JP2000189885A - Immersion coating method - Google Patents

Immersion coating method

Info

Publication number
JP2000189885A
JP2000189885A JP10371715A JP37171598A JP2000189885A JP 2000189885 A JP2000189885 A JP 2000189885A JP 10371715 A JP10371715 A JP 10371715A JP 37171598 A JP37171598 A JP 37171598A JP 2000189885 A JP2000189885 A JP 2000189885A
Authority
JP
Japan
Prior art keywords
coating
substrate
liquid
cylindrical substrate
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10371715A
Other languages
Japanese (ja)
Other versions
JP3943269B2 (en
Inventor
Teru Urata
輝 浦田
Kiyoshi Fukazawa
清 深沢
Hisayoshi Goto
久義 後藤
Kenichi Usami
謙一 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP37171598A priority Critical patent/JP3943269B2/en
Publication of JP2000189885A publication Critical patent/JP2000189885A/en
Application granted granted Critical
Publication of JP3943269B2 publication Critical patent/JP3943269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the product acceptance percentage by preventing the generation of liquid scattering and reducing a washing residue. SOLUTION: A support member 25 is fitted to one opening of a cylindrical substrate 21 to close the substrate 21, the substrate 21 is immersed in a coating liquid 23 from the end part side of the other opening of the substrate 21. When the substrate 21 is removed from the liquid 23, immediately before the end part of the other opening of the substrate 21 being removed from the surface of the liquid 23, at a prescribed pressurization position apart from the ends part of the other opening of the substrate 21, the inside of the substrate 21 is pressurized by a prescribed pressurization force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は浸漬塗布方法に関
し、詳細にはPPC複写機、レーザービーム・プランタ
ー等に使用されるOPC感光ドラムなどの電子写真感光
体用円筒状基体の外周面に感光材料を含む塗布液を浸漬
塗布する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dip coating method, and more particularly, to a photosensitive material on an outer peripheral surface of a cylindrical substrate for an electrophotographic photosensitive member such as an OPC photosensitive drum used for a PPC copying machine, a laser beam planter, or the like. To a method for dip-coating a coating solution containing

【0002】[0002]

【従来の技術】従来、電子写真感光体の感光層の塗布方
法として、浸漬塗布、スプレー塗布、ノズル塗布等の塗
布方法が知られているが、中でも円筒状の被塗布物に均
一な塗布を形成する方法には浸漬塗布方法が多用されて
いる。この浸漬塗布方法は、被塗布物を塗布液に浸漬す
ることにより被塗布物の外周面に塗膜を形成するもので
あり、一般に広く採用されている。しかし、両端が開放
されているために、基体の内側に塗布液が浸入し基体内
周面に塗布膜が形成されてしまうという問題点が発生し
ている。この問題を解決するために、基体下端に蓋を取
付けて塗布液の内部への浸入を防いだり、基体内部に空
気を閉じ込めて空気圧で塗布液の基体外部への浸入を防
ぐ方法が提案されている。しかし、後者の場合では溶剤
の蒸発により基体内部の空気の体積が増加して基体外部
へ気泡となって放出されて当該気泡が塗布液面で弾けて
塗布表面を乱すことによる基体外部の欠陥を発生させる
という問題がある。このような気泡の発生を防ぐため
に、基体内部に閉じ込めた空気などの気体を抜く方法が
特公昭62−4187号公報や特開昭63−77567
号公報等に開示されており、また基体内の圧力と外気圧
を調整する方法が特開平1−123664号公報や特公
平4−68989号公報に開示されている。また、特開
平8−89879号公報には、塗布液中から円筒状基体
を引き上げる浸漬塗工工法の改良に関し、基体の大部分
は高速度で引き上げ、残りの部分は低速度で引き上げる
ことにより、塗布液面からの液はね等による欠陥のない
塗布膜を有する円筒状基体の製造方法が開示されてい
る。更に、特開平7−136576号公報には、塗布液
中から円筒状基体を浸漬することによって基体外周面に
塗布を形成する方法に関し、基体の下端部を塗布液に浸
漬させる前に基体内部に塗布液の浴媒蒸気を吹き込むこ
とで気泡による塗布欠陥の発生を防ぐ浸漬塗布方法が開
示されている。
2. Description of the Related Art Conventionally, as a method of applying a photosensitive layer of an electrophotographic photosensitive member, there are known coating methods such as dip coating, spray coating, and nozzle coating. Among them, uniform coating is applied to a cylindrical object to be coated. A dip coating method is frequently used as a forming method. This dip coating method is to form a coating film on the outer peripheral surface of an object to be coated by immersing the object to be coated in a coating solution, and is generally widely used. However, since both ends are open, there is a problem in that the coating liquid penetrates into the inside of the base and a coating film is formed on the inner peripheral surface of the base. In order to solve this problem, a method has been proposed in which a lid is attached to the lower end of the base to prevent penetration of the coating liquid into the inside, or air is trapped inside the base to prevent the penetration of the coating liquid to the outside of the base by air pressure. I have. However, in the latter case, the volume of the air inside the base increases due to the evaporation of the solvent, and the air is released as bubbles to the outside of the base, and the bubbles burst on the surface of the coating liquid and disturb the coating surface. There is a problem of causing it. In order to prevent the generation of such bubbles, a method of extracting gas such as air trapped inside the substrate is disclosed in JP-B-62-4187 and JP-A-63-77567.
And methods for adjusting the pressure inside the substrate and the outside air pressure are disclosed in JP-A-1-123664 and JP-B-4-68989. JP-A-8-89879 relates to an improvement of a dip coating method in which a cylindrical substrate is pulled up from a coating solution. Most of the substrate is pulled up at a high speed, and the remaining portion is pulled up at a low speed. A method for manufacturing a cylindrical substrate having a coating film free from defects such as splashing from the coating liquid surface is disclosed. Further, JP-A-7-136576 discloses a method for forming a coating on the outer peripheral surface of a substrate by immersing a cylindrical substrate from a coating solution. A dip coating method is disclosed in which bath medium vapor of a coating liquid is blown to prevent generation of coating defects due to bubbles.

【0003】[0003]

【発明が解決しようとする課題】これらの従来例の浸漬
塗布方法による工程の概略を図6に示す。同図に示すよ
うに、A→B→C→D→Eの工程をたどることにより円
筒状基体の外周面に塗膜が形成されることを示してい
る。同図のAは基体内部を密閉した円筒状基体が浸漬し
ているときの状態を示し、水圧による圧力で基体内部に
塗布液が少しだけ浸入している。同図のBは基体を引き
上げているときの状態を示し、基体の引き上げによる水
圧の減少で基体内部の液の浸入は少なくなる。同図のC
は基体の下端部が塗布液面に至る直前の円筒状基体を示
し、この状態の時塗布液は表面張力により基体内部に浸
入している。そして、同図のDは円筒状基体が塗布液面
を離れた直後の状態を示し、塗布液が表面張力によって
基体下端に引っ張られ外圧と内圧との差が生じている。
同図のEは更に基体が引き上げられて同図のDにおいて
引っ張られた塗布液が基体から離れ塗布液面に落下寸前
の状態を示す。ここで、図6のDからEにかけての様子
を図7に示し、同図に基づいて詳細に説明すると、同図
の(a)は円筒状基体が塗布液面を離れた直後の状態を
示しており、図からわかるように基体外周部の上方から
垂れてくる塗布液と塗布液面の表面張力とによって基体
下端部に液の膜が生じている。そして、基体が引き上げ
られていくにつれて基体内部の空間が引っ張られて体積
が膨張するために基体内部が密閉状態の場合基体内部の
圧力は下がる。そのため、基体の内部と外部に気圧差が
生じるため、塗布液の膜は図7の(b)に示すように内
側に絞り込まれる。更に、基体が引き上げられると図7
の(c)に示すように塗布液の膜が破れて液が内側に向
かって飛散し基体内周面に付着する。
FIG. 6 shows an outline of the steps of the conventional dip coating method. As shown in the figure, it is shown that a coating film is formed on the outer peripheral surface of the cylindrical substrate by following the steps of A → B → C → D → E. A in the figure shows a state in which the cylindrical substrate having the inside of the substrate hermetically sealed is immersed, and the coating liquid slightly penetrates into the inside of the substrate by the pressure of water pressure. B in the figure shows a state in which the base is being pulled up, and the intrusion of the liquid inside the base is reduced by a decrease in water pressure due to the pulling up of the base. C in FIG.
Shows a cylindrical substrate immediately before the lower end of the substrate reaches the coating liquid surface. In this state, the coating liquid has penetrated into the substrate by surface tension. D in the figure shows a state immediately after the cylindrical substrate has left the surface of the coating liquid. The coating liquid is pulled to the lower end of the substrate by surface tension, and a difference between the external pressure and the internal pressure is generated.
E in the figure shows a state in which the substrate is further pulled up, and the application liquid pulled in D in the figure separates from the substrate and is about to drop to the surface of the application liquid. Here, the state from D to E in FIG. 6 is shown in FIG. 7, and will be described in detail with reference to FIG. 7. FIG. 7A shows the state immediately after the cylindrical substrate has left the coating liquid surface. As can be seen from the figure, a liquid film is formed at the lower end of the substrate due to the coating liquid dripping from above the outer periphery of the substrate and the surface tension of the coating liquid surface. Then, as the base is pulled up, the space inside the base is pulled and the volume expands, so that when the inside of the base is in a closed state, the pressure inside the base decreases. As a result, a pressure difference is generated between the inside and the outside of the base, so that the coating liquid film is narrowed inward as shown in FIG. Further, when the base is lifted, FIG.
As shown in (c), the film of the coating liquid is broken and the liquid scatters inward and adheres to the inner peripheral surface of the substrate.

【0004】このように、上記従来の方法では、塗布液
中から基体を引き上げる際、基体内部にわずかに浸入し
た塗布液が塗布液面に落下して液はねが起こる。よっ
て、このような液はねが発生すると、基体内周面に塗布
膜が形成されるため、端部洗浄時の面積や個所が広くな
り、拭き取り作業が煩雑となると共に洗浄全体の時間が
かかる等の問題がある。また、基体内周面に付着した塗
布液が乾燥しにくく、また端部洗浄によって発生する洗
浄カス(液を含む)が、基体を搬送するためのパレット
に付着してパレットが汚れる不具合が発生するという問
題もある。更に、パレットに塗布液及び洗浄カス(液を
含む)が付着するために、溶剤によるパレット洗浄が必
要であると共に内周面やパレットに塗布液が付着するた
めに無駄な塗布液が消費されるという問題点がある。
As described above, in the above-mentioned conventional method, when the substrate is pulled up from the coating solution, the coating solution slightly entering the inside of the substrate falls onto the surface of the coating solution and splashes. Therefore, when such liquid splash occurs, a coating film is formed on the inner peripheral surface of the base, so that the area and location at the time of edge cleaning become large, the wiping work becomes complicated, and the entire cleaning takes time. There are problems such as. In addition, the coating liquid adhered to the inner peripheral surface of the substrate is difficult to dry, and cleaning scum (including the liquid) generated by edge cleaning adheres to a pallet for transporting the substrate, thereby causing a problem that the pallet is stained. There is also a problem. Further, since the coating liquid and the cleaning scum (including the liquid) adhere to the pallet, the pallet needs to be cleaned with a solvent, and the coating liquid adheres to the inner peripheral surface and the pallet. There is a problem.

【0005】また、塗布液中から円筒状基体を引き上げ
る際大部分を高速度で残りの部分を低速で引き上げると
いう従来の方法においても、上述のように液はねの発生
しやすい引き上げる工程の後半に相当する残りの部分で
低速度で引き上げるために結局のところ円筒状基体内部
の蒸気が基体外部に漏れ液はねが生じて塗布膜を乱す恐
れを回避することはできないという問題点がある。更
に、基体内部に塗布液の浴媒蒸気を吹き込むという従来
の方法においては、多層に塗り重ねる際液面すれすれで
停止する必要があり、基体上に既に塗布されている層が
塗布液の蒸気により溶解する現象が発生することにより
塗布膜を乱して塗布ムラになる恐れがあるという問題点
がある。
[0005] Further, in the conventional method in which most of the cylindrical substrate is pulled up from the coating liquid at a high speed and the remaining portion is pulled up at a low speed, the latter half of the pulling-up step in which liquid splash is likely to occur as described above. Therefore, there is a problem that the possibility that the vapor inside the cylindrical substrate leaks to the outside of the substrate and splashes the liquid to disturb the coating film cannot be avoided. Furthermore, in the conventional method of blowing the bath medium vapor of the coating liquid into the inside of the substrate, it is necessary to stop at the liquid level when coating in multiple layers, and the layer already coated on the substrate is exposed to the vapor of the coating liquid. There is a problem that the occurrence of the dissolution phenomenon may disturb the coating film and cause uneven coating.

【0006】本発明はこれらの問題点を解決するための
ものであり、液はねの発生を防止し、洗浄カスの減少に
よる良品率の向上を図れる浸漬塗布方法を提供すること
を目的とする。
An object of the present invention is to solve these problems, and an object of the present invention is to provide a dip coating method capable of preventing generation of liquid splash and improving a non-defective product rate by reducing a cleaning residue. .

【0007】[0007]

【課題を解決するための手段】本発明は前記問題点を解
決するために、円筒状基体を塗布液に浸漬して円筒状基
体の外周面に塗膜を形成する浸漬塗布方法において、円
筒状基体の一方の開口に支持部材を取付け閉鎖し、円筒
状基体の他方の開口の端部側から塗布液に浸漬し、円筒
状基体を引き上げ時円筒状基体の他方の開口の端部が塗
布液の液面から離れる直前であって円筒状基体の他方の
開口の端部からの所定の加圧位置で円筒状基体の内部を
所定の加圧力で加圧することに特徴がある。よって、基
体内部が加圧状態で液面から離れるので塗布液の基体内
部への浸入を防ぎことができ、基体の内周面への液はね
を防ぐことができると共に洗浄カスの減少による良品率
の向上を図れる。
In order to solve the above-mentioned problems, the present invention provides a dip coating method for forming a coating film on the outer peripheral surface of a cylindrical substrate by immersing the cylindrical substrate in a coating solution. Attach the support member to one opening of the base, close it, immerse it in the coating liquid from the end of the other opening of the cylindrical base, and pull up the cylindrical base when the end of the other opening of the cylindrical base is coated with the coating liquid. This is characterized in that the inside of the cylindrical substrate is pressurized with a predetermined pressing force at a predetermined pressing position from the end of the other opening of the cylindrical substrate immediately before leaving the liquid surface. Therefore, since the inside of the substrate is separated from the liquid surface in a pressurized state, it is possible to prevent the application liquid from entering the inside of the substrate, to prevent the liquid from splashing into the inner peripheral surface of the substrate, and to reduce the amount of cleaning residue. The rate can be improved.

【0008】所定の加圧力を9.8×10-7〜4.9×
10-6Paとすることにより、基体外周面への液はねの
発生を防ぐことができる。
[0008] The predetermined pressure is 9.8 × 10 -7 to 4.9 ×
By setting the pressure to 10 −6 Pa, generation of liquid splash on the outer peripheral surface of the base can be prevented.

【0009】また、加圧位置は、加圧位置上限値=(塗
工速度)×(塗布係数)×0.33、加圧位置下限値=
(塗工速度)×(塗布係数)×0.21(なお(塗布係
数)={(塗布槽の内径の半径)2 −(円筒状基体の外
径の半径)2 }/(円筒状基体の外径の半径)2 とす
る)により求めた上限値及び下限値によって定まる範囲
内とすることにより、内周面及び外周面の液はねを防ぐ
ことができる。
Further, the pressing position is determined as follows: upper limit of pressing position = (coating speed) × (coating coefficient) × 0.33, lower limit of pressing position =
(Coating rate) × (coating coefficient) × 0.21 ((coating coefficient) = {(radius of inner diameter of coating tank) 2 − (radius of outer diameter of cylindrical base) 2 } / (of cylindrical base By setting the radius within the range determined by the upper limit and the lower limit determined by ( 2 )), splashing of the liquid on the inner peripheral surface and the outer peripheral surface can be prevented.

【0010】また、所定の加圧力は、加圧力上限値=
6.0×10-9×(円筒状基体の外径の半径)2 、加圧
力下限値=3.0×10-9×(円筒状基体の外径の半
径)2 により求めた上限値及び下限値によって定まる範
囲内とすることにより、径の大きさの違う円筒状基体に
も適切に対応して内周面及び外周面の液はねを防ぐこと
ができる。
Further, the predetermined pressing force is determined as follows:
6.0 × 10 -9 × (radius of outer diameter of cylindrical substrate) 2 , lower limit of pressing force = 3.0 × 10 -9 × (radius of outer diameter of cylindrical substrate) 2 By setting it within the range determined by the lower limit, it is possible to appropriately prevent cylindrical substrates having different diameters from splashing the liquid on the inner peripheral surface and the outer peripheral surface.

【0011】[0011]

【発明の実施の形態】円筒状基体を塗布液に浸漬して円
筒状基体の外周面に塗膜を形成する浸漬塗布方法におい
て、円筒状基体の一方の開口に支持部材を取付け閉鎖
し、円筒状基体の他方の開口の端部側から塗布液に浸漬
し、円筒状基体を引き上げ時円筒状基体の他方の開口の
端部が塗布液の液面から離れる直前であって円筒状基体
の他方の開口の端部からの所定の加圧位置で円筒状基体
の内部を所定の加圧力で加圧する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a dip coating method in which a cylindrical substrate is immersed in a coating solution to form a coating film on the outer peripheral surface of the cylindrical substrate, a supporting member is attached to one opening of the cylindrical substrate, and the cylindrical member is closed. When the cylindrical substrate is lifted up by dipping in the coating liquid from the end of the other opening of the cylindrical substrate and immediately before the end of the other opening of the cylindrical substrate separates from the liquid surface of the coating liquid and the other end of the cylindrical substrate The inside of the cylindrical substrate is pressurized with a predetermined pressing force at a predetermined pressing position from the end of the opening.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明の一実施例に係る浸漬塗布装置の構
成を示す断面図である。同図において、本実施例におけ
る浸漬塗布装置は、円筒状基体1、塗布槽蓋2、受け皿
3、塗布槽蓋開口部4、溶剤蒸気層5、塗布槽6、戻り
配管7、予備槽8、塗布液9,13、送液ポンプ10、
フィルタ11、供給口12、戻り液14、塗布液面1
5、側壁16及び支持具17を含んで構成されている。
なお、塗布液13は側壁16の上縁部をオーバーフロー
した塗布液である。詳細に説明すると、塗布槽6内には
所定の塗布液9が収容され、塗布槽6の側壁16の周囲
には受け皿3が設けられている。塗布液9は予備槽8か
ら送液ポンプ10によって送り出されてフィルタ11を
介して供給口12より矢印Bで示すように塗布槽6内へ
と供給され、更に側壁16の上縁部を越えて塗布槽6の
円周方向へと溢流し、受け皿3で集められ、戻り配管7
より予備槽8へと排出される。円筒状基体1は送液ポン
プ10が停止し塗布槽蓋2が全開した後に浸漬を始め蒸
気層5を通過し塗布液面15に突入する。円筒状基体1
の下端部が塗布液9に浸入後、速度を変化させながら矢
印Aで示す方向に浸漬する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a configuration of a dip coating apparatus according to one embodiment of the present invention. In the figure, the dip coating apparatus in this embodiment includes a cylindrical substrate 1, a coating tank lid 2, a receiving tray 3, a coating tank lid opening 4, a solvent vapor layer 5, a coating tank 6, a return pipe 7, a preliminary tank 8, Coating liquids 9 and 13;
Filter 11, supply port 12, return liquid 14, coating liquid level 1
5, including the side wall 16 and the support 17.
The coating liquid 13 is a coating liquid that overflows the upper edge of the side wall 16. More specifically, a predetermined coating liquid 9 is stored in the coating tank 6, and the tray 3 is provided around the side wall 16 of the coating tank 6. The coating liquid 9 is sent out from the preliminary tank 8 by the liquid feed pump 10 and supplied through the filter 11 from the supply port 12 into the coating tank 6 as shown by the arrow B, and further over the upper edge of the side wall 16. It overflows in the circumferential direction of the coating tank 6, is collected in the tray 3, and is returned to the return pipe 7.
It is further discharged to the preliminary tank 8. After the liquid supply pump 10 is stopped and the coating tank lid 2 is fully opened, the cylindrical substrate 1 starts immersion, passes through the vapor layer 5 and enters the coating liquid surface 15. Cylindrical substrate 1
After the lower end of the substrate enters the coating liquid 9, the substrate is immersed in the direction shown by the arrow A while changing the speed.

【0013】ここで、本発明で用いる電子写真用感光体
における円筒状基体としては、体積抵抗1.0×1010
Ωcm以下の導電性を示すものであり、例えば、アルミ
ニウム、ニッケル、クロム、銅、酸化スズ、酸化インジ
ウム等をシート状又はシームレスベルト状プラスチック
フィルムに蒸着し、エンドレスベルト化したもの、ニッ
ケル、鉄、ベリリウム−銅合金などからなるシームレス
ベルト、アルミニウム、ニッケル−コバルト合金、ステ
ンレス等をD.I、I.I、押出し、引き抜き等の工法
で素管化後、切削、超仕上げ、研磨等で表面処理した管
などを用いることができるが、本発明はこれらに限定さ
れるものではない。
The cylindrical substrate in the electrophotographic photosensitive member used in the present invention has a volume resistance of 1.0 × 10 10
It shows conductivity of Ωcm or less, for example, aluminum, nickel, chromium, copper, tin oxide, indium oxide or the like is vapor-deposited on a sheet-like or seamless belt-like plastic film and formed into an endless belt, nickel, iron, Seamless belts made of beryllium-copper alloy, aluminum, nickel-cobalt alloy, stainless steel, etc. I, I.I. I. Tubes that have been surface-treated by cutting, superfinishing, polishing, or the like after being formed into a tube by a method such as extrusion or drawing can be used, but the present invention is not limited thereto.

【0014】本発明に用いる電子写真用感光体には、円
筒状導電性基体と感光層との間に下引き層を設けること
ができる。この下引き層は帯電時において積層構造から
なる感光層における導電性基体から感光層への電荷の注
入を阻止すると共に、感光層を導電性基体に対して一体
的に接着保持せしめる接着層としての作用、或いは導電
性支持体からの反射光を防止する作用等を有する。下引
き層は一般に樹脂を主成分とするが、これらの樹脂はそ
の上に感光層を溶剤でもって塗布することを考えると、
一般の有機溶剤に対して耐溶解性の高い樹脂であること
が望ましい。このような樹脂としては、ポリビニルアル
コール、カゼイン、ポリアクリル酸ナトリウム等の水溶
性樹脂、共重合ナイロン、メトキシメチル化ナイロン等
のアルコール可溶性樹脂、ポリウレタン、メラミン樹
脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次
元網目構造を有する硬化型樹脂などが挙げられるが、こ
れらに限定されるものではない。
In the electrophotographic photoreceptor used in the present invention, an undercoat layer can be provided between the cylindrical conductive substrate and the photosensitive layer. The undercoat layer serves as an adhesive layer for preventing charge injection from the conductive substrate into the photosensitive layer in the photosensitive layer having a laminated structure during charging, and for integrally bonding and holding the photosensitive layer to the conductive substrate. It has an action or an action of preventing light reflected from the conductive support. The undercoat layer generally contains a resin as a main component, but considering that these resins are coated thereon with a photosensitive layer using a solvent,
It is desirable that the resin has high resistance to dissolution in general organic solvents. Such resins include polyvinyl alcohol, casein, water-soluble resins such as sodium polyacrylate, copolymerized nylon, alcohol-soluble resins such as methoxymethylated nylon, polyurethane, melamine resin, alkyd-melamine resin, epoxy resin, and the like. Examples include, but are not limited to, curable resins having a three-dimensional network structure.

【0015】また、下引き層にはモアレ防止、残留電位
の低減等のために酸化チタン、シリカ、アルミナ、酸化
ジルコニウム、酸化スズ、酸化インジウム等で例示でき
る金属酸化物の微粉末を加えても良い。これらの下引き
層は、前述の感光層の如く適当な溶媒、塗工方法を用い
て形成することができる。
Further, fine powder of a metal oxide exemplified by titanium oxide, silica, alumina, zirconium oxide, tin oxide, indium oxide or the like may be added to the undercoat layer in order to prevent moire and reduce residual potential. good. These undercoat layers can be formed using an appropriate solvent and a coating method as in the above-described photosensitive layer.

【0016】更に、本発明の下引き層として、シランカ
ップリング剤、チタンカップリング剤、クロムカップリ
ング剤等を使用して、例えばゾルーゲル法等により形成
した金属酸化物層も有用である。この他に、本発明の下
引き層にはAl23 を陽極酸化にて設けたものや、ポ
リパラキシリレン(パレン)等の有機物、そしてSi
O、SnO2 、TiO2 、ITO、CeO2 等の無機物
を真空薄膜作製法にて設けたものも良好に使用できる。
下引き層の膜厚は3〜7μmが適当である。
Further, as the undercoat layer of the present invention, a metal oxide layer formed by using a silane coupling agent, a titanium coupling agent, a chromium coupling agent or the like, for example, by a sol-gel method is also useful. In addition to this, the undercoat layer of the present invention is provided with Al 2 O 3 by anodic oxidation, an organic substance such as polyparaxylylene (parene), and Si.
Those provided with an inorganic substance such as O, SnO 2 , TiO 2 , ITO, CeO 2 by a vacuum thin film manufacturing method can also be used favorably.
The thickness of the undercoat layer is suitably from 3 to 7 μm.

【0017】更に、本発明の電荷発生層は、電荷発生材
料を主成分とする層である。電荷発生材料には、無機及
び有機材料が用いられ、その代表として、モノアゾ顔
料、ジスアゾ顔料、トリスアゾ顔料、ペリレン系顔料、
ペリノン系顔料、キナクリドン系顔料、キノン系縮合多
環化学物、スクアリック酸系染料、フタロシアニン系顔
料、ナフタロシアニン系顔料、アズレニウム塩系染料、
セレン、セレン−テルル、セレン−ヒ素合金、アモルフ
ァス・シリコン等が挙げられるが、これらに限定される
ものではない。
Further, the charge generation layer of the present invention is a layer containing a charge generation material as a main component. Inorganic and organic materials are used for the charge generation material, and as typical examples, monoazo pigments, disazo pigments, trisazo pigments, perylene pigments,
Perinone pigments, quinacridone pigments, quinone condensed polycyclic chemicals, squaric acid dyes, phthalocyanine pigments, naphthalocyanine pigments, azulhenium salt dyes,
Examples include, but are not limited to, selenium, selenium-tellurium, selenium-arsenic alloy, amorphous silicon, and the like.

【0018】また、本発明の電荷発生材料は、単独或い
は2種以上混合して用いられる。電荷発生層は、電荷発
生材料を適宜用いられるバインダー樹脂と共に、テトラ
ヒドロフラン、シクロヘキサノン、ジオキサン、2−ブ
タノン、ジクロルエタン等の適当な溶媒を用いてボール
ミル、アトライター、サンドミルなどにより分散し、分
散液を塗布することにより形成できる。この際、電荷発
生物質は、体積平均粒径で5μm以下、好ましくは2μ
m以下、最適には0.5μm以下の粒子サイズにするこ
とが有効である。塗布は、浸漬塗工法やスプレーコー
ト、ビードコート法などを用いて行うことができる。な
お、適宜用いられるバインダー樹脂としては、ポリアミ
ド、ポリウレタン、ポリエステル、エポキシ樹脂、ポリ
ケトン、ポリカーボネート、シリコーン樹脂、アクリル
樹脂、ポリビニルブチラール、ポリビニルホルマール、
ポリビニルケトン、ポリスチレン、ポリアクリルアミド
などが挙げられ用いられる。また、適宜用いられるバイ
ンダー樹脂の量は、電荷発生材料1重量部に対して0〜
2重量部が適当である。本発明で用いる電荷発生層の膜
厚は一般には0.1〜5μm以下、好ましくは0.2〜
2μmが適当である。
The charge generation material of the present invention may be used alone or in combination of two or more. The charge generation layer is dispersed by a ball mill, an attritor, a sand mill, or the like using an appropriate solvent such as tetrahydrofuran, cyclohexanone, dioxane, 2-butanone, or dichloroethane, together with a binder resin appropriately using a charge generation material, and applying a dispersion. Can be formed. At this time, the charge generating substance has a volume average particle diameter of 5 μm or less, preferably 2 μm or less.
It is effective to set the particle size to not more than m, most preferably not more than 0.5 μm. The coating can be performed by a dip coating method, a spray coating method, a bead coating method, or the like. In addition, as a binder resin used as appropriate, polyamide, polyurethane, polyester, epoxy resin, polyketone, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal,
Examples thereof include polyvinyl ketone, polystyrene, and polyacrylamide. The amount of the binder resin appropriately used is 0 to 1 part by weight of the charge generating material.
2 parts by weight are suitable. The thickness of the charge generation layer used in the present invention is generally 0.1 to 5 μm or less, preferably 0.2 to 5 μm.
2 μm is appropriate.

【0019】更に、本発明の電子写真感光体における電
荷輸送層は、電荷輸送物質を適当なバインダー中に含有
させて形成される。電荷輸送物質としては、2,5−ビ
ス(p−ジエチルアミノフェニル)−1,3,4−オキ
サジアゾールなどのオキサゾアゾール誘導体、1,3,
5−トリフェニル−ピラゾリン、1−〔ピリジル−
(2)〕−3−(p−ジエチルアミノスチリル)−5−
(p−ジエチルアミノフェニル)ピラゾリンなどのピラ
ゾリン誘導体、トリフェニルアミン、スチリルトリフェ
ニルアミン、ジベンジルアニリンなどの芳香族第3級ア
ミノ化合物、N,N’−ジフェニル−N,N’−ビス
(3−メチルフェニル)−1,1−ビフェニル−4,
4’−ジアミンなどの芳香族第3級ジアミノ化合物、3
−(4’−ジメチルアミノフェニル)−5,6−ジ−
(4’−メトキシフェニル)−1、2,4−トリアジン
などの1,2,4−トリアジン誘導体、4−ジエチルア
ミノベンズアルデヒド−1,1−ジフェニルヒドラゾン
などのヒドラゾン誘導体、2−フェニル−4−スチリル
−キンゾリンなどのキナゾリン誘導体、6−ヒデロキシ
−2,3−ジ(p−メトキシフェニル)−ベンゾフラン
などのベンゾフラン誘導体、p−(2,2−ジフェニル
ビニル)−N、N−ジフェニルアニリンなどのα−スチ
ルベン誘導体、「Journal of Imagin
g Science」29:7〜10(1985)に記
載されているエナミン誘導体、N−エチルカルバゾール
などのカルバゾール誘導体、ポリ−N−ビニルカルバゾ
−ルなどのポリ−N−ビニルカルバゾール及びその誘導
体、ポリ−γ−カルバゾリルエチルグルタナート及びそ
の誘導体、更にはピレン、ポリビニルピルン、ポリビニ
ルアントラセン、ポリビニルアクリジン、ポリ−9−ビ
フェニルアントラセン、ピレン−ホルムアルデヒド樹
脂、エチルカルバゾールホルムアルデヒド樹脂などの公
知の電荷輸送物質をもちいることができるが、これらに
限定されるものではない。また、これらの電荷輸送物質
は単独或いは2種以上混合して用いることができる。
Further, the charge transport layer in the electrophotographic photoreceptor of the present invention is formed by including a charge transport substance in a suitable binder. Oxazoazole derivatives such as 2,5-bis (p-diethylaminophenyl) -1,3,4-oxadiazole, 1,3,3
5-triphenyl-pyrazoline, 1- [pyridyl-
(2)]-3- (p-Diethylaminostyryl) -5-
Pyrazoline derivatives such as (p-diethylaminophenyl) pyrazoline; aromatic tertiary amino compounds such as triphenylamine, styryltriphenylamine and dibenzylaniline; N, N′-diphenyl-N, N′-bis (3- Methylphenyl) -1,1-biphenyl-4,
Aromatic tertiary diamino compounds such as 4'-diamine, 3
-(4'-dimethylaminophenyl) -5,6-di-
1,2,4-triazine derivatives such as (4′-methoxyphenyl) -1,2,4-triazine, hydrazone derivatives such as 4-diethylaminobenzaldehyde-1,1-diphenylhydrazone, 2-phenyl-4-styryl- Quinazoline derivatives such as quinzoline; benzofuran derivatives such as 6-hydroxy-2,3-di (p-methoxyphenyl) -benzofuran; α-stilbenes such as p- (2,2-diphenylvinyl) -N and N-diphenylaniline Derivative, “Journal of Imagin
g Science "29: 7-10 (1985), carbazole derivatives such as N-ethylcarbazole, poly-N-vinylcarbazole such as poly-N-vinylcarbazole and derivatives thereof, and poly-γ. -Carbazolylethyl glutanate and its derivatives, and also a known charge transporting substance such as pyrene, polyvinyl pyrene, polyvinyl anthracene, polyvinyl acridine, poly-9-biphenylanthracene, pyrene-formaldehyde resin, ethyl carbazole formaldehyde resin. But not limited to these. These charge transporting substances can be used alone or in combination of two or more.

【0020】また、電荷輸送層における結着樹脂として
は、ポリカーボネート樹脂、ポリエステル樹脂、メタク
リル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩
化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセ
テート樹脂、ブチレン−ブタジエン共重合体、塩化ビニ
リデン−アクリロニトリル共重合体、塩化ビニル−酢酸
ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイ
ン酸共重合体、シリコーン樹脂、シリコーン−アルキッ
ド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン
−アルキッド樹脂、ポリ−Nビニルカルバゾールなどの
公知の樹脂を用いることができるが、これらに限定され
るものではない。また、これらの結着樹脂は単独或いは
2種以上混合して用いることができる。
As the binder resin in the charge transport layer, polycarbonate resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, butylene-butadiene copolymer , Vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly A known resin such as -N vinylcarbazole can be used, but is not limited thereto. These binder resins can be used alone or in combination of two or more.

【0021】本発明において、電荷輸送層中に可塑剤や
レベリング剤を添加しても良い。可塑剤としては、ジブ
チルフタレール、ジオクチルフタレートなど一般の樹脂
の可塑剤として使用されているものがそのまま使用で
き、その使用量はバインダー樹脂に対して0〜30重量
%程度が適当である。レベイング剤としては、ジメチル
シリコーンオイル、メチルフェニルシリコーンオイルな
どのシリコーンオイル類や側鎖にパーフルオロアルキル
基を有するポリマー或いはオリゴマーが使用され、その
使用量はバインダー樹脂に対して、0〜1重量%が適当
である。
In the present invention, a plasticizer or a leveling agent may be added to the charge transport layer. As the plasticizer, those used as general plasticizers for general resins such as dibutyl phthalate and dioctyl phthalate can be used as they are, and the amount of the plasticizer is suitably about 0 to 30% by weight based on the binder resin. As the revaging agent, silicone oils such as dimethyl silicone oil and methyl phenyl silicone oil, and polymers or oligomers having a perfluoroalkyl group in the side chain are used in an amount of 0 to 1% by weight based on the binder resin. Is appropriate.

【0022】更に、必要に応じて電荷輸送層の上に保護
層を設けても良い。この保護層は、積層構造からなる感
光層の帯電時の電荷輸送層の化学的変質を防止すると共
に、感光層の機械的強度を改善するために用いられる。
また、保護層中に前述した電荷輸送材料を添加してもよ
い。また、この保護層に用いる結着樹脂としては、ポリ
アミド樹脂、ポリウレタン樹脂ポリエステル樹脂、エポ
キシ樹脂、ポリケトン樹脂、ポリカーボネート、ポリビ
ニルケトン樹脂、ポリスチレン、ポリアクリルアミド樹
脂などの公知の樹脂を用いることができるが、これらに
限定されるものではない。
Further, if necessary, a protective layer may be provided on the charge transport layer. This protective layer is used to prevent the charge transport layer from being chemically altered during charging of the photosensitive layer having a laminated structure, and to improve the mechanical strength of the photosensitive layer.
Further, the above-described charge transporting material may be added to the protective layer. As the binder resin used for the protective layer, known resins such as polyamide resin, polyurethane resin polyester resin, epoxy resin, polyketone resin, polycarbonate, polyvinyl ketone resin, polystyrene, and polyacrylamide resin can be used. It is not limited to these.

【0023】また、保護層は像露光に用いられる光の通
過を実質上妨げないように構成されなければならない。
これに使用される材料としては、ABC樹脂、ACS樹
脂、オレフィン−ビニルモノマー共重合体、塩素化ポリ
エーテル、アリル樹脂、フェノール樹脂、ポリアセター
ル、ポリアミド、ポリアミドイミド、ポリアクリレー
ト、ポリアリルスルホン、ポリブチレン、ポリブチレン
テレフタレート、ポリイミド、アクリル樹脂、ポリメチ
ルペンテン、ポリプロピレン、ポリフェニレンオキシ
ド、ポリスルホン、AS樹脂、AB樹脂、BS樹脂、ポ
リウレタン、ポリ塩化ビニル、ポリ塩化ビニル、ポリ塩
化ビニリデン、ポリ塩化ビニリデン、エポキシ樹脂等の
樹脂が挙げられる。保護層には、その他耐摩耗性を向上
する目的で、ポリテトラフルオロエチレンのようなフッ
素樹脂、シリコーン樹脂及びこれら樹脂に酸化チタン、
酸化スズ、チタン酸カリウム等の無機材料を分散したも
の等を添加することができる。保護層の形成法として
は、通常の塗布法が採用される。なお、本発明で用いる
保護層の膜厚は0.5〜20μm、好ましくは1〜10
μmが適当である。また、以上の他に真空薄膜作製法に
て形成したi−C,a−SiCなどの公知の材料も保護
層として用いることができる。
Further, the protective layer must be configured so as not to substantially hinder the passage of light used for image exposure.
Materials used for this include ABC resin, ACS resin, olefin-vinyl monomer copolymer, chlorinated polyether, allyl resin, phenolic resin, polyacetal, polyamide, polyamideimide, polyacrylate, polyallyl sulfone, polybutylene, Polybutylene terephthalate, polyimide, acrylic resin, polymethylpentene, polypropylene, polyphenylene oxide, polysulfone, AS resin, AB resin, BS resin, polyurethane, polyvinyl chloride, polyvinyl chloride, polyvinylidene chloride, polyvinylidene chloride, epoxy resin, etc. Resins. In the protective layer, for the purpose of improving the abrasion resistance, a fluororesin such as polytetrafluoroethylene, a silicone resin and titanium oxide to these resins,
A dispersion of an inorganic material such as tin oxide and potassium titanate can be added. As a method for forming the protective layer, a normal coating method is employed. The thickness of the protective layer used in the present invention is 0.5 to 20 μm, preferably 1 to 10 μm.
μm is appropriate. In addition to the above, known materials such as iC and a-SiC formed by a vacuum thin film manufacturing method can be used as the protective layer.

【0024】更に、本発明において、感光層と保護層と
の間に別の中間層を設けることも可能である。中間層に
は、一般にバインダー樹脂を主成分として用いる。これ
ら樹脂としては、ポリアミド、アルコール可溶性ナイロ
ン、水溶性ポリビニルブチラール、ポリビニルブチラー
ル、ポリビニルアルコールなどが挙げられる。中間層の
形成法としては、前述の如く通常の塗布方法が採用され
る。なお、中間層の厚さは、0.05〜2μm程度が適
当である。
Further, in the present invention, another intermediate layer can be provided between the photosensitive layer and the protective layer. The intermediate layer generally uses a binder resin as a main component. Examples of these resins include polyamide, alcohol-soluble nylon, water-soluble polyvinyl butyral, polyvinyl butyral, and polyvinyl alcohol. As a method for forming the intermediate layer, a normal coating method is employed as described above. The thickness of the intermediate layer is suitably about 0.05 to 2 μm.

【0025】図2は本発明に係る浸漬塗布方法における
塗布工程の概略を示す図である。A→B→C→D→Eの
工程をたどることにより円筒状基体の外周面に塗膜が形
成されることを示している。同図において、21は円筒
状基体、22は塗布槽、23は塗布液、24は支持部
材、25はエアー供給管を示す。同図のAは円筒状基体
21が図1のような塗布槽22に浸漬している状態を示
し、この時塗布液23は水圧により基体内部に少しだけ
浸入している。同図のBは基体を引き上げている状態を
示している。同図のCは基体の下端部が塗布液面に至る
直前の円筒状基体21の状態を示し、この時円筒状基体
21の内部空間にエアー供給管25からエアーを吹き込
み基体内部を加圧して基体が塗布液面に出たときに発生
する液の膜が内側に引き込まれる現象を防いでいる。同
図のDは円筒状基体21が塗布液面を離れた瞬間の状態
を示し、基体内部にはエアー供給管25からエアーが加
えられているため塗布液膜が破裂しても飛散して基体内
部に付着することはない。基体が塗布液23から出た後
は、同図のEに示すように、基体内部へのエアーの供給
を止める。また、図1の浸漬塗布装置において、再び送
液ポンプ10は運転を開始して塗布液の循環が始まり、
塗布槽蓋2が塗布槽6を閉鎖し密閉する。
FIG. 2 is a view schematically showing a coating step in the dip coating method according to the present invention. This shows that a coating film is formed on the outer peripheral surface of the cylindrical substrate by following the steps of A → B → C → D → E. In the figure, 21 is a cylindrical substrate, 22 is a coating tank, 23 is a coating liquid, 24 is a support member, and 25 is an air supply pipe. A in the figure shows a state in which the cylindrical substrate 21 is immersed in the coating tank 22 as shown in FIG. 1, and at this time, the coating liquid 23 has slightly penetrated into the substrate by water pressure. B in the same figure shows a state in which the base is pulled up. C in the figure shows the state of the cylindrical substrate 21 immediately before the lower end of the substrate reaches the coating liquid level. At this time, air is blown into the internal space of the cylindrical substrate 21 from the air supply pipe 25 to pressurize the inside of the substrate. This prevents the liquid film generated when the substrate comes out of the coating liquid surface from being drawn inward. D in the figure shows a state at the moment when the cylindrical substrate 21 has left the coating liquid surface. Since air is supplied from the air supply pipe 25 to the inside of the substrate, even if the coating liquid film ruptures, the substrate is scattered and scattered. It does not adhere inside. After the substrate comes out of the coating solution 23, the supply of air to the inside of the substrate is stopped, as shown at E in FIG. In addition, in the dip coating apparatus of FIG. 1, the liquid feed pump 10 starts operating again, and the circulation of the coating liquid starts,
The coating tank lid 2 closes and seals the coating tank 6.

【0026】次に、各層の形成工程を示し、その工程で
の本実施例に対応させて説明する。
Next, the steps of forming each layer will be described, and the steps will be described in accordance with the present embodiment.

【0027】1.下引き層の形成 以下の材料を溶解して下引き層塗布液を調合した。 可溶性ナイロン 5重量部(アラミンCM−8000、東レ製) メタノール 95重量部 外径80mm、長さ410mmのニッケル製の円筒状基
体に、上記のように調合した下引き層塗布液を浸漬塗布
し、100℃で10分間乾燥して、厚さ0.3μmの下
引き層を形成した。
1. Formation of Undercoat Layer The following materials were dissolved to prepare an undercoat layer coating solution. Soluble nylon 5 parts by weight (Alamine CM-8000, manufactured by Toray) Methanol 95 parts by weight The undercoat layer coating solution prepared as described above is dip-coated on a nickel cylindrical substrate having an outer diameter of 80 mm and a length of 410 mm. After drying at 100 ° C. for 10 minutes, an undercoat layer having a thickness of 0.3 μm was formed.

【0028】2.電荷発生層の形成 下記の構造式1に示す電荷発生剤 10重量部 ポリビニルブチラール 7重量部 テトラヒドロラン 145重量部2. Formation of charge generation layer Charge generation agent represented by the following structural formula 1 10 parts by weight Polyvinyl butyral 7 parts by weight Tetrahydrolan 145 parts by weight

【0029】これらの各液をボールミルに入れ、72時
間ミリングした。更に、シクロヘキサノン200重量部
を加えて、1時間分散を行った。分散を終了した液を更
にシクロヘキサノンで希釈、調整し電荷発生層塗布液と
した。下引き層を形成した前記ニッケル製円筒状基体を
下記の条件にて浸漬塗布し、100℃で10分間乾燥し
て厚さ0.1μmの電荷発生層を形成した。
Each of these solutions was placed in a ball mill and milled for 72 hours. Further, 200 parts by weight of cyclohexanone was added and dispersed for 1 hour. The liquid after completion of the dispersion was further diluted and adjusted with cyclohexanone to obtain a charge generating layer coating liquid. The nickel cylindrical substrate having the undercoat layer formed thereon was applied by dip coating under the following conditions, and dried at 100 ° C. for 10 minutes to form a 0.1 μm-thick charge generating layer.

【0030】[0030]

【化1】 Embedded image

【0031】3.電荷輸送層の塗布 上記1のように下引き層を塗布したニッケル製円筒状基
体を上記2の塗布液に30mm/sの速度で塗布液に浸
漬した。15秒静止した後、3.89mm/sの速度で
引き上げた。基体下端が塗布液面を離れる直前に、基体
内部にエアーを送り加圧した。加圧したエアー圧力は
4.9×10-6Paにして10本塗工を行った。塗工し
たサンプルの内周面・外周面の液はね状態を確認したと
ころ、10本全部液はねは未発生だった。よって、適切
な加圧力の範囲は、9.8×10-7 〜4.9×10-6
aとした。なお、下限値は機械の限界があったために確
認できた範囲の値としている。このような結果をもって
好ましい加圧力を理論的に表すと以下のような式によっ
て表すことができる。
3. Coating of charge transport layer Nickel cylindrical substrate coated with undercoat layer as described in 1 above
The body is immersed in the coating solution of the above 2 at a speed of 30 mm / s.
Pickled. After standing still for 15 seconds, at a speed of 3.89 mm / s
Raised. Immediately before the lower edge of the substrate leaves the coating liquid level,
Air was sent inside and pressurized. The pressurized air pressure is
4.9 × 10-6Pa was applied to 10 coats. Coating
The liquid splash condition on the inner and outer peripheral surfaces of the sample
At this time, no liquid splash was generated in all 10 tubes. Therefore, appropriate
The range of the applied pressure is 9.8 × 10-7 ~ 4.9 × 10-6P
a. Note that the lower limit is not guaranteed due to the limitations of the machine.
The value is within the recognized range. With these results
The theoretical expression of the preferred pressure is given by the following equation.
Can be expressed as

【0032】加圧力上限値=6.0×10-9×(円筒状
基体の外径の半径)2 加圧力下限値=3.0×10-9×(円筒状基体の外径の
半径)2
Upper limit of applied pressure = 6.0 × 10 −9 × (radius of outer diameter of cylindrical base) 2 Lower limit of applied pressure = 3.0 × 10 −9 × (radius of outer diameter of cylindrical base) Two

【0033】次に、本発明による実施例と本発明によら
ない比較例について説明すると、比較例1として、下引
き層を塗布したニッケル製円筒状基体を基体下端が塗布
液面を離れるまで3.89mm/sの速度でそのまま引
き上げて10本塗布した。このように本発明によらない
比較例1によれば、塗布したサンプルの内周面及び外周
面の液はね状態を確認したところ、10本中8本の基体
の内周面に液はねが発生してした。
Next, an example according to the present invention and a comparative example not according to the present invention will be described. As a comparative example 1, a nickel cylindrical substrate coated with an undercoat layer is removed until the lower end of the substrate leaves the coating liquid surface. It was pulled up at a speed of .89 mm / s as it was and 10 pieces were applied. As described above, according to Comparative Example 1 not according to the present invention, the state of liquid splashing on the inner and outer peripheral surfaces of the applied sample was confirmed. Has occurred.

【0034】次に、本発明の塗布浸漬方法において基体
下端が塗布液面を離れる直前に基体内部にエアーを送る
加圧力の大小について考察してみると、当該加圧力が大
きいと、図3のAに示すように基体の下端が塗布液面か
ら離れる前に基体内部の液が外部に放出されるためにエ
アーが外に吹き出し、外周面に液はねが発生する。一
方、加圧力が小さいと図3のBに示すように基体の下端
が塗布液面から離れる時にも基体内部に塗布液が残って
いるため、従来の問題を解消できず、つまり内周面に液
はねが発生する。例えば、比較例2として加圧する圧力
を4.9×10-5 Paとして10本塗布した場合、塗布
したサンプルの内周面及び外周面の液はね状態を確認し
たところ、内周面に液はねの発生は見られなかったが、
外周面の液はねが10本全てに発生していた。
Next, in the coating and dipping method of the present invention,
Sends air into the base just before the lower end leaves the coating liquid surface
Considering the magnitude of the applied pressure,
3A, the lower end of the substrate may be at the coating liquid level as shown in FIG.
The liquid inside the substrate is released to the outside before leaving
The air blows out and liquid splash is generated on the outer peripheral surface. one
On the other hand, when the pressing force is small, as shown in FIG.
The coating liquid remains inside the substrate even when the
The conventional problem cannot be solved, that is, the liquid
Splashes occur. For example, the pressure to pressurize as Comparative Example 2
Is 4.9 × 10-Five When applying 10 pieces as Pa, apply
Check the liquid splash condition on the inner and outer peripheral surfaces of the sample
As a result, no liquid splash was observed on the inner peripheral surface,
The liquid splash on the outer peripheral surface was generated in all ten tubes.

【0035】また、圧力を加える位置についても考察し
てみると、図3のCのように圧力を加える開始位置が早
いと図3のDのように基体の下端が塗布液面から離れる
時にも基体内部に液が残ってしまい、内周面に液はねが
発生する。
Considering the pressure application position, if the pressure application start position is early as shown in FIG. 3C, the lower end of the base may be separated from the coating liquid surface as shown in FIG. 3D. The liquid remains inside the substrate, and liquid splashes are generated on the inner peripheral surface.

【0036】更に、加圧力や塗工速度を多種変えた場合
の液はねの発生状況を実験した結果を以下に示す。な
お、実験では外径が80mmのニッケル製円筒状基体を
内径が120mmの塗布槽に塗工速度を変えて浸漬塗工
させ、加圧の位置は1.3mmに固定し、圧力は2.0
×10-6、3.9×10-6、5.9×10-6Paの水準
で塗工速度を3から15mm/sの範囲で変えて本発明
による浸漬塗工を行った。その結果を図4に示す。図
中、○は液はねが発生しなかったことを示し、×は液は
ねが発生して円筒状基体の外周面に影響したことを示
し、また△は液はねが発生して円筒状基体の内周面に影
響したことを示すものとする。図4に示す結果からわか
るように、加圧力が2.0×10-6Paであるとき塗工
速度が5mm/s,7mm/s,9mm/sの時だけ液
はねが発生しなかった。また、加圧力が3.9×10-6
Paであるとき塗工速度が7mm/s,9mm/s,1
1mm/sの時だけ液はねが発生しなかった。更に、加
圧力が5.9×10-6Paであるとき塗工速度が9mm
/s及び11mm/sの時だけ液はねが発生しなかっ
た。なお、オーバーフロー型の浸漬塗布方法でも塗工速
度が異なるだけなので同様である。結局のところ、塗工
速度9mm/sのときが3つの加圧力において最も適正
であったと言えることがわかった。このような結果をも
って好ましい加圧位置を理論的に表すと以下のような式
によって表すことができる。
Further, the results of experiments on the state of generation of liquid splashes when the pressure and the coating speed are varied are shown below. In the experiment, a nickel cylindrical substrate having an outer diameter of 80 mm was immersed and coated in a coating tank having an inner diameter of 120 mm at a different coating speed, the pressure position was fixed at 1.3 mm, and the pressure was 2.0.
The dip coating according to the present invention was performed at a coating speed of 3 to 15 mm / s at a level of × 10 -6 , 3.9 × 10 -6 , 5.9 × 10 -6 Pa. FIG. 4 shows the results. In the figure, ○ indicates that liquid splash did not occur, X indicates that liquid splash occurred and affected the outer peripheral surface of the cylindrical base, and Δ indicates that liquid splash occurred and the cylinder did not. It indicates that the influence has been exerted on the inner peripheral surface of the substrate. As can be seen from the results shown in FIG. 4, when the pressure was 2.0 × 10 −6 Pa, the liquid did not splash only when the coating speed was 5 mm / s, 7 mm / s, and 9 mm / s. . Further, the pressing force is 3.9 × 10 −6.
When Pa, the coating speed is 7 mm / s, 9 mm / s, 1
Liquid splash did not occur only at 1 mm / s. Further, when the pressing force is 5.9 × 10 −6 Pa, the coating speed is 9 mm.
No liquid splash was generated only at the speeds of / mm and 11 mm / s. The same applies to the overflow-type dip coating method, since only the coating speed is different. After all, it was found that the coating speed of 9 mm / s was the most appropriate at the three pressing forces. With such a result, a preferable pressing position can be theoretically expressed by the following equation.

【0037】加圧位置上限値=(塗工速度)×0.18 加圧位置下限値=(塗工速度)×0.12Upper limit of pressing position = (coating speed) × 0.18 Lower limit of pressing position = (coating speed) × 0.12

【0038】なお、塗工速度には±2mm/sの余裕が
あることとした。
The coating speed has a margin of ± 2 mm / s.

【0039】次に、塗工速度や加圧位置を多種変えた場
合の液はねの発生状況を実験した結果を図5に示す。な
お、加圧力は3.9×10-6Paとする。実験では外径
が80mmのニッケル製円筒状基体を内径が120mm
の塗布槽に塗工速度を変えて浸漬塗工させた。
Next, FIG. 5 shows the results of an experiment on the state of occurrence of liquid splashing when the coating speed and the pressing position were changed by various types. Note that the pressure is 3.9 × 10 −6 Pa. In the experiment, a nickel cylindrical substrate with an outer diameter of 80 mm was
Was subjected to dip coating at a different coating speed.

【0040】同図からわかるように、塗工速度が13m
m/sの時、B,C、つまり加圧位置が1.8mmと
2.3mmでは内周面及び外周面で液はねが発生しなか
った。また、Aの条件である加圧位置1.3mm以下で
ある場合では内周面で液はねが発生した。そして、塗工
速度が7mm/sの時、Dつまり加圧位置が1.3mm
では内周面及び外周面で液はねが発生しなかったが、E
つまり加圧位置が1.8以上である場合では外周面で液
はねが発生した。これらの実験結果であるB,C,Dの
条件における加圧位置から、好ましい加圧位置範囲を理
論的に表すと以下のような式によって表すことができ
る。
As can be seen from the figure, the coating speed is 13 m
At m / s, liquid splash did not occur on the inner peripheral surface and the outer peripheral surface when B and C, that is, when the pressing position was 1.8 mm and 2.3 mm. In addition, when the pressing position was 1.3 mm or less, which is the condition of A, liquid splash occurred on the inner peripheral surface. When the coating speed is 7 mm / s, D, that is, the pressing position is 1.3 mm
No liquid splash was generated on the inner and outer peripheral surfaces.
That is, when the pressing position was 1.8 or more, liquid splash occurred on the outer peripheral surface. From the pressure positions under the conditions B, C, and D, which are the results of these experiments, a preferable pressure position range can be theoretically expressed by the following equation.

【0041】加圧位置上限値=(塗工速度)×(塗布係
数)×0.33 加圧位置下限値=(塗工速度)×(塗布係数)×0.2
Upper limit of pressing position = (coating speed) × (coating coefficient) × 0.33 Lower limit of pressing position = (coating speed) × (coating coefficient) × 0.2
1

【0042】なお、(塗布係数)は{(塗布槽の内径の
半径)2 −(円筒状基体の外径の半径)2 }/(円筒状
基体の外径の半径)2 とする。
The coating coefficient is {(radius of inner diameter of coating tank) 2 − (radius of outer diameter of cylindrical substrate) 2 } / (radius of outer diameter of cylindrical substrate) 2 .

【0043】よって、塗工速度13mm/sのときの好
ましい加圧位置範囲は、1.5〜2.4mm、塗工速度
7mm/sのときの好ましい加圧位置範囲は、0.8〜
1.3mmであることがわかった。
Therefore, the preferable pressing position range at a coating speed of 13 mm / s is 1.5 to 2.4 mm, and the preferable pressing position range at a coating speed of 7 mm / s is 0.8 to 2.4 mm.
It was found to be 1.3 mm.

【0044】なお、本発明は上記実施例に限定されるも
のではなく、特許請求の範囲内に記載であれば多種の変
形や置換可能であることは言うまでもない。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications and substitutions can be made within the scope of the claims.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
円筒状基体を塗布液に浸漬して前記円筒状基体の外周面
に塗膜を形成する浸漬塗布方法において、円筒状基体の
一方の開口に支持部材を取付け閉鎖し、円筒状基体の他
方の開口の端部側から塗布液に浸漬し、円筒状基体を引
き上げ時円筒状基体の他方の開口の端部が塗布液の液面
から離れる直前であって円筒状基体の他方の開口の端部
からの所定の加圧位置で円筒状基体の内部を所定の加圧
力で加圧することに特徴がある。よって、基体内部が加
圧状態で液面から離れるので塗布液の基体内部への浸入
を防ぎことができ、基体の内周面への液はねを防ぐこと
ができると共に洗浄カスの減少による良品率の向上を図
れる。
As described above, according to the present invention,
In a dip coating method for immersing a cylindrical substrate in a coating solution to form a coating film on the outer peripheral surface of the cylindrical substrate, a support member is attached to one opening of the cylindrical substrate, closed, and the other opening of the cylindrical substrate is closed. Immersed in the coating liquid from the end side, and when the cylindrical substrate is pulled up, just before the end of the other opening of the cylindrical substrate separates from the liquid surface of the coating liquid and from the end of the other opening of the cylindrical substrate It is characterized in that the inside of the cylindrical substrate is pressurized with a predetermined pressing force at the predetermined pressing position. Therefore, since the inside of the substrate is separated from the liquid surface in a pressurized state, it is possible to prevent the application liquid from entering the inside of the substrate, to prevent the liquid from splashing into the inner peripheral surface of the substrate, and to reduce the amount of cleaning residue. The rate can be improved.

【0046】所定の加圧力を9.8×10-7〜4.9×
10-6Paとすることにより、基体外周面への液はねの
発生を防ぐことができる。
The predetermined pressure is 9.8 × 10 −7 to 4.9 ×.
By setting the pressure to 10 −6 Pa, generation of liquid splash on the outer peripheral surface of the base can be prevented.

【0047】また、加圧位置は、加圧位置上限値=(塗
工速度)×(塗布係数)×0.33、加圧位置下限値=
(塗工速度)×(塗布係数)×0.21(なお(塗布係
数)={(塗布槽の内径の半径)2 −(円筒状基体の外
径の半径)2 }/(円筒状基体の外径の半径)2 とす
る)により求めた上限値及び下限値によって定まる範囲
内とすることにより、内周面及び外周面の液はねを防ぐ
ことができる。
Further, the pressing position is determined as follows: pressing position upper limit = (coating speed) × (coating coefficient) × 0.33, pressing position lower limit =
(Coating rate) × (coating coefficient) × 0.21 ((coating coefficient) = {(radius of inner diameter of coating tank) 2 − (radius of outer diameter of cylindrical base) 2 } / (of cylindrical base By setting the radius within the range determined by the upper limit and the lower limit determined by ( 2 )), splashing of the liquid on the inner peripheral surface and the outer peripheral surface can be prevented.

【0048】また、所定の加圧力は、加圧力上限値=
6.0×10-9×(円筒状基体の外径の半径)2 、加圧
力下限値=3.0×10-9×(円筒状基体の外径の半
径)2 により求めた上限値及び下限値によって定まる範
囲内とすることにより、径の大きさの違う円筒状基体に
も適切に対応して内周面及び外周面の液はねを防ぐこと
ができる。
The predetermined pressing force is determined by the following equation:
6.0 × 10 -9 × (radius of outer diameter of cylindrical substrate) 2 , lower limit of pressing force = 3.0 × 10 -9 × (radius of outer diameter of cylindrical substrate) 2 By setting it within the range determined by the lower limit, it is possible to appropriately prevent cylindrical substrates having different diameters from splashing the liquid on the inner peripheral surface and the outer peripheral surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における浸漬塗布装置の構成を示す断面
図である。
FIG. 1 is a cross-sectional view illustrating a configuration of a dip coating apparatus according to the present invention.

【図2】本発明の一実施例に係る浸漬塗布方法の工程の
様子を示す図である。
FIG. 2 is a view showing a state of a process of a dip coating method according to one embodiment of the present invention.

【図3】本実施例の塗布浸漬方法において加圧力の大小
と加圧開始位置の早い場合の様子を示す図である。
FIG. 3 is a diagram illustrating a state in which the pressure is large and the pressing start position is fast in the coating and dipping method of the present embodiment.

【図4】本実施例において加圧力や塗工速度を変えた場
合の液はねの発生状況の実験結果を示す図である。
FIG. 4 is a view showing an experimental result of a state of generation of liquid splash when a pressing force and a coating speed are changed in the present embodiment.

【図5】本実施例において塗工速度や加圧位置を変えた
場合の液はねの発生状況の実験結果を示す図である。
FIG. 5 is a diagram showing an experimental result of a state of occurrence of liquid splash when a coating speed and a pressing position are changed in the present embodiment.

【図6】従来の浸漬塗布方法による工程の様子を示す図
である。
FIG. 6 is a view showing a state of a process according to a conventional dip coating method.

【図7】従来の液はね発生の現象の様子を示す図であ
る。
FIG. 7 is a view showing a state of a phenomenon of generation of a conventional liquid splash.

【符号の説明】[Explanation of symbols]

1,21 円筒状基体 2 塗布槽蓋 3 受け皿 4 塗布槽蓋開口部 5 溶剤蒸気層 6,22 塗布槽 7 戻り配管 8 予備槽 9,13,23 塗布液 10 送液ポンプ 11 フィルタ 12 供給口 14 戻り液 15 塗布液面 16 側壁 24 支持部材 25 エアー供給管 1, 21 Cylindrical substrate 2 Coating tank lid 3 Receiving tray 4 Coating tank lid opening 5 Solvent vapor layer 6, 22 Coating tank 7 Return pipe 8 Preliminary tank 9, 13, 23 Coating liquid 10 Liquid feed pump 11 Filter 12 Supply port 14 Return liquid 15 Application liquid surface 16 Side wall 24 Support member 25 Air supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 久義 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 宇佐見 謙一 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 Fターム(参考) 2H068 EA16 4D075 AB37 AB55 AB56 CA48 DA15 DC27 EA45  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hisayoshi Goto 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Inventor Kenichi Usami 1-3-6 Nakamagome, Ota-ku, Tokyo F-term in Ricoh Co., Ltd. (reference) 2H068 EA16 4D075 AB37 AB55 AB56 CA48 DA15 DC27 EA45

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状基体を塗布液に浸漬して前記円筒
状基体の外周面に塗膜を形成する浸漬塗布方法におい
て、 前記円筒状基体の一方の開口に支持部材を取付け閉鎖
し、前記円筒状基体の他方の開口の端部側から前記塗布
液に浸漬し、 前記円筒状基体を引き上げ時前記円筒状基体の他方の開
口の端部が前記塗布液の液面から離れる直前であって前
記円筒状基体の他方の開口の端部からの所定の加圧位置
で前記円筒状基体の内部を所定の加圧力で加圧すること
を特徴とする浸漬塗布方法。
1. A dip coating method in which a cylindrical substrate is immersed in a coating solution to form a coating film on an outer peripheral surface of the cylindrical substrate, wherein a support member is attached to one opening of the cylindrical substrate and closed. The cylindrical substrate is immersed in the coating liquid from the end of the other opening of the cylindrical substrate, and when the cylindrical substrate is pulled up, immediately before the end of the other opening of the cylindrical substrate separates from the liquid surface of the coating liquid. A dip coating method, wherein the inside of the cylindrical substrate is pressurized with a predetermined pressing force at a predetermined pressing position from an end of the other opening of the cylindrical substrate.
【請求項2】 前記所定の加圧力を9.8×10-7
4.9×10-6Paとする請求項1記載の浸漬塗布方
法。
2. The method according to claim 1, wherein the predetermined pressure is 9.8 × 10 −7 or more.
2. The dip coating method according to claim 1, wherein the pressure is 4.9 × 10 −6 Pa.
【請求項3】 前記加圧位置は、 加圧位置上限値=(塗工速度)×(塗布係数)×0.3
3 加圧位置下限値=(塗工速度)×(塗布係数)×0.2
1 (なお(塗布係数)={(塗布槽の内径の半径)2
(円筒状基体の外径の半径)2 }/(円筒状基体の外径
の半径)2 とする) により求めた上限値及び下限値によって定まる範囲内と
する請求項1又は2記載の浸漬塗布方法。
3. The pressurizing position is: pressurizing position upper limit = (coating speed) × (coating coefficient) × 0.3
3 Pressing position lower limit value = (coating speed) x (coating coefficient) x 0.2
1 ((Coating coefficient) = {(radius of inner diameter of coating tank) 2
3. The dip coating according to claim 1, wherein the value is within a range determined by an upper limit value and a lower limit value determined by (radius of outer diameter of cylindrical substrate) 2 } / (radius of outer diameter of cylindrical substrate) 2 ). Method.
【請求項4】 前記所定の加圧力は、 加圧力上限値=6.0×10-9×(円筒状基体の外径の
半径)2 加圧力下限値=3.0×10-9×(円筒状基体の外径の
半径)2 により求めた上限値及び下限値によって定まる範囲内と
する請求項1又は3に記載の浸漬塗布方法。
4. The predetermined pressure is as follows: upper limit of pressurizing force = 6.0 × 10 −9 × (radius of outer diameter of cylindrical base) 2 lower limit of pressurizing force = 3.0 × 10 −9 × ( 4. The dip coating method according to claim 1, wherein the value is within a range determined by an upper limit value and a lower limit value obtained from ( 2 ) a radius of an outer diameter of the cylindrical substrate.
JP37171598A 1998-12-28 1998-12-28 Immersion coating method Expired - Fee Related JP3943269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37171598A JP3943269B2 (en) 1998-12-28 1998-12-28 Immersion coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37171598A JP3943269B2 (en) 1998-12-28 1998-12-28 Immersion coating method

Publications (2)

Publication Number Publication Date
JP2000189885A true JP2000189885A (en) 2000-07-11
JP3943269B2 JP3943269B2 (en) 2007-07-11

Family

ID=18499186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37171598A Expired - Fee Related JP3943269B2 (en) 1998-12-28 1998-12-28 Immersion coating method

Country Status (1)

Country Link
JP (1) JP3943269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034446A (en) * 2018-09-21 2020-03-31 주식회사 땡스클레이 Glazing device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034446A (en) * 2018-09-21 2020-03-31 주식회사 땡스클레이 Glazing device and method
KR102195600B1 (en) * 2018-09-21 2020-12-29 주식회사 땡스클레이 Glazing device and method

Also Published As

Publication number Publication date
JP3943269B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP2000189885A (en) Immersion coating method
US7799140B1 (en) Process for the removal of photoreceptor coatings using a stripping solution
JPH0534934A (en) Electrophotographic sensitive body and production thereof
JP3748404B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2004279918A (en) Coating method and coating apparatus for electrophotographic photoreceptor
JP4137398B2 (en) Dip coating apparatus and electrophotographic photosensitive member formed thereby
JP3861668B2 (en) Electrophotographic photosensitive member, coating method thereof, and chuck device
JP4599853B2 (en) Immersion coating method, dip coating apparatus, and method for producing electrophotographic photosensitive member
JP2000338691A (en) Production of electrophotographic photoreceptor
JP3797532B2 (en) Electrophotographic photoreceptor manufacturing equipment
JP2623119B2 (en) Electrophotographic photoreceptor manufacturing equipment
JP3943265B2 (en) Immersion coating method
JP2014178365A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP5543237B2 (en) Method for producing electrophotographic photosensitive member
JP2013134490A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor manufactured by manufacturing method
JP2003149836A (en) Electrophotographic photoreceptor and method of manufacturing electrophotographic photoreceptor
JP2002189305A (en) Apparatus for producing electrophotographic photoreceptor and method therefor
JP2006133303A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor manufactured by the manufacturing method and image forming apparatus with the electrophotographic photoreceptor
JP2002278103A (en) Manufacturing device for electrophotographic sensitive body
JP4856892B2 (en) Coating method and method for producing electrophotographic photosensitive member
JPH10174922A (en) Coating apparatus and coating method
EP1586951B1 (en) Method and device for applying an electrophotographic photoreceptor layer onto a substrate
JPH04235563A (en) Manufacture of electrophotosensitive body
JPH1073934A (en) Manufacture of photosensitive body for electrophotograph
JP2006337759A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor employing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees