JP2000193382A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2000193382A
JP2000193382A JP10369393A JP36939398A JP2000193382A JP 2000193382 A JP2000193382 A JP 2000193382A JP 10369393 A JP10369393 A JP 10369393A JP 36939398 A JP36939398 A JP 36939398A JP 2000193382 A JP2000193382 A JP 2000193382A
Authority
JP
Japan
Prior art keywords
fluid
heat transfer
tube
transfer tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10369393A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kashiwabara
義孝 栢原
Yoshitaka Shibata
善隆 柴田
Shin Iwata
伸 岩田
Yasuto Hashizume
康人 橋詰
Yasushi Fujikawa
泰 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Harman Co Ltd
Original Assignee
Osaka Gas Co Ltd
Harman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Harman Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10369393A priority Critical patent/JP2000193382A/en
Publication of JP2000193382A publication Critical patent/JP2000193382A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger that prevents fluid from being mixed due to the damage to a heat transfer wall, at the same time can secure superior heat transfer efficiency, and also can be easily manufactured. SOLUTION: In a heat exchanger, a heat transfer pipe 1 with a rectangular outer-periphery section shape is alternately positioned in each of two directions where a heat transfer pipe 1a for first fluid for allowing first fluid A to pass, and a heat transfer pipe 1b for second fluid for allowing second fluid B to pass, orthogonally cross the direction of a pipe core. Furthermore, the heat exchanger is integrated in a state where the outer-periphery plane parts of the adjacent heat transfer pipes 1a and 1b oppose and are in contact each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱交換器に関し、詳
しくは、熱交換対象である第1流体と第2流体との伝熱
壁(隔壁)破損による混合を防止するようにした熱交換
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and more particularly, to a heat exchanger which prevents mixing of a first fluid and a second fluid to be exchanged due to breakage of a heat transfer wall (partition wall). About.

【0002】[0002]

【従来の技術】従来、この種の熱交換器としては、図8
に示す如き2重管構造で、周囲に第1流体Aを通過させ
る外管21と内部に第2流体Bを通過させる内管22と
の間に、漏洩流体用の間隙流路e(すなわち、外管21
の破損に対しては漏洩する第1流体Aを導き、また、内
管22の破損に対しては漏洩する第2流体Bを導く流
路)を形成したものがある(例えば、特開平9−119
791号公報参照)。
2. Description of the Related Art Conventionally, as this type of heat exchanger, FIG.
In a double pipe structure as shown in FIG. 1, a gap flow path e for leaking fluid (that is, a clearance flow path e (that is, between an outer pipe 21 through which the first fluid A passes) and an inner pipe 22 through which the second fluid B passes. Outer tube 21
(For example, Japanese Patent Application Laid-Open No. 9-90). In this case, a flow path for guiding the leaking first fluid A for the damage of the inner pipe 22 and for guiding the leaking second fluid B for the damage of the inner pipe 22 is known. 119
No. 791).

【0003】また、図9に示す如く、2枚の板材23を
それら板材23どうしの間に熱交換流体の流路fを形成
する状態に接合し、そして、その板材接合体Sにおける
流路形成部分の膨管部pどうしを接触させる状態で、複
数の板材接合体Sを板厚方向に積層し、これにより、隣
り合う板材接合体Sどうしの間の隙間部を漏洩流体用の
流路eにしたものもある(例えば、特開平10−253
282号公報参照)。
Further, as shown in FIG. 9, two plate members 23 are joined in a state in which a flow path f of a heat exchange fluid is formed between the plate members 23, and a flow path formation in the plate joined body S is performed. In a state where the expanded tube portions p of the portions are in contact with each other, a plurality of plate material joined bodies S are stacked in the plate thickness direction, whereby a gap between the adjacent plate material joined members S is formed in a flow path e for leakage fluid. (See, for example, Japanese Patent Application Laid-Open No. 10-253).
282).

【0004】[0004]

【発明が解決しようとする課題】しかし、前者の2重管
形式のものでは、内管22と外管21との間の漏洩流体
用の間隙流路eが断熱層となって伝熱効率が低下する問
題があり、また、内管22と外管21の間に多孔質金属
を充填したり、内管22を部分的に外管21に接触させ
る変形管にしたりして伝熱効率の向上を図ることも行わ
れるが、この場合、構造が複雑になって、製作が難しく
なるとともに製作コストが高く付く問題があった。
However, in the former double-pipe type, the gap flow path e for the leaked fluid between the inner pipe 22 and the outer pipe 21 becomes a heat insulating layer, and the heat transfer efficiency is reduced. In addition, the space between the inner tube 22 and the outer tube 21 is filled with a porous metal, or the inner tube 22 is partially deformed to be in contact with the outer tube 21 to improve heat transfer efficiency. However, in this case, there is a problem that the structure becomes complicated, the production becomes difficult, and the production cost increases.

【0005】一方、後者の板材接合体形式のものでは、
流路形成用の膨管部pを備える板材23を製作するの
に、専用の大型な金型が必要になって製作コストが嵩む
問題があり、また、伝熱面が板材接合体Sの表裏2面に
限られる為、伝熱面積を確保するのに板材接合体Sを極
力薄くして積層枚数を多くすることが必要になるが、こ
の場合、膨管部pにより形成される板間流路fに対し接
続する第1流体Aや第2流体Bの配管も細いものとなっ
て、その配管接続が難しくなるとともに、圧力損失が大
きくなる問題もあった。
[0005] On the other hand, in the case of the latter plate material joint type,
In order to manufacture the plate member 23 having the expanded tube portion p for forming the flow path, there is a problem that a large dedicated mold is required and the manufacturing cost is increased. Since it is limited to two surfaces, it is necessary to reduce the thickness of the sheet material assembly S as much as possible to increase the number of laminated sheets in order to secure a heat transfer area. The pipes of the first fluid A and the second fluid B connected to the passage f are also thin, making it difficult to connect the pipes and increasing the pressure loss.

【0006】この実情に鑑み、本発明の主たる課題は、
熱交換対象である第1流体と第2流体との伝熱壁破損に
よる混合を防止しながらも、高い伝熱効率を得ることが
でき、また、製作も容易な熱交換器を提供する点にあ
る。
In view of this situation, the main problems of the present invention are:
The object is to provide a heat exchanger that can obtain high heat transfer efficiency and can be easily manufactured while preventing the first fluid and the second fluid that are heat exchange targets from being mixed due to breakage of a heat transfer wall. .

【0007】[0007]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、外周断面形状が矩形状の伝熱管を、第1流体を
通過させる第1流体用の伝熱管と第2流体を通過させる
第2流体用の伝熱管とが管芯方向に対し直交する2方向
の夫々について交互に位置し、かつ、隣り合う伝熱管の
外周平面部どうしが対向接触する状態に集積させた構成
とする。
Means for Solving the Problems [1] In the invention according to the first aspect, the heat transfer tube having a rectangular outer peripheral cross-sectional shape passes through the heat transfer tube for the first fluid and the second fluid through which the first fluid passes. The heat transfer tubes for the second fluid to be made are alternately located in each of the two directions orthogonal to the tube core direction, and the heat transfer tubes are integrated in a state where the outer peripheral flat portions of the adjacent heat transfer tubes are in opposing contact. .

【0008】つまり、この構成によれば、第1流体と第
2流体とを隣接する各別の伝熱管に通過させて熱交換さ
せるから、第1流体用の伝熱管が破損したとしても漏洩
する第1流体が第2流体に混合すること、また、第2流
体用の伝熱管が破損したとしても漏洩する第2流体が第
1流体に混合することを防止でき、先述の従来形式と同
様に、伝熱壁破損による第1流体と第2流体との混合を
防止できる。
That is, according to this configuration, since the first fluid and the second fluid are passed through the respective adjacent heat transfer tubes to exchange heat, even if the heat transfer tube for the first fluid is broken, leakage occurs. It is possible to prevent the first fluid from mixing with the second fluid, and to prevent the leaking second fluid from mixing with the first fluid even if the heat transfer tube for the second fluid is broken. In addition, it is possible to prevent the first fluid and the second fluid from being mixed due to breakage of the heat transfer wall.

【0009】そして、この構成では、隣り合う伝熱管に
おいて対向接触する矩形状外周断面形状の各伝熱管にお
ける外周平面部を伝熱部として、第1流体と第2流体と
を熱交換させるが、管芯方向に対し直交する2方向の夫
々について第1流体用の伝熱管と第2流体用の伝熱管と
が交互に位置する状態に伝熱管を集積するから、1本の
第1流体用伝熱管について最大、外周4面の全ての平面
部を第2流体に対する伝熱面とし、また、1本の第2流
体用伝熱管について最大、外周4面の全ての平面部を第
1流体に対する伝熱面とすることが可能となり、このこ
とから、極めて高い伝熱効率を得ることができる。
In this configuration, heat is exchanged between the first fluid and the second fluid by using the outer peripheral flat portion of each heat transfer tube having a rectangular outer peripheral cross-sectional shape that is in opposing contact with the adjacent heat transfer tubes as a heat transfer portion. Since the heat transfer tubes are integrated in a state where the heat transfer tubes for the first fluid and the heat transfer tubes for the second fluid are alternately positioned in each of two directions orthogonal to the tube core direction, a single first fluid transfer tube is provided. All the flat surfaces of the outermost four surfaces of the heat pipe are heat transfer surfaces for the second fluid, and all of the four outermost flat surfaces of the heat transfer tube for the second fluid are transferable to the first fluid. It is possible to have a hot surface, which makes it possible to obtain extremely high heat transfer efficiency.

【0010】また、このように高い伝熱効率を得ながら
も、構造的には外周断面形状が矩形状の伝熱管を単に集
積させるだけの単純な構造であるから、従来の2重管形
式のものにおいて内管と外管との間に多孔質金属を充填
したり内管を変形管にして伝熱効率を確保するに比べ、
また、従来の板材接合体形式において流路形成用の膨管
部を備える板材を専用の大型な金型を用いて製作するに
比べ、熱交換器の製作を容易にするとともに、その製作
コストを安価にすることができる。
[0010] In addition, since a high heat transfer efficiency is obtained as described above, the structure is a simple structure in which heat transfer tubes having a rectangular outer peripheral cross section are simply integrated. In comparison with filling porous metal between the inner tube and the outer tube or making the inner tube a deformed tube to ensure heat transfer efficiency,
In addition, compared to a conventional plate material joined body type in which a plate material having an expanded tube portion for forming a flow path is manufactured using a special large mold, the manufacturing of the heat exchanger is facilitated and the manufacturing cost is reduced. It can be cheap.

【0011】しかも、集積対象そのものが管材であるこ
とから、板状体の積層構造を採る従来の板材接合体形式
において膨管部により形成される板間流路に対し配管接
続するに比べ、各伝熱管に対する接続配管の口径も大き
く確保することができて、各伝熱管に対する配管接続を
簡単にすることができ、この点でも熱交換器の製作を容
易にすることができ、また、圧力損失の低減面でも有利
となる。
In addition, since the stacking target itself is a pipe, each pipe is connected to the inter-plate flow path formed by the bulging portion in the conventional plate-joined type in which a plate-like stacked structure is adopted. The diameter of the connection pipes to the heat transfer tubes can be secured large, and the connection of the pipes to each heat transfer tube can be simplified. In this regard, the heat exchanger can be easily manufactured, and the pressure loss can be reduced. This is also advantageous in terms of reduction of

【0012】〔2〕請求項2に係る発明では、前記伝熱
管の外周断面形状を、前記の伝熱管集積状態において伝
熱管の矩形状外周断面形状における角部の集合位置に漏
洩流体用の間隙流路が形成される形状にする。
[2] In the invention according to the second aspect, the outer peripheral cross-sectional shape of the heat transfer tube is set at the gathering position of the corners in the rectangular outer peripheral cross-sectional shape of the heat transfer tube in the heat transfer tube integrated state. The shape is such that a flow path is formed.

【0013】つまり、この構成によれば、第1流体用の
伝熱管が破損して第1流体が漏洩した場合や、第2流体
用の伝熱管が破損して第2流体が漏洩した場合、その破
損箇所近くに位置する上記漏洩流体用の間隙流路を通じ
漏洩流体を伝熱管の長手方向に導いて伝熱管集積群の外
部へ速やかに導出することができ、これにより、伝熱管
集積群の内部での流体漏出の発生を早期に検知すること
ができる。
That is, according to this configuration, when the heat transfer tube for the first fluid is damaged and the first fluid leaks, or when the heat transfer tube for the second fluid is damaged and the second fluid leaks, The leaked fluid can be guided in the longitudinal direction of the heat transfer tube through the gap flow passage for the leaked fluid located near the damaged portion and can be quickly led out of the heat transfer tube accumulation group. The occurrence of fluid leakage inside can be detected at an early stage.

【0014】〔3〕請求項3に係る発明では、1つの第
1流体用伝熱管を通過した第1流体を最寄りの第1流体
用伝熱管に対し逆向きに流入させる第1流体用の渡り管
により複数の第1流体用伝熱管を順次接続して、第1流
体を複数の第1流体用伝熱管に対し直列に通過させ、か
つ、1つの第2流体用伝熱管を通過した第2流体を最寄
りの第2流体用伝熱管に対し逆向きに流入させる第2流
体用の渡り管により複数の第2流体用伝熱管を順次接続
して、第2流体を複数の第2流体用伝熱管に対し直列に
通過させる構成にする。
[3] In the invention according to the third aspect, the first fluid transfer for causing the first fluid passing through one first fluid heat transfer tube to flow in the opposite direction to the nearest first fluid heat transfer tube. A plurality of first fluid heat transfer tubes are sequentially connected by pipes, the first fluid is passed in series to the plurality of first fluid heat transfer tubes, and the second fluid is passed through one second fluid heat transfer tube. A plurality of second fluid heat transfer tubes are sequentially connected by a second fluid transfer tube for causing a fluid to flow in the opposite direction to the nearest second fluid heat transfer tube, and the second fluid is transferred to a plurality of second fluid heat transfer tubes. It is configured to pass in series with the heat tube.

【0015】つまり、この構成では、前記の伝熱管集積
群において、第1流体用の渡り管により順次接続した複
数の第1流体用伝熱管に第1流体を直列に通過させ、か
つ、第2流体用の渡り管により順次接続した複数の第2
流体用伝熱管に第2流体を直列に通過させる過程で、そ
れら第1流体と第2流体とを対向流方式ないし平行流方
式で熱交換させる。
In other words, in this configuration, in the heat transfer tube integrated group, the first fluid is passed in series to the plurality of first fluid heat transfer tubes sequentially connected by the first fluid transfer tube, and A plurality of secondary fluids sequentially connected by a fluid transfer pipe
In the process of passing the second fluid in series through the fluid heat transfer tube, the first fluid and the second fluid undergo heat exchange in a counter-flow system or a parallel-flow system.

【0016】そして、この構成によれば、第1流体及び
第2流体の各々を上記の如く直列通過させる形態を採る
ことにより、流速を大きく確保して各流体と伝熱管との
熱伝達を促進しながら、第1流体と第2流体との必要熱
交換時間を十分に確保することができ、これにより、伝
熱効率の向上を一層効果的に達成できる。
According to this structure, the first fluid and the second fluid are passed in series as described above, so that a large flow velocity is ensured and heat transfer between each fluid and the heat transfer tube is promoted. However, a sufficient heat exchange time between the first fluid and the second fluid can be sufficiently ensured, whereby the heat transfer efficiency can be more effectively improved.

【0017】〔4〕請求項4に係る発明では、前記伝熱
管を、隣り合う伝熱管どうしの間に軟質の伝熱材を介し
て集積させる。
[4] In the invention according to claim 4, the heat transfer tubes are integrated between adjacent heat transfer tubes via a soft heat transfer material.

【0018】この構成によれば、隣り合う伝熱管どうし
の間に介在させる上記の軟質伝熱材により、伝熱管集積
状態において、隣り合う伝熱管どうしの熱的密着性を高
めて隣り合う伝熱管どうしの間の熱伝導性を高めること
ができ、これにより、伝熱効率の向上を一層効果的に達
成できる。
According to this configuration, the above-mentioned soft heat transfer material interposed between the adjacent heat transfer tubes enhances the thermal adhesion between the adjacent heat transfer tubes in the heat transfer tube integrated state, thereby improving the heat transfer between the adjacent heat transfer tubes. It is possible to increase the thermal conductivity between the two, and thereby to improve the heat transfer efficiency more effectively.

【0019】[0019]

【発明の実施の形態】図1及び図2は、伝熱管集積型の
熱交換器を示し、外周断面形状が矩形状の伝熱管1を、
第1流体Aを通過させる第1流体用の伝熱管1aと第2
流体Bを通過させる第2流体用の伝熱管1bとが管芯方
向に対し直交する2方向の夫々について交互に位置する
5行2列のマトリクス状態に集積配置し、隣り合う伝熱
管1a,1bの外周平面部どうしを伝熱部として対向接
触させてある。
1 and 2 show a heat exchanger integrated with heat exchanger tubes, in which a heat exchanger tube 1 having a rectangular outer peripheral cross-sectional shape is shown.
A heat transfer tube 1a for the first fluid through which the first fluid A passes,
The heat transfer tubes 1b for the second fluid through which the fluid B passes are arranged in a matrix of 5 rows and 2 columns alternately positioned in each of two directions orthogonal to the tube core direction. Are brought into opposed contact with each other as heat transfer portions.

【0020】同図1,図2、及び図3に示すように、伝
熱管集積群Gの管長手方向における一端側では、第1流
体用伝熱管1a及び第2流体用伝熱管1bの各々につい
て、同一の対角方向で隣り合う伝熱管の端部どうしをU
字状の渡り管2a,2bにより接続し、また、伝熱管集
積群Gの管長手方向における他端側では、第1流体用伝
熱管1a及び第2流体用伝熱管1bの各々について、伝
熱管集積群Gの一端側で上記渡り管2a,2bにより接
続したものとは逆の同一対角方向で隣り合う伝熱管の端
部どうしをU字状の渡り管3a,3bにより接続してあ
る。
As shown in FIGS. 1, 2 and 3, at one end of the heat transfer tube integrated group G in the longitudinal direction of the tube, each of the first fluid heat transfer tube 1a and the second fluid heat transfer tube 1b. , The ends of adjacent heat transfer tubes in the same diagonal direction
The heat transfer tubes 1a and 2b are connected at the other end of the heat transfer tube integrated group G in the longitudinal direction of the tube by connecting the first heat transfer tube 1a and the second fluid heat transfer tube 1b. The ends of the heat transfer tubes adjacent to each other in the same diagonal direction opposite to those connected by the transfer tubes 2a and 2b at one end of the accumulation group G are connected by U-shaped transfer tubes 3a and 3b.

【0021】そして、第1流体用伝熱管1a及び第2流
体用伝熱管1bの各々についての上記渡り管2a,2
b,3a,3bによる直列接続に対し、第1流体用伝熱
管1aの直列接続列において、その両端部に位置する第
1流体用伝熱管1aの渡り管非接続側の端部に第1流体
Aの流出入管4,5を接続し、また、第2流体用伝熱管
1bの直列接続列において、その両端部に位置する第2
流体用伝熱管1bの渡り管非接続側の端部に第2流体B
の流出入管6,7を接続してある。
The above-mentioned crossover tubes 2a, 2 for each of the first fluid heat transfer tube 1a and the second fluid heat transfer tube 1b.
b, 3a, 3b, the first fluid heat transfer tube 1a is connected in series with the first fluid heat transfer tube 1a at the end of the first fluid heat transfer tube 1a, which is located at both ends thereof, on the side of the non-transfer pipe connection side. A of the inflow / outflow pipes 4 and 5 of A. In the series connection row of the second fluid heat transfer pipes 1b, the second
The second fluid B is connected to the end of the fluid heat transfer tube 1b on the side where the transfer tube is not connected.
Outflow / inflow pipes 6 and 7 are connected.

【0022】つまり、1つの第1流体用伝熱管1aを通
過した第1流体Aを最寄りの第1流体用伝熱管1aに対
し逆向きに通過させる第1流体用の渡り管2a,3aに
より集積群Gにおける第1流体用伝熱管1aを順次接続
した構造として、これら第1流体用伝熱管1aに第1流
体Aを直列に通過させ、また、1つの第2流体用伝熱管
1bを通過した第2流体Bを最寄りの第2流体用伝熱管
1bに対し逆向きに通過させる第2流体用の渡り管2
b,3bにより集積群Gにおける第2流体用伝熱管1b
を順次接続した構造として、これら第2流体用伝熱管1
bに対し第2流体Bを直列に通過させ、これら通過過程
において、第1流体Aと第2流体Bとを隣り合う伝熱管
1a,1bの対向接触平面部を介して対向流方式(又は
平行流方式)で熱交換させる。
That is, the first fluid A that has passed through one first fluid heat transfer tube 1a is integrated by the first fluid transfer tubes 2a and 3a that pass in the opposite direction to the nearest first fluid heat transfer tube 1a. As a structure in which the first fluid heat transfer tubes 1a in the group G are sequentially connected, the first fluid A is passed in series through the first fluid heat transfer tubes 1a, and the first fluid heat transfer tubes 1b are passed through one second fluid heat transfer tube 1b. A second fluid transfer pipe 2 for passing the second fluid B in the opposite direction to the nearest second fluid heat transfer pipe 1b
b, 3b, the second fluid heat transfer tube 1b in the accumulation group G
Are connected in sequence to form the second fluid heat transfer tubes 1.
b, the second fluid B is passed in series, and in these passing processes, the first fluid A and the second fluid B are opposed to each other via the opposed contact flat portions of the adjacent heat transfer tubes 1a and 1b (or in parallel flow). Heat exchange).

【0023】また、第1流体Aと第2流体Bとを隣接す
る各別の伝熱管1a,1bに通過させて熱交換させる形
態を採ることにより、第1流体用伝熱管1aが破損した
としても、その破損で漏洩する第1流体Aが第2流体B
に混合すること、また、第2流体用伝熱管1bが破損し
たとしても、その破損で漏洩する第2流体Bが第1流体
Aに混合することを防止できるようにしてある。
Further, by adopting a mode in which the first fluid A and the second fluid B are passed through the respective adjacent heat transfer tubes 1a and 1b to exchange heat, the first fluid heat transfer tube 1a may be damaged. Also, the first fluid A that leaks due to the breakage becomes the second fluid B
In addition, even if the second fluid heat transfer tube 1b is damaged, the second fluid B leaking due to the damage can be prevented from being mixed with the first fluid A.

【0024】各伝熱管1は、図4に示す如く、いわゆる
R成形や面取り成形などにより矩形状の外周断面形状に
おける角部を落とした形状にしてあり、これにより、伝
熱管集積状態において、伝熱管1の矩形状外周断面形状
における角部の集合位置に漏洩流体用の間隙流路eが形
成されるようにし、第1流体用伝熱管1aないし第2流
体用伝熱管1bが破損したときには、その破損箇所近く
の間隙流路eを通じて漏洩流体が速やかに集積群Gの外
部へ導出されるようにしてある。
As shown in FIG. 4, each of the heat transfer tubes 1 has a rectangular outer cross-sectional shape in which the corners are dropped by so-called R forming or chamfering. A gap flow path e for a leaked fluid is formed at the gathering position of the corners in the rectangular outer peripheral cross-sectional shape of the heat pipe 1, and when the first fluid heat transfer pipe 1a or the second fluid heat transfer pipe 1b is damaged, The leaked fluid is quickly led out of the accumulation group G through the gap flow path e near the broken point.

【0025】伝熱管1の集積群形成にあたり、伝熱部と
して対向接触させる隣り合う伝熱管1a,1bの外周平
面部どうしの間には軟質の伝熱材8を介装し、また、伝
熱管集積群Gは結束帯9により伝熱管1どうしを押圧接
触させる状態に結束してあり、これにより、隣り合う伝
熱管1a,1bどうしの熱的密着性を高めて伝熱効率の
一層の向上を図ってある。
In forming the integrated group of the heat transfer tubes 1, a soft heat transfer material 8 is interposed between the outer peripheral flat portions of the adjacent heat transfer tubes 1a and 1b to be opposed to each other as a heat transfer portion. The accumulation group G is bound in a state where the heat transfer tubes 1 are brought into pressure contact with each other by the binding band 9, thereby increasing the thermal adhesion between the adjacent heat transfer tubes 1 a and 1 b to further improve the heat transfer efficiency. It is.

【0026】なお、前記間隙流路eは、伝熱管集積群G
の形成時に伝熱管1どうしをロウ付け接合するロウ材の
挿入孔としても利用するようにしてあり、各間隙流路e
から挿入したロウ材により、間隙流路eそのものは残し
て漏洩流体の導出機能は残しながら、間隙流路eの近傍
で隣り合う伝熱管1a,1bどうしを管長手方向におい
て部分的に又は管全長にわたってロウ付け接合する。
The gap flow path e is provided in the heat transfer tube integrated group G.
Are also used as brazing material insertion holes for brazing and joining the heat transfer tubes 1 to each other at the time of formation.
The heat transfer pipes 1a and 1b adjacent to the gap flow path e are partially or fully extended in the pipe longitudinal direction while leaving the gap flow path e itself and leaving the function of deriving the leaked fluid by the brazing material inserted from the inside. And brazing.

【0027】〔別実施形態〕次に別実施形態を列記す
る。
[Another Embodiment] Next, another embodiment will be described.

【0028】第1流体用の伝熱管1aと第2流体用の伝
熱管1bとが管芯方向に対し直交する2方向の夫々につ
いて交互に位置する伝熱管集積群Gを形成するのに、前
述の実施形態では、伝熱管1を5行2列に配置する例を
示したが、例えば図5に示す如く行数及び列数ともに3
以上の配置形態を採るなど、伝熱管マトリクス配置にお
ける具体的行数・列数は種々の変更が可能である。
In order to form the heat transfer tube integrated group G in which the heat transfer tubes 1a for the first fluid and the heat transfer tubes 1b for the second fluid are alternately located in each of two directions orthogonal to the tube core direction. In the embodiment, the example in which the heat transfer tubes 1 are arranged in five rows and two columns has been described, but for example, as shown in FIG.
The number of rows and the number of columns in the heat transfer tube matrix arrangement can be variously changed, for example, by adopting the above arrangement form.

【0029】伝熱管1の外周断面形状を、伝熱管集積状
態において伝熱管1の矩形状外周断面形状における角部
の集合位置に漏洩流体用の間隙流路eが形成される形状
にするのに、その具体的形状は、前述の実施形態で示し
たR成形や面取り成形による形状に限らず、例えば、伝
熱管1の矩形状外周断面形状における角部に管芯方向に
延びる溝状部を形成した形状など、種々の変更が可能で
ある。
In order to make the outer peripheral cross-sectional shape of the heat transfer tube 1 into a shape in which the gap flow path e for the leakage fluid is formed at the gathering position of the corners in the rectangular outer peripheral cross-sectional shape of the heat transfer tube 1 in the heat transfer tube integrated state. The specific shape is not limited to the shape obtained by the R forming or the chamfering forming described in the above-described embodiment. For example, a groove-shaped portion extending in the tube core direction is formed at a corner in the rectangular outer peripheral cross-sectional shape of the heat transfer tube 1. Various changes, such as a changed shape, are possible.

【0030】前述の実施形態では、伝熱管集積群Gにお
ける管長手方向の一端部において同一の対角方向に隣り
合う伝熱管1どうしをU字状の渡り管2a,2bにより
接続し、また、伝熱管集積群Gにおける管長手方向の他
端部においては、それと逆の同一対角方向に隣り合う伝
熱管1どうしをU字状の渡り管3a,3bにより接続
し、これにより、渡り管2a,2b,3a,3bどうし
が交差する状態になるのを回避して渡り管接続を容易に
した構造を示したが、伝熱管1を直列接続する場合、伝
熱管マトリクス配置における行数や列数に応じ、渡り管
の具体的接続形態は種々の変更が可能であり、また場合
によっては、伝熱管集積群Gの伝熱管1に対し流体を並
列に通過させる形態や、並列通過と直列通過とを組み合
わせた形態を採用してもよい。
In the above-described embodiment, the heat transfer tubes 1 adjacent in the same diagonal direction at one end in the tube longitudinal direction in the heat transfer tube integrated group G are connected to each other by the U-shaped transfer tubes 2a and 2b. At the other end in the tube longitudinal direction in the heat transfer tube integrated group G, the heat transfer tubes 1 adjacent to each other in the same diagonal direction are connected to each other by U-shaped transfer tubes 3a and 3b, thereby forming the transfer tube 2a. , 2b, 3a, and 3b avoid crossing each other and facilitate the connection of the transfer pipes. However, when the heat transfer pipes 1 are connected in series, the number of rows and the number of columns in the heat transfer pipe matrix arrangement According to the specific connection form of the transfer pipe, various changes are possible, and depending on the case, the form in which the fluid passes through the heat transfer tubes 1 of the heat transfer tube integrated group G in parallel, the parallel passage and the series passage Adopt a form that combines It may be.

【0031】隣り合う伝熱管1a,1bどうしの間に介
装する軟質の伝熱材8には、伝熱管1よりも軟質のもの
であれば種々の材質のものを適用でき、また場合によっ
ては、この軟質伝熱材8の介装を省略して、伝熱部とし
ての隣り合う伝熱管1a,1bの外周平面部どうしを直
接に接触させるようにしてもよい。
As the soft heat transfer material 8 interposed between the adjacent heat transfer tubes 1a and 1b, various materials can be used as long as the material is softer than the heat transfer tube 1. Alternatively, the interposition of the soft heat transfer material 8 may be omitted, and the outer peripheral flat portions of the adjacent heat transfer tubes 1a and 1b as heat transfer portions may be brought into direct contact with each other.

【0032】伝熱管集積群Gを結束帯9により結束する
場合、前述の実施形態では管長手方向における複数の部
分的箇所で伝熱管集積群Gを結束する例を示したが、例
えば、図6に示すように、伝熱管1のほぼ全長にわたる
状態の結束帯9により伝熱管集積群Gを結束するなど、
具体的結束構造は種々の構成変更が可能であり、また、
図7に示すように、伝熱管集積群Gを覆う補強板10を
設けて、その補強板10の上から伝熱管集積群Gを結束
するようにしてもよい。
In the case where the heat transfer tube accumulation group G is bound by the binding band 9, the above-described embodiment shows an example in which the heat transfer tube accumulation group G is bound at a plurality of partial locations in the longitudinal direction of the tube. As shown in FIG. 5, the heat transfer tube integrated group G is bound by the binding band 9 extending over substantially the entire length of the heat transfer tube 1.
Various configurations can be changed for the specific binding structure, and
As shown in FIG. 7, a reinforcing plate 10 that covers the heat transfer tube collecting group G may be provided, and the heat transfer tube collecting group G may be bound from above the reinforcing plate 10.

【0033】なお、図6に示す如き幅広の結束帯9によ
り伝熱管集積群Gを結束する場合において、その結束帯
9と伝熱管集積群Gとの間に断熱材を介装したり、ま
た、図7に示す如き補強板10を設ける場合において、
その補強板10と伝熱管集積群Gとの間に断熱材を介装
するなど、実施にあたっては、伝熱管集積群Gを覆う断
熱材層を設けて放熱ロスを抑止することが望ましい。
In the case where the heat transfer tube collecting group G is bound by the wide binding band 9 as shown in FIG. 6, a heat insulating material may be interposed between the binding band 9 and the heat transfer tube collecting group G. In the case where the reinforcing plate 10 as shown in FIG.
In practice, for example, by interposing a heat insulating material between the reinforcing plate 10 and the heat transfer tube accumulation group G, it is desirable to provide a heat insulation material layer covering the heat transfer tube accumulation group G to suppress heat loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱交換器の正面図FIG. 1 is a front view of a heat exchanger.

【図2】熱交換器の側面図FIG. 2 is a side view of a heat exchanger.

【図3】熱交換器の分解斜視図FIG. 3 is an exploded perspective view of the heat exchanger.

【図4】要部の側面視拡大断面図FIG. 4 is an enlarged sectional view of a main part in a side view.

【図5】別実施形態を示す熱交換器の斜視図FIG. 5 is a perspective view of a heat exchanger showing another embodiment.

【図6】別実施形態を示す熱交換器の斜視図FIG. 6 is a perspective view of a heat exchanger showing another embodiment.

【図7】別実施形態を示す熱交換器の斜視図FIG. 7 is a perspective view of a heat exchanger showing another embodiment.

【図8】従来例を示す破断斜視図FIG. 8 is a cutaway perspective view showing a conventional example.

【図9】他の従来例を示す斜視図FIG. 9 is a perspective view showing another conventional example.

【符号の説明】[Explanation of symbols]

1 伝熱管 1a 第1流体用伝熱管 1b 第2流体用伝熱管 2a,3a 第1流体用渡り管 2b,3b 第2流体用渡り管 8 軟質伝熱材 A 第1流体 B 第2流体 e 間隙流路 DESCRIPTION OF SYMBOLS 1 Heat transfer tube 1a 1st fluid heat transfer tube 1b 2nd fluid heat transfer tube 2a, 3a 1st fluid transfer tube 2b, 3b 2nd fluid transfer tube 8 Soft heat transfer material A 1st fluid B 2nd fluid e gap Channel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 善隆 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 岩田 伸 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 橋詰 康人 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 (72)発明者 藤川 泰 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 Fターム(参考) 3L103 AA37 AA44 DD06 DD15 DD56 ──────────────────────────────────────────────────続 き Continued on the front page (72) Yoshitaka Shibata, Inventor 4-1-2, Hiranocho, Chuo-ku, Osaka-shi, Osaka Prefecture Inside Osaka Gas Co., Ltd. (72) Shin Iwata 4-chome, Hiranocho, Chuo-ku, Osaka-shi, Osaka 1-2-2 Inside Osaka Gas Co., Ltd. (72) Inventor Yasuhito Hashizume 1-152 Oka, Minami-shi, Minato-ku, Osaka-shi, Osaka Prefecture Harman Co., Ltd. No. 1-52 F-term in Harman Co., Ltd. (Reference) 3L103 AA37 AA44 DD06 DD15 DD56

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外周断面形状が矩形状の伝熱管を、第1
流体を通過させる第1流体用の伝熱管と第2流体を通過
させる第2流体用の伝熱管とが管芯方向に対し直交する
2方向の夫々について交互に位置し、かつ、隣り合う伝
熱管の外周平面部どうしが対向接触する状態に集積させ
てある熱交換器。
1. A heat transfer tube having a rectangular outer peripheral cross-sectional shape,
Heat transfer tubes for the first fluid through which the fluid passes and heat transfer tubes for the second fluid through which the second fluid passes alternately in two directions orthogonal to the tube core direction, and adjacent heat transfer tubes The heat exchangers are integrated such that the outer peripheral flat portions are in opposing contact with each other.
【請求項2】 前記伝熱管の外周断面形状を、前記の伝
熱管集積状態において伝熱管の矩形状外周断面形状にお
ける角部の集合位置に漏洩流体用の間隙流路が形成され
る形状にしてある請求項1記載の熱交換器。
2. An outer cross-sectional shape of the heat transfer tube is formed such that a gap flow path for a leaked fluid is formed at a gathering position of a corner in the rectangular outer cross-sectional shape of the heat transfer tube in the heat transfer tube integrated state. The heat exchanger according to claim 1.
【請求項3】 1つの第1流体用伝熱管を通過した第1
流体を最寄りの第1流体用伝熱管に対し逆向きに流入さ
せる第1流体用の渡り管により複数の第1流体用伝熱管
を順次接続して、第1流体を複数の第1流体用伝熱管に
対し直列に通過させ、 かつ、1つの第2流体用伝熱管を通過した第2流体を最
寄りの第2流体用伝熱管に対し逆向きに流入させる第2
流体用の渡り管により複数の第2流体用伝熱管を順次接
続して、第2流体を複数の第2流体用伝熱管に対し直列
に通過させる構成にしてある請求項1又は2記載の熱交
換器。
3. The first fluid passing through one first fluid heat transfer tube.
A plurality of first-fluid heat transfer tubes are sequentially connected by a first-fluid transfer tube that causes the fluid to flow in the opposite direction to the nearest first-fluid heat transfer tube, and the first fluid is transferred to the plurality of first-fluid transfer tubes. A second fluid that is passed in series with the heat pipe, and the second fluid that has passed through one second fluid heat transfer pipe flows in the opposite direction to the nearest second fluid heat transfer pipe;
The heat according to claim 1 or 2, wherein the plurality of second fluid heat transfer tubes are sequentially connected by the fluid transfer tube, and the second fluid is passed in series to the plurality of second fluid heat transfer tubes. Exchanger.
【請求項4】 前記伝熱管を、隣り合う伝熱管どうしの
間に軟質の伝熱材を介して集積させてある請求項1〜3
のいずれか1項に記載の熱交換器。
4. The heat transfer tubes are integrated between adjacent heat transfer tubes via a soft heat transfer material.
The heat exchanger according to any one of the above.
JP10369393A 1998-12-25 1998-12-25 Heat exchanger Pending JP2000193382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10369393A JP2000193382A (en) 1998-12-25 1998-12-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10369393A JP2000193382A (en) 1998-12-25 1998-12-25 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2000193382A true JP2000193382A (en) 2000-07-14

Family

ID=18494312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10369393A Pending JP2000193382A (en) 1998-12-25 1998-12-25 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2000193382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507063A (en) * 2006-10-16 2010-03-04 サステイナブル・エンジン・システム・リミテッド Heat exchanger
CN110655964A (en) * 2019-10-28 2020-01-07 安徽理工大学 Treatment device and method applied to microwave desulfurization of coal
CN110669561A (en) * 2019-10-28 2020-01-10 安徽理工大学 Heat energy recovery processing device for coal desulfurization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507063A (en) * 2006-10-16 2010-03-04 サステイナブル・エンジン・システム・リミテッド Heat exchanger
CN110655964A (en) * 2019-10-28 2020-01-07 安徽理工大学 Treatment device and method applied to microwave desulfurization of coal
CN110669561A (en) * 2019-10-28 2020-01-10 安徽理工大学 Heat energy recovery processing device for coal desulfurization
CN110655964B (en) * 2019-10-28 2020-08-04 安徽理工大学 Treatment device and method applied to microwave desulfurization of coal
CN110669561B (en) * 2019-10-28 2020-08-04 安徽理工大学 Heat energy recovery processing device for coal desulfurization

Similar Documents

Publication Publication Date Title
JP5331701B2 (en) Plate stack heat exchanger
JP2862213B2 (en) Heat exchanger
US4073340A (en) Formed plate type heat exchanger
US4310960A (en) Method of fabrication of a formed plate, counterflow fluid heat exchanger and apparatus thereof
JP2000097578A (en) Heat exchanger and, especially, exhaust gas heat exchanger
JPH11510890A (en) 3-circuit plate heat exchanger
JP4263694B2 (en) High pressure heat exchanger
JPH08219677A (en) Plate laminated body as heat exchanger
US3024003A (en) Heat exchanger
JPH11351777A (en) Flat heat transfer tube for heat exchanger
JP2001174083A (en) Heat exchanger
JP2000193383A (en) Heat exchanger
JP2000193382A (en) Heat exchanger
JPH07243788A (en) Heat exchanger
JPH10111086A (en) Heat exchanger
JP6533070B2 (en) Flat tube and heat exchanger
JPH07190650A (en) Heat exchanger
JP3190675B2 (en) Plate heat exchanger and method of assembling the same
JP5154837B2 (en) Heat exchanger
JPH10206079A (en) Heat-exchanger
JPS6183883A (en) Plate type heat exchanger
JP2000039284A5 (en)
KR20200027773A (en) Plate type heat exchanger
JPH0583838B2 (en)
KR102143006B1 (en) Plate type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071227