装置。
In the concentration information measuring device that non-invasively measures the concentration information of the component to be measured in the scattering medium,
Light incident means for incident light of a predetermined wavelength region on the scattering medium,
Light receiving means for receiving light propagated inside the scattering medium,
A signal generating unit that is optically coupled to the light receiving unit and generates a light detection signal based on the light received by the light receiving unit;
A calculating means for calculating density information of the measured component based on the light detection signal from the signal generating means,
With
The light incident means intermittently enters the light of the predetermined wavelength region, and the calculating means calculates a second light output from the first light detection signal while the light is incident and a second light detection signal while the light is not incident. A density information measuring apparatus, wherein the first light detection signal is corrected by subtracting the first light detection signal, and density information of the component to be measured is calculated based on the corrected first light detection signal. .
前記光入射手段の光源が白色光源であり、前記光入射手段が可視光領域の光を1Hz以上の周波数で間欠的に前記散乱吸収体に対して入射することを特徴とする請求項1に記載の濃度情報測定装置。The light source of the light incident means is a white light source, and the light incident means intermittently impinges light in a visible light region on the scattering medium at a frequency of 1 Hz or more. Concentration information measuring device. 前記演算手段において、所定積算期間内における前記第1の光検出信号の積算値から前記第2の光検出信号の積算値を差し引いて前記第1の光検出信号の積算値を補正し、補正された前記第1の光検出信号の積算値に基づいて前記被測定成分の濃度情報を演算することを特徴とする請求項1または2に記載の濃度情報測定装置。The calculating means corrects the integrated value of the first light detection signal by subtracting the integrated value of the second light detection signal from the integrated value of the first light detection signal within a predetermined integration period. 3. The density information measuring device according to claim 1, wherein the density information of the measured component is calculated based on the integrated value of the first light detection signal. 前記光入射手段の光源スペクトルと前記測定装置の装置特性とを校正するためのスペクトル校正ファントムを更に備えており、
前記演算手段において、下記式(1):
Figure 2004261364
または下記式(2):
Figure 2004261364
[式(1)および式(2)中、A(λ)は前記光が入射されている間の前記第1の光検出信号、B(λ)は前記光が入射されていない間の前記第2の光検出信号、S(λ)は補正された前記第1の光検出信号、C(λ)は前記スペクトル校正ファントムを用いて予め得られた校正データ、xはf(前記光を間欠的に入射する周波数(Hz))×t(所定の積算期間(s))の値をそれぞれ示す。]
によって前記第1の光検出信号を補正し、補正された前記第1の光検出信号に基づいて前記被測定成分の濃度情報を演算することを特徴とする請求項1〜3のいずれか一項に記載の濃度情報測定装置。
It further comprises a spectrum calibration phantom for calibrating the light source spectrum of the light incident means and the device characteristics of the measurement device,
In the arithmetic means, the following equation (1):
Figure 2004261364
Or the following formula (2):
Figure 2004261364
[In Equations (1) and (2), A n (λ) is the first light detection signal while the light is incident, and B n (λ) is the first light detection signal while the light is not incident. The second light detection signal, S n (λ) is the corrected first light detection signal, C (λ) is calibration data previously obtained using the spectrum calibration phantom, and x is f (the light Represents the value of frequency (Hz) intermittently incident × t (predetermined integration period (s)). ]
4. The method according to claim 1, wherein the first light detection signal is corrected by using the first light detection signal, and density information of the measured component is calculated based on the corrected first light detection signal. The concentration information measuring device according to 1.
前記被測定成分の濃度情報が、酸素化ヘモグロビンの相対濃度、脱酸素化ヘモグロビンの相対濃度およびヘモグロビンの酸素飽和度からなる群から選択される少なくとも一つの情報であることを特徴とする請求項1〜4のいずれか一項に記載の濃度情報測定装置。The concentration information of the component to be measured is at least one information selected from the group consisting of a relative concentration of oxygenated hemoglobin, a relative concentration of deoxygenated hemoglobin, and a degree of oxygen saturation of hemoglobin. The concentration information measuring device according to any one of claims 4 to 4.
JP2003054543A 2003-02-28 2003-02-28 Concentration information measuring apparatus Pending JP2004261364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054543A JP2004261364A (en) 2003-02-28 2003-02-28 Concentration information measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054543A JP2004261364A (en) 2003-02-28 2003-02-28 Concentration information measuring apparatus

Publications (1)

Publication Number Publication Date
JP2004261364A true JP2004261364A (en) 2004-09-24

Family

ID=33118857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054543A Pending JP2004261364A (en) 2003-02-28 2003-02-28 Concentration information measuring apparatus

Country Status (1)

Country Link
JP (1) JP2004261364A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175742A (en) * 2007-01-19 2008-07-31 Omron Corp Photoelectric sensor
JP2010527635A (en) * 2006-05-30 2010-08-19 ユニバーシティ オブ マサチューセッツ Measurement of tissue oxygenation
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US8077297B2 (en) 2008-06-30 2011-12-13 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8295567B2 (en) 2008-06-30 2012-10-23 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
JP2013533769A (en) * 2010-06-22 2013-08-29 センスペック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for identifying and monitoring components or characteristics of a measurement medium, in particular physiological blood values
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8827917B2 (en) 2008-06-30 2014-09-09 Nelleor Puritan Bennett Ireland Systems and methods for artifact detection in signals
US8874181B2 (en) 2004-02-25 2014-10-28 Covidien Lp Oximeter ambient light cancellation
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
JP2015200663A (en) * 2009-06-05 2015-11-12 アリゾナ・ボード・オブ・リージェンツ・アクティング・フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティ Integrated optoelectrochemical sensor for nitrogen oxides in gaseous samples
WO2018128195A1 (en) * 2017-01-06 2018-07-12 Hoya株式会社 Solid sample for calibration, endoscope system, and method for fabricating solid sample
US10506989B2 (en) 2014-09-05 2019-12-17 Phc Holdings Corporation Method for quantifying glucose concentration and glucose concentration measurement device
WO2020255685A1 (en) * 2019-06-19 2020-12-24 浜松ホトニクス株式会社 Simulation sample design method, simulation sample manufacturing method, simulation sample design device, program, and recording medium

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874181B2 (en) 2004-02-25 2014-10-28 Covidien Lp Oximeter ambient light cancellation
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
JP2010527635A (en) * 2006-05-30 2010-08-19 ユニバーシティ オブ マサチューセッツ Measurement of tissue oxygenation
JP2008175742A (en) * 2007-01-19 2008-07-31 Omron Corp Photoelectric sensor
US8366613B2 (en) 2007-12-26 2013-02-05 Covidien Lp LED drive circuit for pulse oximetry and method for using same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US9113815B2 (en) 2008-06-30 2015-08-25 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US8483459B2 (en) 2008-06-30 2013-07-09 Nèllcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US8295567B2 (en) 2008-06-30 2012-10-23 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US8289501B2 (en) 2008-06-30 2012-10-16 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8077297B2 (en) 2008-06-30 2011-12-13 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8827917B2 (en) 2008-06-30 2014-09-09 Nelleor Puritan Bennett Ireland Systems and methods for artifact detection in signals
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
JP2015200663A (en) * 2009-06-05 2015-11-12 アリゾナ・ボード・オブ・リージェンツ・アクティング・フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティ Integrated optoelectrochemical sensor for nitrogen oxides in gaseous samples
JP2013533769A (en) * 2010-06-22 2013-08-29 センスペック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for identifying and monitoring components or characteristics of a measurement medium, in particular physiological blood values
US10506989B2 (en) 2014-09-05 2019-12-17 Phc Holdings Corporation Method for quantifying glucose concentration and glucose concentration measurement device
WO2018128195A1 (en) * 2017-01-06 2018-07-12 Hoya株式会社 Solid sample for calibration, endoscope system, and method for fabricating solid sample
JPWO2018128195A1 (en) * 2017-01-06 2019-07-11 Hoya株式会社 Solid sample for calibration, endoscope system, and method for producing solid sample
CN110072427A (en) * 2017-01-06 2019-07-30 Hoya株式会社 The preparation method of calibration solid sample, endoscopic system and solid sample
WO2020255685A1 (en) * 2019-06-19 2020-12-24 浜松ホトニクス株式会社 Simulation sample design method, simulation sample manufacturing method, simulation sample design device, program, and recording medium
JP7281353B2 (en) 2019-06-19 2023-05-25 浜松ホトニクス株式会社 Simulated sample design method, simulated sample preparation method, simulated sample design device, program and recording medium
US11906425B2 (en) 2019-06-19 2024-02-20 Hamamatsu Photonics K.K. Simulation sample design method, simulation sample manufacturing method, simulation sample design device, program, and recording medium

Similar Documents

Publication Publication Date Title
JP2004261364A (en) Concentration information measuring apparatus
US7613487B2 (en) Instrument for noninvasively measuring blood sugar level
US9915608B2 (en) Optical sensor for determining the concentration of an analyte
US6484044B1 (en) Apparatus and method for detecting a substance
RU2489689C2 (en) Method for noninvasive optical determination of ambient temperature
US20040122300A1 (en) Method for measuring venous oxygen saturation
JP2004230000A (en) Instrument for measuring concentration of light absorptive substance in blood
WO2003079900A1 (en) Noninvasive blood component value measuring instrument and method
JPH11244267A (en) Blood component concentration measuring device
JP2003194714A (en) Measuring apparatus for blood amount in living-body tissue
US20120220844A1 (en) Regional Saturation Using Photoacoustic Technique
JP2010237139A (en) Apparatus and method for quantifying concentration, and program
JP2010240298A (en) Biological light measuring device and biological light measuring method
JP2007083028A (en) Noninvasive inspecting apparatus
JP4856477B2 (en) Biological light measurement device
KR20130033936A (en) Device and method of biomedical photoacoustic imaging device using induced laser
US20050277817A1 (en) Noninvasive measurement system for monitoring activity condition of living body
JP6125821B2 (en) Oxygen saturation measuring apparatus and oxygen saturation calculating method
Papazoglou et al. Optical properties of wounds: diabetic versus healthy tissue
EP2502567A1 (en) Organism light measuring device and method for displaying information relating to necessity/unnecessity of replacement of light-emitting part
ITBS20070161A1 (en) METHOD AND INSTRUMENT FOR THE NON-INVASIVE MEASUREMENT OF OXYGENATION / SATURATION OF A BIOLOGICAL FABRIC
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
WO2019211993A1 (en) Component concentration measuring device
JP2007117342A (en) Component concentration measuring apparatus and its control method
JP3635331B2 (en) Substance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909