JP2000192661A - Prestress concrete structure - Google Patents

Prestress concrete structure

Info

Publication number
JP2000192661A
JP2000192661A JP10370981A JP37098198A JP2000192661A JP 2000192661 A JP2000192661 A JP 2000192661A JP 10370981 A JP10370981 A JP 10370981A JP 37098198 A JP37098198 A JP 37098198A JP 2000192661 A JP2000192661 A JP 2000192661A
Authority
JP
Japan
Prior art keywords
tightening
force
tension
concrete
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10370981A
Other languages
Japanese (ja)
Other versions
JP3683112B2 (en
Inventor
Takeshi Nakamura
嶽 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP37098198A priority Critical patent/JP3683112B2/en
Publication of JP2000192661A publication Critical patent/JP2000192661A/en
Application granted granted Critical
Publication of JP3683112B2 publication Critical patent/JP3683112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To always hold constant tightening force by providing a nonlinear spring of small resilient force variation for the deflection deformation at the time set tightening force giving on a locking part of a concrete structure and a tightening material end. SOLUTION: A tightening material 5 is expanded to produce tightening force by tightening nuts 13a, 13b, an initially coned disc spring 7 is deformed until it is resilient force balanced with the tightening force, and the resilient force is transmitted to a concrete rectangular parallelepiped 3 via anchor plates 9a, 9b as compression force. Next, after prestress giving, an expansion and contraction difference is absorbed by the deflection deformation of the initially coned disc spring 7 when the expansion and contraction difference of the axial direction of the tightening material occurs on the tightening material 5 and the rectangular parallelepiped 3 by the relaxation of the tightening material 5, the creep of the rectangular parallelepiped 3 or the like. Next, because the initially coned disc spring 7 is set so that the set value of the tightening force and a resilient force variation insensitive band coincide with each other, change in the resilient force does not occur even when the deflection deformation occurs, and as the result, the set tightening force of the tightening material, namely, compression force transmitted to the rectangular parallelopiped 3 is maintained constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プレストレスト・
コンクリート構造物(以下、PC構造物と略記)におい
て、PC鋼材等の緊張材に緊張力を付与する際に、緊張
材およびコンクリートの伸縮によらず、常に一定の緊張
力を保持する手段を有したPC構造物に関する。
TECHNICAL FIELD The present invention relates to a prestressed
In a concrete structure (hereinafter abbreviated as a PC structure), when tension is applied to a tension member such as a PC steel material, there is a means for always maintaining a constant tension regardless of expansion and contraction of the tension member and concrete. PC structure.

【0002】[0002]

【従来の技術】プレストレス工法は、コンクリート打
設,硬化後に、コンクリート内に摺動自在に挿通した緊
張材に緊張力を付与し、ネジやくさび等の係止部材によ
り緊張材端部をコンクリートに定着させプレストレスを
付与し、コンクリート構造物に予め圧縮応力を付加して
おいて、耐引張り強度を向上する方法である。
2. Description of the Related Art In a prestressing method, after placing and hardening concrete, a tension member is slidably inserted into the concrete, and tension is applied to the tension member. In this method, a prestress is applied to the concrete structure, and a compressive stress is applied to the concrete structure in advance to improve the tensile strength.

【0003】この方法で施工されたPC構造物は、緊張
材の緊張力によりその引張耐力が確保されており、長年
の使用により緊張力が所定値より低下すると十分な強度
が得られなくなる。この要因としては緊張材のレラクセ
ーションやコンクリートのクリープ,乾燥収縮等があ
る。これは、緊張材に作用する緊張力、またこの反力と
して前記コンクリートに作用する圧縮力を長期に亘り持
続させると、緊張材については引張歪みが、またコンク
リートについては圧縮歪みが経時的に増大する現象であ
り、この結果として、前記緊張材の引張歪みによる伸び
変形と前記コンクリートの圧縮歪みによる縮変形の伸縮
差だけ、緊張材の緊張力やコンクリートの圧縮力が減少
してしまうことになる。
[0003] The tensile strength of the PC structure constructed by this method is ensured by the tension of the tendon, and if the tension falls below a predetermined value due to long-term use, sufficient strength cannot be obtained. This is due to relaxation of tendons, creep of concrete, and drying shrinkage. This is because, when the tension acting on the tendon and the compressive force acting on the concrete as this reaction force are maintained for a long time, the tensile strain for the tendon and the compressive strain for the concrete increase with time. As a result, the tension of the tendon and the compressive force of the concrete are reduced by the difference in expansion and contraction between the elongation deformation due to the tensile strain of the tendon and the shrinkage due to the compressive strain of the concrete. .

【0004】ここで、上記問題点を改善したPC構造物
の例として、図9に示すようなプレストレスト・コンク
リート梁(以下PC梁と略記)がある。図示するように
このPC梁は、梁本体であるコンクリート直方体3と、
このコンクリート直方体3に両側面から圧縮力をプレス
トレスする一対のアンカープレート9a,9bと、この
アンカープレート9a,9bと前記コンクリート直方体
3を貫通する緊張材5と、この緊張材5の一方端に螺合
されて前記アンカープレート9bを前記コンクリート直
方体側面に締め付けるナット13bと、前記緊張材5の
他端に螺合されるナット13aと、このナット13aと
前記アンカープレート9aとの間に介装され、前記ナッ
ト13aの締め付けにより生じる緊張材5の緊張力をア
ンカープレート9aに伝達するコイルばね8とで構成さ
れており、コイルばね8のばね定数は緊張材やコンクリ
ートに比して極小さいものとなっている。
Here, as an example of a PC structure which has solved the above-mentioned problems, there is a prestressed concrete beam (hereinafter abbreviated as PC beam) as shown in FIG. As shown in the figure, this PC beam has a concrete rectangular parallelepiped 3 which is a beam body,
A pair of anchor plates 9a, 9b for prestressing the compressive force on the concrete rectangular parallelepiped 3 from both sides, a tension member 5 penetrating the anchor plates 9a, 9b and the concrete rectangular parallelepiped 3, and one end of the tension member 5 A nut 13b that is screwed and tightens the anchor plate 9b to the side of the concrete rectangular parallelepiped, a nut 13a that is screwed to the other end of the tendon member 5, and is interposed between the nut 13a and the anchor plate 9a. And a coil spring 8 for transmitting the tension of the tension member 5 generated by the tightening of the nut 13a to the anchor plate 9a. The spring constant of the coil spring 8 is extremely small as compared with the tension member or concrete. Has become.

【0005】したがって、当該PC梁にあっては、前記
コンクリート直方体3と緊張材5とに緊張材軸方向の伸
縮差が生じた場合、コイルばね8の撓み変形により前記
伸縮差が吸収され、この際コイルばね8のばね定数は緊
張材やコンクリートに比して極めて小さいため、前記伸
縮差を吸収しても弾発力の低下は小さく、よって緊張材
5の緊張力やコンクリート直方体3に作用する圧縮力の
低下が抑制される。
Accordingly, in the PC beam, when a difference in expansion and contraction occurs in the concrete rectangular parallelepiped 3 and the tension member 5 in the axial direction of the tension member, the difference in expansion and contraction is absorbed by the bending deformation of the coil spring 8. In this case, since the spring constant of the coil spring 8 is extremely small as compared with that of the tendon or concrete, even if the difference in expansion and contraction is absorbed, the reduction of the resilience is small, and thus the tension of the tendon 5 and the concrete cuboid 3 are exerted. A decrease in compression force is suppressed.

【0006】また、緊張力を常に一定に維持するものと
して、コンクリート構造物の緊張材の両端部に油圧ジャ
ッキを備え付け、緊張材の緊張力を油圧ジャッキの圧力
検出器により計測して、その計測値を一定に保つように
して、前記油圧ジャッキの作動を制御するようにしたP
C構造物の自動緊張管理システム装置(特開平9−21
7493号公報参照)等も提案されている。
In order to always maintain the tension constant, hydraulic jacks are provided at both ends of the tension member of the concrete structure, and the tension of the tension member is measured by a pressure detector of the hydraulic jack, and the measurement is performed. The value of P is controlled so as to control the operation of the hydraulic jack by keeping the value constant.
Automatic tension management system for C structures (Japanese Patent Laid-Open No. 9-21)
No. 7493) has also been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記コ
イルばねを介装するようにしたプレストレスト・コンク
リート構造物にあっては、前記コイルばね8は、あくま
で撓み変形に対して弾発力が線形に変化する線形ばねで
あるため、吸収した伸縮差の撓み変形分に相応して緊張
力が変化してしまうことは否めず、プレストレスを一定
に維持することはできない。
However, in the prestressed concrete structure in which the coil spring is interposed, the elastic force of the coil spring 8 changes linearly with respect to bending deformation. Because of the linear spring, the prestress cannot be maintained at a constant level due to the fact that the tension changes in accordance with the amount of flexural deformation of the absorbed difference in expansion and contraction.

【0008】また、前記自動緊張管理システムにあって
は、これを設置するのに莫大な設備費を必要とすること
から、コスト面で導入上の大きな課題がある。
[0008] In addition, the automatic tension management system described above requires a huge amount of equipment cost to install, and thus has a major problem in terms of cost.

【0009】本発明は上記問題点に鑑みてなされたもの
で、PC構造物において、PC鋼材等の緊張材に緊張力
を付与する際に、緊張材のレラクセーションやコンクリ
ートのクリープ,乾燥収縮等によらず、常に一定の緊張
力を保持する手段を有し、かつ廉価に容易に製作,施工
可能なPC構造物の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and when a tension is applied to a tendon such as a PC steel material in a PC structure, relaxation of the tendon, creep of concrete, and drying shrinkage. It is an object of the present invention to provide a PC structure which has means for always maintaining a constant tension and which can be easily manufactured and constructed at low cost.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、本発明のうち、請求項1記載の発明
は、PC構造物の緊張材に緊張力を付与する手段とし
て、設定緊張力付与時の撓み変形に対する弾発力変動が
小さい非線形ばねを、コンクリート構造物と緊張材端部
との係止部に介在させたことを特徴とする。
As a means for solving the above-mentioned problems, the invention according to claim 1 of the present invention is a means for applying a tension to a tension member of a PC structure. A non-linear spring having a small resilient force variation with respect to bending deformation at the time of applying a force is interposed in a locking portion between a concrete structure and a tendon member end.

【0011】上記構成によれば、設定緊張力付与後に発
生した、緊張材のレラクセーションやコンクリート構造
物のクリープ,乾燥収縮等による緊張材とコンクリート
との緊張材軸方向の伸縮差は、前記コンクリート構造物
と緊張材端部との係止部に介在させた非線形ばねの撓み
変形で吸収され、かつこの非線形ばねは、前記設定緊張
力において撓み変形に対する弾発力変動が小さくなるよ
うに設定されているため、撓み変形が生じても弾発力変
動が生じず、これ故緊張材の設定緊張力は変化しない。
このため、設定緊張力付与後のプレストレスを所期値に
維持でき、PC構造物の安全性が著く向上する。
According to the above construction, the difference in expansion and contraction between the tendon and the concrete caused by the relaxation of the tendon, the creep of the concrete structure, the drying shrinkage, etc., generated after the set tension is applied, It is absorbed by the bending deformation of the non-linear spring interposed in the locking portion between the concrete structure and the end portion of the tendon material, and the non-linear spring is set so that the elastic force fluctuation against the bending deformation at the set tension becomes small. Therefore, even if the bending deformation occurs, the elastic force does not fluctuate, and therefore, the set tension of the tendon does not change.
For this reason, the prestress after applying the set tension can be maintained at an expected value, and the safety of the PC structure is significantly improved.

【0012】請求項2に記載の発明は、前記請求項1記
載の非線形ばねが皿ばねであることを特徴とする。
According to a second aspect of the present invention, the non-linear spring according to the first aspect is a disc spring.

【0013】上記構成によれば、前記非線形ばねに皿ば
ねを使用するため、この皿ばねの板厚tとその最大撓み
量である高さHの比をH/t=1.2〜1.6、望まし
くはH/t=1.4にすることにより、容易に撓み変形
に対する弾発力変動が小さい領域を有する特性に設定で
きる。
According to the above configuration, since a disc spring is used as the non-linear spring, the ratio of the plate thickness t of the disc spring to the height H, which is the maximum amount of deflection thereof, is H / t = 1.2 to 1. 6. Desirably, by setting H / t = 1.4, it is possible to easily set a characteristic having a region where the resilience fluctuation against bending deformation is small.

【0014】請求項3に記載の発明は、前記請求項1あ
るいは請求項2記載のPC構造物が梁部材あるいは床版
部材あるいは橋梁部材であることを特徴とする。
According to a third aspect of the present invention, the PC structure according to the first or second aspect is a beam member, a floor slab member, or a bridge member.

【0015】上記構成によれば、緊張材のレラクセーシ
ョンやコンクリート構造物のクリープ,乾燥収縮等によ
る緊張材とコンクリート構造物の緊張材軸方向伸縮差
を、前記コンクリート構造物と緊張材端部との係止部に
介在させた非線形ばねの弾発力変動が小さい領域の撓み
変形で吸収するので、設定緊張力付与後のプレストレス
を所期値に維持でき、PC梁部材、PC床版部材、PC
橋梁部材の安全性が著く向上する。
According to the above construction, the difference between the tension of the tendon and the concrete structure in the axial direction due to the relaxation of the tendon and the creep, drying and shrinkage of the concrete structure can be measured by using the concrete structure and the end of the tendon. The elastic deformation of the non-linear spring interposed in the locking part is absorbed by the flexural deformation in the small area, so that the pre-stress after applying the set tension can be maintained at the expected value, and the PC beam member and the PC floor slab can be maintained. Member, PC
The safety of bridge members is significantly improved.

【0016】請求項4記載の発明は、前記請求項1ある
いは請求項2記載のPC構造物がタンク、原子炉圧力容
器あるいは原子炉格納容器または卵型消化槽等の容器構
造物であることを特徴とする。
According to a fourth aspect of the present invention, the PC structure according to the first or second aspect is a container structure such as a tank, a reactor pressure vessel, a reactor containment vessel, or an egg digester. Features.

【0017】上記構成によれば、緊張材のレラクセーシ
ョンや、コンクリート構造物のクリープ,乾燥収縮等に
よる緊張材とコンクリート構造物の緊張材軸方向伸縮差
を、前記コンクリート構造物と緊張材端部との係止部に
介在させた非線形ばねの弾発力変動が小さい領域の撓み
変形で吸収するので、設定緊張力付与後のプレストレス
を所期値に維持でき、タンク、原子炉圧力容器、原子炉
格納容器、卵型消化槽等の容器構造物の安全性が著く向
上する。特に原子炉圧力容器については、中性子照射と
40〜50゜の微高温による緊張材のレラクセーション
にかかわらず、プレストレスを一定に維持できるので非
常に有用である。
According to the above construction, the difference between the tension member relaxation and the tension member axial direction expansion / contraction between the concrete member and the concrete structure due to creep, drying shrinkage, etc. of the concrete member is determined by comparing the concrete structure with the tension member end. Since the elastic deformation of the non-linear spring interposed in the locking part with the part is absorbed by bending deformation in the area where the fluctuation is small, the pre-stress after applying the set tension can be maintained at the expected value, and the tank and the reactor pressure vessel In addition, the safety of container structures such as a reactor containment vessel and an egg-shaped digestion tank is significantly improved. Particularly, the reactor pressure vessel is very useful because the prestress can be kept constant irrespective of neutron irradiation and relaxation of the tendon due to a very high temperature of 40 to 50 °.

【0018】[0018]

【発明の実施の形態】以下、本発明の好ましい実施の形
態につき、添付図面を参照して詳細に説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0019】図1は、本発明をPC梁に適用した第1実
施形態の概略構成を示す梁の長手方向断面図である。図
示するように、PC梁1は、梁本体であるコンクリート
直方体3と、このコンクリート直方体3に両側面から圧
縮力をプレストレスする一対のアンカープレート9a,
9bと、このアンカープレート9a,9bと前記コンク
リート直方体3とを貫通して挿通される複数の緊張材5
と、この緊張材5の一方端に螺合されて前記アンカープ
レート9bを前記コンクリート直方体側面に締め付ける
係止部たるナット13bと、前記緊張材5の他端に螺合
されるもう一つの係止部たるナット13aと、このナッ
ト13aと前記アンカープレート9aとの間に介装さ
れ、ナット13aの締め付けによる緊張材5の緊張力を
アンカープレート9aに伝達する非線形ばねである皿ば
ね部7とで構成されている。
FIG. 1 is a longitudinal sectional view of a beam showing a schematic configuration of a first embodiment in which the present invention is applied to a PC beam. As shown in the figure, the PC beam 1 has a concrete rectangular parallelepiped 3 as a beam main body, and a pair of anchor plates 9a, which prestresses the concrete rectangular parallelepiped 3 from both sides.
9b, and a plurality of tendons 5 inserted through the anchor plates 9a and 9b and the concrete rectangular parallelepiped 3.
And a nut 13b which is screwed to one end of the tendon member 5 to fasten the anchor plate 9b to the side surface of the concrete rectangular parallelepiped, and another stop screwed to the other end of the tendon member 5 A nut 13a, which is a non-linear spring, which is a non-linear spring interposed between the nut 13a and the anchor plate 9a and transmitting the tension of the tension member 5 by tightening the nut 13a to the anchor plate 9a. It is configured.

【0020】前記緊張材5は、PC鋼材やPC鋼線であ
り、前記ナット9a,9bと螺合するようにその両端に
雄ネジが切られ、またコンクリート直方体3内を自在に
摺動可能となすためにその表面にグリース等の潤滑剤,
防錆剤が塗布されている。
The tension member 5 is a PC steel material or a PC steel wire. Both ends of the tension member 5 are externally threaded so as to be screwed with the nuts 9a and 9b, and can be slid freely in the concrete rectangular parallelepiped 3. Grease or other lubricant on the surface,
Rust inhibitor is applied.

【0021】この場合は、コンクリート内で摺動可能な
緊張材を直接配設しているが、緊張材にチューブをかぶ
せ、その緊張材とチューブの隙間に防錆剤や潤滑剤を詰
めたシースストランドを用いても良い。
In this case, a tension member slidable in the concrete is directly disposed, but a tube is put on the tension member, and a sheath in which a rust inhibitor or a lubricant is filled in a gap between the tension member and the tube. Strands may be used.

【0022】前記皿ばね部7は、中心に孔を有する裁頭
円錐状ばね鋼の皿ばね単体7aを同じ向きに複数枚重ね
た並列重ねの一組の皿ばね積層体からなる。前記皿ばね
単体7aは、図2に示すように皿ばねの撓み変形に対す
る弾発力変動が小さい領域(以下、「弾発力変動不感帯
領域」と記す。)を有するもので、ばねの板厚tとその
最大撓みHの比がH/t=1.2〜1.6が望ましく、
より望ましくはH/t=1.4である。
The disc spring portion 7 is composed of a pair of disc springs laminated in parallel, in which a plurality of disc springs 7a of frustoconical spring steel having a hole at the center are stacked in the same direction. As shown in FIG. 2, the disc spring unit 7 a has a region where the resilient force variation with respect to the bending deformation of the disc spring is small (hereinafter, referred to as “elastic force variation dead zone”). The ratio of t to its maximum deflection H is preferably H / t = 1.2 to 1.6,
More preferably, H / t = 1.4.

【0023】そして、前記皿ばね部7の弾発力を前記弾
発力変動不感帯に設定するにあたっては、プレストレス
付与時の緊張材の緊張力設定値と一致するように、皿ば
ね積層体一組当たりの皿ばね単体枚数を変更することで
調整する。また、図2に示す弾発力変動不感帯幅は、前
記緊張材と前記コンクリート直方体との最大伸縮差を吸
収可能なように、複数組の皿ばね積層体を互いに逆向き
に交互に付き合わせる等して調整し得るが、本実施例で
は、皿ばね積層体は一組としている。
When the elastic force of the disc spring portion 7 is set in the elastic force variation dead zone, the disc spring laminated body is set so as to match the tension set value of the tendon material at the time of applying prestress. It is adjusted by changing the number of disc springs per group. The elasticity fluctuation dead zone width shown in FIG. 2 is such that a plurality of sets of disc spring laminates are alternately attached to each other in opposite directions so as to absorb the maximum expansion difference between the tendon and the concrete rectangular parallelepiped. In this embodiment, the disc spring laminate is a set.

【0024】尚、ここでは図示していないが、ナット1
3aと皿ばね部7の間にはワッシャーを介装しても良
い。
Although not shown here, the nut 1
A washer may be interposed between 3a and the disc spring portion 7.

【0025】次に、本第1実施形態の作用について説明
する。
Next, the operation of the first embodiment will be described.

【0026】コンクリート直方体3への圧縮荷重のプレ
ストレス付与は、緊張材5の両端に螺合しているナット
13a,13bを締め付けることで行う。即ち、この締
め付けにより緊張材5が伸張して緊張力が生じると、こ
の緊張力と釣り合う弾発力になるまで皿ばね7が撓み、
この弾発力がアンカープレート9a,9bを経由してコ
ンクリート直方体3に圧縮力として伝達されることにな
る。
The prestressing of the compressive load to the concrete rectangular parallelepiped 3 is performed by tightening the nuts 13a and 13b screwed to both ends of the tendon member 5. That is, when the tension member 5 is stretched by this tightening and a tension is generated, the disc spring 7 bends until the elastic force is balanced with the tension,
This elastic force is transmitted to the concrete rectangular parallelepiped 3 as a compressive force via the anchor plates 9a and 9b.

【0027】前記プレストレス付与後に、緊張材5のレ
ラクセーションやコンクリート直方体3のクリープ,乾
燥収縮等により、緊張材5とコンクリート直方体3とに
緊張材軸方向の伸縮差が発生すると、その伸縮差は前記
皿ばねの撓み変形で吸収される。このとき、この皿ばね
7は、前記緊張力の設定値と弾発力変動不感帯が一致す
るように設定されているため、撓み変形が生じても弾発
力には変動が生じず、結果緊張材5の設定緊張力、すな
わちコンクリート直方体3に伝達される圧縮力は一定に
維持される。また、コンクリート直方体3と緊張材5の
線膨張係数差等に起因した温度変化による温度収縮差が
生じても、上記と同様に設定緊張力を一定に維持でき
る。
After the application of the prestress, if the tension member 5 and the concrete rectangular parallelepiped 3 generate a difference in expansion and contraction in the axial direction of the tension member 5 due to relaxation of the tension member 5, creep, drying shrinkage, etc. The difference is absorbed by the bending deformation of the disc spring. At this time, since the disc spring 7 is set so that the set value of the tension and the resilient force fluctuation dead zone coincide with each other, the resilient force does not fluctuate even if the bending deformation occurs. The set tension of the material 5, that is, the compressive force transmitted to the concrete rectangular parallelepiped 3 is kept constant. Further, even if a temperature contraction difference occurs due to a temperature change due to a difference in linear expansion coefficient between the concrete rectangular parallelepiped 3 and the tension member 5, the set tension can be maintained constant in the same manner as described above.

【0028】このため、設定緊張力付与後のプレストレ
スを長期に亘って所期値に維持でき、PC梁に代表され
るPC構造物1の強度を著く安定的に向上させ得る。
Therefore, the pre-stress after applying the set tension can be maintained at the desired value for a long period of time, and the strength of the PC structure 1 represented by the PC beam can be remarkably and stably improved.

【0029】また、その構成が、非線形ばね7をコンク
リート構造物1と緊張材5端部との係止部13aに介在
させるというシンプルなものであるため、設置スペース
も大きくとらず廉価に容易に実施できる。
Further, since the structure is simple in that the non-linear spring 7 is interposed in the locking portion 13a between the concrete structure 1 and the end of the tendon member 5, the installation space is not large and the cost is easily reduced. Can be implemented.

【0030】本第1実施形態の設備診断,設備保全に関
しては、皿ばね撓み量測定で緊張力を認識して容易に異
常検知ができ、またその緊張力は、皿ばねの撓み量調整
により容易に再設定可能である。
With respect to the equipment diagnosis and equipment maintenance of the first embodiment, abnormality can be easily detected by recognizing the tension by measuring the amount of deflection of the disc spring, and the tension can be easily adjusted by adjusting the amount of deflection of the disc spring. Can be reset.

【0031】更には、ラボ実験データ等により設定張力
付与後のレラクセーション等による緊張材5とコンクリ
ート構造物3の緊張材の軸方向伸縮差が予測できる場合
は、その伸縮差以上の弾発力変動不感帯幅に設定するこ
とにより、以降の調整を不要とし、メンテナンスフリー
化できる。
Further, if it is possible to predict the difference in the axial expansion and contraction of the tendon 5 and the tension of the concrete structure 3 due to the relaxation or the like after the application of the set tension based on laboratory experiment data, etc. By setting the force fluctuation dead zone width, subsequent adjustment is unnecessary, and maintenance-free operation can be achieved.

【0032】以上、本発明の第1実施形態について説明
したが、本発明はかかる第1実施形態に限定されるもの
ではなく、その要旨を逸脱しない範囲で種々の変形が可
能である。
Although the first embodiment of the present invention has been described above, the present invention is not limited to the first embodiment, and various modifications can be made without departing from the gist thereof.

【0033】例えば、本第1実施形態はコンクリート構
造物3と緊張材5端部との係止構造としてナット13
a,13bを使用しているが、非線形ばねを前記緊張材
と前記コンクリート直方体間に介装できるとともに、前
記コンクリート直方体側面に緊張材端部を係止できれば
これに限らない。例えば、コンクリート構造物に固定し
た雌コーン内に、緊張材端部を固定した雄コーンを食い
込ませ係止するくさび式等であれば、雄コーンと雌コー
ンの間に皿ばねを介装することが可能であるため適用可
能である。
For example, in the first embodiment, a nut 13 is used as a locking structure between the concrete structure 3 and the end of the tendon 5.
Although a and 13b are used, the present invention is not limited to this, as long as a non-linear spring can be interposed between the tension member and the concrete rectangular parallelepiped and the end of the tension member can be locked to the side surface of the concrete rectangular parallelepiped. For example, in the case of a wedge type in which a male cone with fixed tendon ends is bitten and locked in a female cone fixed to a concrete structure, a disc spring is interposed between the male cone and female cone. Is applicable because it is possible.

【0034】また、本第1実施形態は非線形ばねとして
皿ばねを適用した例を開示したが、ばねの撓み変形に対
する弾発力変動が小さい弾発力変動不感帯を有するばね
であれば使用可能であり、これに限るものではない。
Although the first embodiment discloses an example in which a disc spring is used as a non-linear spring, any spring having a resilient force fluctuation dead zone with a small resilient force fluctuation against bending deformation of the spring can be used. Yes, but not limited to this.

【0035】更には、本第1実施形態のPC梁は、その
断面形状が矩形の場合について説明したが、これに限る
ものではなく、梁の幅方向中心にリブを有した断面T型
形状や断面I型形状でも良い。
Further, the PC beam according to the first embodiment has been described with reference to the case where the cross-sectional shape is rectangular. However, the present invention is not limited to this. It may have an I-shaped cross section.

【0036】また、本第1実施形態はPC梁を対象とし
て説明しているが、プレストレスト・コンクリート床版
(以下PC床版と略記)やプレストレスト・コンクリー
ト橋梁(以下PC橋梁と略記)にも本発明は適用可能で
ある。ここで、当該PC床版やPC橋梁については、前
記PC梁のコンクリート直方体3とその長さや幅が異な
るだけであり、前記PC梁と主構造は同じであるためそ
の説明を省略する。
Although the first embodiment has been described with reference to PC beams, the present invention is also applicable to prestressed concrete slabs (hereinafter abbreviated as PC slabs) and prestressed concrete bridges (hereinafter abbreviated as PC bridges). The invention is applicable. Here, the PC floor slab and the PC bridge are different from the concrete rectangular parallelepiped 3 of the PC beam only in length and width, and the main structure is the same as that of the PC beam.

【0037】図3は、第2実施形態に係る容器構造物と
してのプレストレスト・コンクリートタンク(以下PC
タンクと略記)の概略構成を示す水平方向断面図で、図
4は、IV−IV線矢視の鉛直方向断面図である。
FIG. 3 shows a prestressed concrete tank (hereinafter referred to as PC) as a container structure according to the second embodiment.
FIG. 4 is a vertical cross-sectional view taken along the line IV-IV.

【0038】図3と図4に示すように、PCタンク41
は、基礎49上に固設された上面周縁部に円環状の窪み
を有する円盤状の底版47と、この底版47の周縁部窪
みに嵌合して立設された円筒シェルからなる側壁43
と、この側壁43の上部内周面に沿って径方向内側に張
り出して突出形成された係止部上に載置された球形シェ
ル状のドーム屋根45とからなる。PCタンク内部に液
体を貯蔵すると、側壁43には半径方向に外向きに液圧
が作用して円周方向に引張力が作用する。このため、前
記底版47とドーム屋根45は鉄筋コンクリート製であ
るが、側壁43はプレストレスト・コンクリート製とし
ている。
As shown in FIG. 3 and FIG.
Is a disk-shaped bottom plate 47 having an annular recess at the periphery of the upper surface fixed on the foundation 49, and a side wall 43 formed of a cylindrical shell that is erected and fitted into the recess at the periphery of the bottom plate 47.
And a spherical shell-shaped dome roof 45 mounted on a locking portion that protrudes inward in the radial direction along the upper inner peripheral surface of the side wall 43. When the liquid is stored in the PC tank, the liquid pressure acts on the side wall 43 in the radial direction outward, and a tensile force acts on the side wall 43 in the circumferential direction. For this reason, the bottom plate 47 and the dome roof 45 are made of reinforced concrete, while the side walls 43 are made of prestressed concrete.

【0039】図3に示すように、前記側壁43の外周面
には矩形状の定着柱44a,44b,44cが円周方向
120゜刻みに3柱配設されており、前記側壁43内に
円周方向に摺動自在に挿通配設された円周方向緊張材5
は、その両端が相隣接する定着柱44a,44bにて定
着部材14a,14bにより定着されている。前記円周
方向緊張材5の一方端の定着部材14bは、係止部たる
ナット13bとアンカープレート9bとからなり、他端
の定着部材14aは係止部たるナット13aと皿ばね部
7とアンカープレート9aとからなる。ここで当該係止
部の構成は第1実施形態と同じため、同一部材には同一
の符号をつけてその詳しい説明は省略する。
As shown in FIG. 3, rectangular fixing columns 44a, 44b and 44c are provided on the outer peripheral surface of the side wall 43 at intervals of 120 ° in the circumferential direction. Circumferential tension member 5 slidably inserted in the circumferential direction
Are fixed by the fixing members 14a and 14b at the fixing columns 44a and 44b adjacent to each other. The fixing member 14b at one end of the circumferential tension member 5 includes a nut 13b serving as a locking portion and an anchor plate 9b, and the fixing member 14a at the other end includes a nut 13a serving as a locking portion, a disc spring portion 7, and an anchor. And a plate 9a. Here, since the configuration of the locking portion is the same as that of the first embodiment, the same members are denoted by the same reference numerals and detailed description thereof will be omitted.

【0040】また、前記側壁43内に鉛直方向に摺動自
在に挿通配設された鉛直方向緊張材105は、その一端
が、側壁43と底板47の仕口部126を経由し底版4
7内に達し、この底版47内でナット等の定着部材11
4bと螺合して底版47内に埋設されることで定着され
る。また、緊張材105の他端は、側壁43の上端面か
ら上方に突出し、この上端面に載置された定着部材14
aにより定着される。この定着部材14aは、緊張材1
05が挿通されたアンカープレート9aと、他端に螺合
する係止部たるナット13aと、このナット13aとア
ンカープレート9aの間に介装された皿ばね部7からな
る。
The vertical tension member 105 slidably inserted in the vertical direction in the side wall 43 has one end passing through a connection 126 between the side wall 43 and the bottom plate 47.
7 and the fixing members 11 such as nuts in the bottom plate 47.
4b and fixed by being embedded in the bottom plate 47. Further, the other end of the tension member 105 protrudes upward from the upper end surface of the side wall 43, and the fixing member 14
a. The fixing member 14 a
An anchor plate 9a into which the nut 05 is inserted, a nut 13a serving as a locking portion screwed to the other end, and a disc spring portion 7 interposed between the nut 13a and the anchor plate 9a.

【0041】次に、本第2実施形態の作用について説明
する。
Next, the operation of the second embodiment will be described.

【0042】側壁43の円周方向のプレストレス付与
は、定着柱44a,44bのナット13a,13bを締
め付けることで行う。この締め付けにより円周方向緊張
材5が伸張して緊張力が生じると、この緊張力と釣り合
う弾発力になるまで皿ばね7が撓み、この弾発力がアン
カープレート9a,9bを経由して定着柱44a,44
bに圧縮力として伝達される。また鉛直方向のプレスト
レス付与は、側壁43の上端面のナット13aを締め付
けることで行う。鉛直方向緊張材105が伸張して緊張
力が生じると、この緊張力と釣り合う弾発力になるまで
皿ばね7が撓み、この弾発力がアンカープレート9aを
経由して側壁43に圧縮力として伝達される。
The circumferential prestressing of the side wall 43 is performed by tightening the nuts 13a and 13b of the fixing columns 44a and 44b. When the tension in the circumferential direction tension member 5 is stretched by this tightening and a tension is generated, the disc spring 7 is bent until the resilient force is balanced with the tension, and the resilient force is transmitted via the anchor plates 9a and 9b. Fixing columns 44a, 44
b is transmitted as a compressive force. The application of the vertical prestress is performed by tightening the nut 13 a on the upper end surface of the side wall 43. When the tension member 105 is stretched and tension is generated, the disc spring 7 bends until the elastic force balances with the tension, and the elastic force acts as a compressive force on the side wall 43 via the anchor plate 9a. Is transmitted.

【0043】前記プレストレス付与後に、緊張材5のレ
ラクセーションや側壁43のクリープ,乾燥収縮等によ
り、緊張材5と側壁43との円周方向の伸縮差および緊
張材105と側壁43との鉛直方向の伸縮差が発生して
も、その伸縮差は各々前記皿ばね7の撓み変形で吸収さ
れる。この撓みは前記弾発力変動不感帯幅内で変動する
ため、弾発力が小さくなることはなく一定に保たれ、結
果緊張材5,105の緊張力すなわち側壁43の円周方
向および鉛直方向に伝達する圧縮力を一定に維持でき
る。
After the application of the prestress, the circumferential expansion and contraction difference between the tendon 5 and the side wall 43 and the difference between the tendon 105 and the side wall 43 due to the relaxation of the tendon 5 and the creep and drying shrinkage of the side wall 43. Even if a difference in expansion and contraction in the vertical direction occurs, the difference in expansion and contraction is absorbed by the bending deformation of the disc spring 7. Since this deflection varies within the elastic force variation dead zone width, the elastic force does not decrease and is kept constant. As a result, the tension of the tension members 5, 105, that is, the circumferential direction of the side wall 43 and the vertical direction. The transmitted compressive force can be kept constant.

【0044】このため、プレストレス付与後の緊張材の
緊張力を所期値に維持でき、PCタンク41の強度及び
耐力を長期に亘って安定して確保することが可能とな
る。
Therefore, the tension of the tendon after the prestress is applied can be maintained at a desired value, and the strength and proof stress of the PC tank 41 can be stably secured over a long period of time.

【0045】ここで、上記PCタンクと類似の容器構造
物として、原子炉圧力容器(以下PCPVと略記)、原
子炉格納容器(以下PCCVと略記)、卵型消化槽への
適用も可能であるが、作用、効果は同じであり、かつ本
発明に係る構成も総じて同じであるため、同一部材には
同一の符号をつけてその詳しい説明は省略し、主に緊張
材の配設ルートと非線形ばねおよび定着部材の設置位置
についてのみ説明する。また、以下の説明用の図につい
ても、緊張材の配設ルート、非線形ばねと定着部材の設
置位置がわかる程度に線図により略記する。
Here, as a container structure similar to the above-described PC tank, application to a reactor pressure vessel (hereinafter abbreviated as PCPV), a reactor containment vessel (hereinafter abbreviated as PCCV), and an egg type digester is also possible. However, since the operation and effect are the same, and the configuration according to the present invention is also generally the same, the same members are denoted by the same reference numerals and detailed description thereof will be omitted. Only the installation positions of the spring and the fixing member will be described. Also, the drawings for the following description are abbreviated as diagrams so that the arrangement route of the tendon and the installation positions of the non-linear spring and the fixing member can be understood.

【0046】図5は、PCPVの鉛直方向断面図を示
す。
FIG. 5 is a vertical sectional view of PCPV.

【0047】PCPV51は、円筒シェル状側壁53の
上下端面開口部を、屋根である円盤状上版55と、基礎
49上に固設された円盤状底版57で密閉した一体構造
であり、前記側壁53,上版55,底版57ともプレス
トレスト・コンクリート製である。前記側壁53は前述
したPCタンクと同様の構成であり、緊張材5,105
が円周方向と鉛直方向とに配設されている。上版55と
底版57とには、径方向に摺動自在に複数の緊張材20
5が放射状に挿通され、その緊張材205の両端は、前
記PCPVの外側円周面にて定着部材14a,14bに
より定着され、プレストレスが付与される。前記定着部
材14a,14bは、第1実施形態と同様で一方がナッ
ト13bとアンカープレート9b、他方がナット13a
と皿ばね部7とアンカープレート9aとからなる。
The PCPV 51 has an integral structure in which the upper and lower end openings of the cylindrical shell-shaped side wall 53 are sealed by a disk-shaped upper plate 55 as a roof and a disk-shaped bottom plate 57 fixed on a foundation 49. 53, the upper plate 55, and the bottom plate 57 are all made of prestressed concrete. The side wall 53 has the same configuration as that of the PC tank described above.
Are arranged in the circumferential direction and the vertical direction. The upper plate 55 and the bottom plate 57 have a plurality of tension members 20 slidably in the radial direction.
5 are inserted radially, and both ends of the tendon 205 are fixed on the outer circumferential surface of the PCPV by the fixing members 14a and 14b, and prestress is applied. One of the fixing members 14a and 14b is the same as in the first embodiment, and one is a nut 13b and an anchor plate 9b, and the other is a nut 13a.
And a disc spring portion 7 and an anchor plate 9a.

【0048】図6は、PCCVの鉛直方向断面図を示
す。
FIG. 6 is a vertical sectional view of the PCCV.

【0049】PCCV61は、円筒シェル状側壁63の
上下端面開口部を、球型シェルのドーム屋根65と、基
礎49上に固設された円盤状底版67で密閉した一体構
造であり、前記側壁63,ドーム屋根65,底版67と
もプレストレスト・コンクリート製である。側壁67の
円周方向緊張材5と、底版67の緊張材の配列は前記P
CPVと同様である。
The PCCV 61 has an integral structure in which the upper and lower end openings of the cylindrical shell side wall 63 are sealed by a spherical shell dome roof 65 and a disc-shaped bottom plate 67 fixed on a foundation 49. , The dome roof 65 and the bottom slab 67 are both made of prestressed concrete. The arrangement of the tension members 5 in the circumferential direction of the side wall 67 and the tension members of the bottom plate 67 is the above P
It is the same as CPV.

【0050】ただし、鉛直方向緊張材305について
は、同一の緊張材305で、底版67と側壁63とドー
ム屋根65の三者をプレストレス付与している。すなわ
ち、一方端を底版67の下面に定着部材14bにより定
着された緊張材305は、PCCVの中心線を通る縦断
面に沿って逆Uの字状に、底版67と側壁63とドーム
屋根65とを挿通配列されて多数設けられており、底版
67の下面の定着部材14aにより他方端を定着されて
いる。
However, with respect to the vertical tension member 305, the same tension member 305 prestresses the bottom plate 67, the side wall 63, and the dome roof 65. That is, the tension member 305 having one end fixed to the lower surface of the bottom plate 67 by the fixing member 14b is formed into an inverted U shape along a vertical section passing through the center line of the PCCV, and the bottom plate 67, the side wall 63, and the dome roof 65 And the other end is fixed by the fixing member 14 a on the lower surface of the bottom plate 67.

【0051】図7は卵型消化槽の側面図、また図8はVI
II−VIII線矢視の断面図である。卵型消化槽71は基礎
49の上部にリング状基礎部79aを介して、消化槽本
体72が支持された構成となっている。前記リング状基
礎部79a上には、卵型シェルの側壁73が支持され、
前記リング状基礎部79aの下方には逆円錐状の底版7
7が形成され、これらが一体化されて消化槽本体72を
形成している。そして、その全体がプレストレスト・コ
ンクリート製であり、前記底版77についても緊張材が
ヘリカル状に配設されている。ただし、この底版77に
は本発明を適用しないので、その配設ルートの説明は省
略し図示はしない。
FIG. 7 is a side view of the egg type digester, and FIG.
It is sectional drawing of the II-VIII line. The egg-shaped digester 71 has a structure in which a digester main body 72 is supported on a base 49 via a ring-shaped base portion 79a. On the ring-shaped base portion 79a, a side wall 73 of an egg-shaped shell is supported,
An inverted conical bottom plate 7 is provided below the ring-shaped base portion 79a.
7 are formed, and these are integrated to form the digester tank main body 72. And the whole is made of prestressed concrete, and the tension member is also helically arranged on the bottom plate 77. However, since the present invention is not applied to the bottom plate 77, the description of the arrangement route is omitted and not shown.

【0052】底版77の上部に位置する卵型シェルの側
壁73の外周面には、図8に示すように矩形状の定着柱
74が円周方向に90゜刻みに4柱配設されている。そ
して、前記側壁73内を円周方向に摺動自在に挿通配設
された円周方向緊張材5の両端部は、互いの位置関係が
円周方向180゜の位置にある定着柱(例えば74aと
74b)に定着部材14a,14bを介して定着され
る。
On the outer peripheral surface of the side wall 73 of the egg-shaped shell located above the bottom plate 77, four rectangular fixing columns 74 are arranged at intervals of 90 ° in the circumferential direction as shown in FIG. . Then, both ends of the circumferential tension member 5 slidably inserted in the side wall 73 in the circumferential direction are fixed to the fixing pillar (for example, 74a) having a positional relationship of 180 ° in the circumferential direction. And 74b) are fixed via the fixing members 14a and 14b.

【0053】前記側壁73内を鉛直方向に摺動自在に挿
通配列された鉛直方向緊張材405の一端は、底版77
にナット等の定着部材114bに螺合して埋設されるこ
とで定着され、他端は側壁の上端面81、および上端面
とリング状基礎部との間の側壁外周に付設されたリング
状張り出し部上面83にて、各々定着部材14aにより
定着される。
One end of a vertical tension member 405 inserted and slidably inserted in the side wall 73 in the vertical direction is connected to a bottom plate 77.
Is fixed by being screwed and embedded in a fixing member 114b such as a nut, and the other end is provided with an upper end surface 81 of the side wall and a ring-shaped overhang provided on the outer periphery of the side wall between the upper end surface and the ring-shaped base portion. On the upper surface 83, the image is fixed by the fixing member 14a.

【0054】[0054]

【発明の効果】以上説明してきたように、請求項1記載
の発明は、PC構造物において、設定緊張力付与時の撓
み変形に対する弾発力変動が小さい非線形ばねを、コン
クリート構造物と緊張材端部との係止部に介在させ、緊
張材のレラクセーションやコンクリート構造物のクリー
プ,乾燥収縮等による緊張材とコンクリート構造物との
緊張材軸方向の伸縮差、およびコンクリート構造物と緊
張材との緊張材軸方向の温度収縮差を吸収するようにし
たので、プレストレスを所期値に維持でき、PC構造物
の強度及び耐力を著く向上させて安定化できる。
As described above, according to the first aspect of the present invention, in a PC structure, a non-linear spring having a small elastic force variation with respect to a bending deformation at the time of applying a set tension is provided by a concrete structure and a tendon. The expansion and contraction difference between the tendon and the concrete structure in the axial direction due to relaxation of the tendon, creep, drying shrinkage, etc. of the tendon, and tension with the concrete structure Since the difference in temperature shrinkage in the axial direction of the tendon material is absorbed from the material, the prestress can be maintained at an expected value, and the strength and proof stress of the PC structure can be significantly improved and stabilized.

【0055】また、その構成が、非線形ばねをコンクリ
ート構造物と緊張材端部との係止部に介在させるという
シンプルなものであるため、廉価に容易に実施可能であ
り、更には非線形ばねの撓み量測定で緊張力が認識でき
るため容易に異常検知ができ、またその緊張力は、非線
形ばねの撓み量調整により容易に再設定可能である。
Further, since the structure is simple in that the non-linear spring is interposed in the locking portion between the concrete structure and the end portion of the tendon member, the non-linear spring can be easily implemented at low cost. Since the tension can be recognized by measuring the amount of bending, abnormality can be easily detected, and the tension can be easily reset by adjusting the amount of bending of the nonlinear spring.

【0056】更には、ラボ実験データ等により設定張力
付与後のレラクセーション等による緊張材とコンクリー
ト構造物の緊張材の軸方向伸縮差が予測できる場合は、
その伸縮差以上の弾発力変動が小さい領域の撓み変形量
に設定することにより、以降の調整を不要とし、メンテ
ナンスフリー化できる。
Furthermore, if the difference in the axial expansion and contraction between the tendon and the tendon of the concrete structure due to relaxation or the like after application of the set tension can be predicted from laboratory experiment data or the like,
By setting the amount of flexural deformation in a region where the resilience variation greater than the difference in expansion and contraction is small, subsequent adjustments are unnecessary and maintenance-free operation can be achieved.

【0057】請求項2に記載の発明は、前記請求項1記
載の非線形ばねとして皿ばねを使用したので、この皿ば
ねの板厚tとその最大撓み量である高さHの比をH/t
=1.2〜1.6、望ましくはH/t=1.4にするこ
とにより、容易に所望の弾発力変動が小さい領域を有す
る特性に設定できる。
According to the second aspect of the present invention, since a disc spring is used as the non-linear spring according to the first aspect of the present invention, the ratio of the plate thickness t of the disc spring to the height H, which is its maximum deflection, is H /. t
= 1.2 to 1.6, desirably H / t = 1.4, it is possible to easily set a characteristic having a region where a desired resilience variation is small.

【0058】請求項3に記載の発明は、前記請求項1あ
るいは請求項2記載のPC構造物が梁部材あるいは床版
部材または橋梁部材であるので、プレストレスを所期値
に維持でき、PC梁部材、PC床版部材、PC橋梁部材
の強度及び耐力が著く向上して安定化される。
According to the third aspect of the present invention, since the PC structure according to the first or second aspect is a beam member, a floor slab member, or a bridge member, the prestress can be maintained at an expected value, The strength and strength of the beam member, the PC slab member, and the PC bridge member are significantly improved and stabilized.

【0059】請求項4記載の発明は、前記請求項1ある
いは請求項2記載のPC構造物がPCタンク、PCPV
あるいはPCCVまたは卵型消化槽等の容器構造物であ
るので、プレストレスを所期値に維持でき、これら容器
構造物の強度及び耐力が著く向上して安定化される。特
に原子炉圧力容器については、中性子照射と40〜50
℃の微高温による緊張材のレラクセーションにかかわら
ず、プレストレスを維持できるので非常に有用である。
According to a fourth aspect of the present invention, the PC structure according to the first or second aspect is a PC tank, a PCPV.
Alternatively, since it is a container structure such as a PCCV or an egg-shaped digester, the prestress can be maintained at an expected value, and the strength and proof stress of these container structures are significantly improved and stabilized. Especially for reactor pressure vessels, neutron irradiation and 40-50
It is very useful because prestress can be maintained regardless of relaxation of tendon due to slight high temperature of ℃.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るPC構造物の第1実施形態を示す
PC梁,PC床版,PC橋梁の長手方向断面図である。
FIG. 1 is a longitudinal sectional view of a PC beam, a PC slab, and a PC bridge showing a first embodiment of a PC structure according to the present invention.

【図2】本発明に使用される皿ばねのばね特性を示す概
念図である。
FIG. 2 is a conceptual diagram showing spring characteristics of a disc spring used in the present invention.

【図3】本発明に係るPC構造物の第2実施形態を示す
PCタンクの水平方向断面図である。
FIG. 3 is a horizontal sectional view of a PC tank showing a second embodiment of the PC structure according to the present invention.

【図4】図3におけるPCタンクのIV−IV線矢視の断面
図である。
FIG. 4 is a sectional view of the PC tank taken along line IV-IV in FIG.

【図5】本発明に係る第3実施形態を示す原子炉圧力容
器の鉛直方向断面図である。
FIG. 5 is a vertical sectional view of a reactor pressure vessel showing a third embodiment according to the present invention.

【図6】本発明に係る第4実施形態を示す原子炉格納容
器の鉛直方向断面図である。
FIG. 6 is a vertical sectional view of a containment vessel showing a fourth embodiment according to the present invention.

【図7】本発明に係る第5実施形態を示す卵型消化槽の
側面図である。
FIG. 7 is a side view of an egg-shaped digester showing a fifth embodiment according to the present invention.

【図8】図7における卵型消化槽のVIII−VIII線矢視の
断面図である。
8 is a cross-sectional view of the egg-shaped digester in FIG. 7 taken along line VIII-VIII.

【図9】従来のプレストレスの減少対策を実施したPC
梁の概略構成を示す長手方向断面図である。
FIG. 9 shows a PC in which conventional measures for reducing prestress have been implemented.
It is a longitudinal direction sectional view showing the schematic structure of a beam.

【符号の説明】[Explanation of symbols]

1 PC梁(PC構造物) 3 コンクリート直方体(コンクリート構造物) 5,105,205,305,405 緊張材 7 皿ばね部(非線形ばね) 7a 皿ばね単体 9a,9b アンカープレート 13a,13b ナット(係止部) 14a,14b,114b 定着部材 41 PCタンク(PC構造物) 43,53,63,73 側壁(コンクリート構造物) 44a,44b,44c,74,74a,74b,74
c,74d 定着柱 49 基礎 51 原子炉圧力容器(PC構造物) 55 上版(コンクリート構造物) 47,57,67,77 底版(コンクリート構造物) 61 原始炉格納容器(PC構造物) 65 ドーム屋根(コンクリート構造物) 71 卵型消化槽(PC構造物) 72 消化槽本体(コンクリート構造物) 79a リング状基礎部 81 側壁上端面 83 リング状張り出し部上面 126 仕口部
DESCRIPTION OF SYMBOLS 1 PC beam (PC structure) 3 Concrete rectangular parallelepiped (concrete structure) 5,105,205,305,405 Tensile material 7 Belleville spring part (non-linear spring) 7a Belleville spring unit 9a, 9b Anchor plate 13a, 13b Nut ( Stop portion) 14a, 14b, 114b Fixing member 41 PC tank (PC structure) 43, 53, 63, 73 Side wall (concrete structure) 44a, 44b, 44c, 74, 74a, 74b, 74
c, 74d Anchoring column 49 Foundation 51 Reactor pressure vessel (PC structure) 55 Top plate (concrete structure) 47, 57, 67, 77 Bottom plate (concrete structure) 61 Primary reactor containment vessel (PC structure) 65 Dome Roof (concrete structure) 71 Egg-type digester (PC structure) 72 Digester tank body (concrete structure) 79a Ring-shaped base 81 Side wall upper surface 83 Ring-shaped overhanging upper surface 126 Connection part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 プレストレスト・コンクリート構造物の
緊張材に緊張力を付与する手段として、設定緊張力付与
時の撓み変形に対する弾発力変動が小さい非線形ばね
を、コンクリート構造物と緊張材端部との係止部に介在
させたことを特徴とするプレストレスト・コンクリート
構造物。
As a means for applying a tension to a tendon of a prestressed concrete structure, a non-linear spring having a small elastic force variation with respect to a bending deformation at the time of applying a set tension is provided. A prestressed concrete structure characterized by being interposed in a locking portion of the concrete.
【請求項2】 前記非線形ばねが皿ばねであることを特
徴とする請求項1記載のプレストレスト・コンクリート
構造物。
2. The prestressed concrete structure according to claim 1, wherein said non-linear spring is a disc spring.
【請求項3】 前記プレストレスト・コンクリート構造
物が梁部材あるいは床版部材または橋梁部材であること
を特徴とする請求項1または請求項2記載のプレストレ
スト・コンクリート構造物。
3. The prestressed concrete structure according to claim 1, wherein the prestressed concrete structure is a beam member, a floor slab member, or a bridge member.
【請求項4】 前記プレストレスト・コンクリート構造
物がタンク、原子炉圧力容器あるいは原子炉格納容器ま
たは卵型消化槽等の容器構造物であることを特徴とする
請求項1または請求項2記載のプレストレスト・コンク
リート構造物。
4. The prestressed concrete structure according to claim 1, wherein the prestressed concrete structure is a container structure such as a tank, a reactor pressure vessel, a reactor containment vessel, or an egg digester.・ Concrete structures.
JP37098198A 1998-12-25 1998-12-25 Prestressed concrete structure Expired - Fee Related JP3683112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37098198A JP3683112B2 (en) 1998-12-25 1998-12-25 Prestressed concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37098198A JP3683112B2 (en) 1998-12-25 1998-12-25 Prestressed concrete structure

Publications (2)

Publication Number Publication Date
JP2000192661A true JP2000192661A (en) 2000-07-11
JP3683112B2 JP3683112B2 (en) 2005-08-17

Family

ID=18497932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37098198A Expired - Fee Related JP3683112B2 (en) 1998-12-25 1998-12-25 Prestressed concrete structure

Country Status (1)

Country Link
JP (1) JP3683112B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036428A (en) * 2003-07-16 2005-02-10 Ohbayashi Corp Structure and method of reinforcing concrete
JP2006070440A (en) * 2004-08-31 2006-03-16 Yuhaso Engineers:Kk Structure for reinforcing structure with continuous fiber sheet
JP2008261219A (en) * 2008-06-27 2008-10-30 Ohbayashi Corp Member reinforcing structure and reinforcing method
JP2011012463A (en) * 2009-07-02 2011-01-20 Kajima Corp Method of construction of shell structure skeleton, and shell structure skeleton
CN103469965A (en) * 2013-09-16 2013-12-25 江苏天舜金属材料集团有限公司 Concrete beam and production method thereof
JP2016120527A (en) * 2011-08-16 2016-07-07 ランゲンスタイン アンド シェーマン ゲーエムベーハーLangenstein & Schemann GmbH Machine bed, operation method for molding machine, and molding device
CN112411771A (en) * 2020-10-24 2021-02-26 北京中易房建筑工程有限公司 Steel plate mounting structure of basement outer wall post-cast strip and construction method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103470053B (en) * 2012-06-08 2015-11-11 中国葛洲坝集团股份有限公司 A kind of pre-stressed bolt group extension device and method
CN104675122B (en) * 2015-02-09 2017-06-16 北京市建筑工程研究院有限责任公司 Unbonded prestressing tendon controllable sectional anchor set and its assembly method and application
KR101643732B1 (en) 2015-07-29 2016-07-28 서울대학교산학협력단 System for controlling of prestressing force in post-tension method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036428A (en) * 2003-07-16 2005-02-10 Ohbayashi Corp Structure and method of reinforcing concrete
JP4547875B2 (en) * 2003-07-16 2010-09-22 株式会社大林組 Concrete reinforcing structure and reinforcing method
JP2006070440A (en) * 2004-08-31 2006-03-16 Yuhaso Engineers:Kk Structure for reinforcing structure with continuous fiber sheet
JP4668570B2 (en) * 2004-08-31 2011-04-13 株式会社ゆはそエンジニアーズ Structure reinforcement by continuous fiber sheet
JP2008261219A (en) * 2008-06-27 2008-10-30 Ohbayashi Corp Member reinforcing structure and reinforcing method
JP2011012463A (en) * 2009-07-02 2011-01-20 Kajima Corp Method of construction of shell structure skeleton, and shell structure skeleton
JP2016120527A (en) * 2011-08-16 2016-07-07 ランゲンスタイン アンド シェーマン ゲーエムベーハーLangenstein & Schemann GmbH Machine bed, operation method for molding machine, and molding device
CN103469965A (en) * 2013-09-16 2013-12-25 江苏天舜金属材料集团有限公司 Concrete beam and production method thereof
CN112411771A (en) * 2020-10-24 2021-02-26 北京中易房建筑工程有限公司 Steel plate mounting structure of basement outer wall post-cast strip and construction method

Also Published As

Publication number Publication date
JP3683112B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US3568379A (en) Prestressed concrete pressure vessel
JP2000192661A (en) Prestress concrete structure
JP5836699B2 (en) Elastic reinforcing strut for water tank and elastic reinforcing structure of water tank using the same
US20060272251A1 (en) Composite floor system with fully-embedded studs
WO2001040595A1 (en) Metal beam structure and building construction including same
US5386671A (en) Stiffness decoupler for base isolation of structures
JP2018084100A (en) Base-isolated building
US4267676A (en) Earthquake resisting tank and methods of constructing same
US5660007A (en) Stiffness decoupler for base isolation of structures
KR101781544B1 (en) Rahmem bridge of seismic performanceusing prestressed using crossbeam
US3965630A (en) Prestressed concrete boiler closure
JP2006077503A (en) Horizontal load elastically bearing device
CA2491226C (en) Post-tensioned insulated wall panels
US4279701A (en) Shield wall for surrounding reactor containment vessel for nuclear reactor and method for constructing the same
JP5039590B2 (en) Precast concrete beams
JP2009174148A (en) Seismic strengthening structure and seismic strengthening method for concrete structure
KR20050061639A (en) Structural beam using a loading system for a beam and bridge construction method using the same
JPH07305356A (en) Pedestal supporting device
KR20040085957A (en) Steel beam constructed prestressing segmental component and construction method thereof
JPH0216230A (en) Laminated rubber bearing
JP2002294631A (en) Structure for mounting horizontal force damping device of structural body and its installation method
JPH0833082B2 (en) Laminated rubber seismic isolation device
JP2007211515A (en) Prestress introducing method to girder
US20240084582A1 (en) Connecting assembly for the force-transmitting attachment of a first force-absorbing structural part to a second force-absorbing structural part, and structure
JPS62311B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees