JP2000189398A - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device

Info

Publication number
JP2000189398A
JP2000189398A JP10376283A JP37628398A JP2000189398A JP 2000189398 A JP2000189398 A JP 2000189398A JP 10376283 A JP10376283 A JP 10376283A JP 37628398 A JP37628398 A JP 37628398A JP 2000189398 A JP2000189398 A JP 2000189398A
Authority
JP
Japan
Prior art keywords
magnetic field
imaging
width
shading
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10376283A
Other languages
Japanese (ja)
Other versions
JP4219028B2 (en
JP2000189398A5 (en
Inventor
Katsunori Suzuki
克法 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP37628398A priority Critical patent/JP4219028B2/en
Publication of JP2000189398A publication Critical patent/JP2000189398A/en
Publication of JP2000189398A5 publication Critical patent/JP2000189398A5/ja
Application granted granted Critical
Publication of JP4219028B2 publication Critical patent/JP4219028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the shading of an aspirating needle to a desired width by providing a means for switching an image pickup condition during radioscopic image pickup operation for continuously displaying an image in real time to control the shading of a specified object in a tested body to a desired width, and displaying plural images different in shading width. SOLUTION: A CPU 7 and an operating part 8 are provided with a function of switching an image pickup contition during image pickup operation and controlling the shading of a specified object in a tested body to a desired width. The advance of an aspirating needle is monitored, and simultaneously radioscopic image pickup operation is conducted. When the width of shading of the aspirating needle is too thick, during the radioscopic image pickup operation, the sequence type is switched from GrE(gradation echo) method to SE(spin echo) method, or the read inclined magnetic field intensity of the radioscopic image pickup sequence is increased. When the shading width is too thin, switching from SE method to GrE method is performed or the read inclined magnetic field intensity of the radioscopic image pickup sequence is decreased. Thus, it is possible to display an image different in shading width according to the advance state of the aspirating needle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は核磁気共鳴現象を利
用して被検体の任意断面の画像を表示する磁気共鳴イメ
ージング装置(以下、MRI装置という)に係り、特に
MRI装置おいて高速撮像、再構成、画像表示を連続し
て行い、リアルタイムに連続画像表示をする透視撮像の
際に被検体内の特定の対象、例えば被検体の病変部へ穿
刺針や生検針を任意の陰影幅で表示することが可能なM
RI装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus) for displaying an image of an arbitrary cross section of a subject by utilizing a nuclear magnetic resonance phenomenon. Reconstruction and image display are performed continuously, and a puncture needle or biopsy needle is displayed with a desired shading width on a specific target within the subject, for example, a lesion of the subject during fluoroscopic imaging that displays a continuous image in real time. M that can do
Related to an RI device.

【0002】[0002]

【従来の技術】近年、被検体の病変部へ穿刺針や生検針
を進める際にMRIを利用して穿刺位置や方向をリアル
タイムに確認する技術(IVMR)が開発されている。
穿刺は、病変部の生検、薬剤注入、レーザー治療などの
目的に利用されている。このIVMRでは穿刺位置や方
向のリアルタイムの確認のために、撮像、画像再構成、
表示を連続して行う透視撮像方法(フルオロコピー)が
用いられている。
2. Description of the Related Art In recent years, a technique (IVMR) for confirming a puncture position and a direction in real time using MRI when a puncture needle or a biopsy needle is advanced to a lesion of a subject has been developed.
Puncture is used for the purpose of biopsy of a lesion, drug injection, laser treatment, and the like. In this IVMR, imaging, image reconstruction,
A fluoroscopic imaging method in which display is performed continuously (fluorocopy) is used.

【0003】MR画像上の穿刺針は、穿刺針の磁化率の
影響で磁場が歪み、収集した信号(計測データ)が欠損
することにより、陰影として表示される。これにより穿
刺針の位置が分かる。
[0003] A puncture needle on an MR image is displayed as a shadow because the magnetic field is distorted due to the influence of the magnetic susceptibility of the puncture needle and the collected signal (measurement data) is lost. Thereby, the position of the puncture needle can be known.

【0004】[0004]

【発明が解決しようとしている課題】ところでIVMR
で穿刺針や生検針を進める際に、穿刺開始時や、穿刺針
の進行中は、穿刺針の視認性をよくするために穿刺針の
陰影が太いほうが良いが、穿刺針が病変部の方向に正確
に進行しているかを確認する場合や、針先が病変部に届
いた時に針先が正確に所望の位置にあるかを確認する場
合は、陰影は細い方が良い。
SUMMARY OF THE INVENTION By the way, IVMR
When the puncture needle or biopsy needle is advanced at the start of puncture or while the puncture needle is in progress, it is better that the shade of the puncture needle is thick in order to improve the visibility of the puncture needle, but the puncture needle is oriented in the direction of the lesion. The thinner the shadow, the better if it is to check whether the needle tip is proceeding accurately or if it is to check whether the needle tip is exactly at the desired position when the needle tip reaches the lesion.

【0005】しかし、従来の透視撮像方法では、穿刺針
の陰影の幅は常に一定であり、透視撮像中の画像上での
穿刺針の陰影の幅が太すぎる場合、穿刺針の位置が正確
に確認できなかった。また、陰影の幅が細すぎる場合、
穿刺針の視認が困難であった。そこで、本発明は、この
ような問題点に対処し、穿刺針の陰影を所望の幅に制御
できる透視撮像方法を提供することを目的とする。
However, in the conventional fluoroscopic imaging method, the width of the shadow of the puncture needle is always constant, and if the width of the shadow of the puncture needle on the image during fluoroscopic imaging is too large, the position of the puncture needle can be accurately determined. I could not confirm. Also, if the width of the shadow is too narrow,
It was difficult to see the puncture needle. Accordingly, an object of the present invention is to provide a fluoroscopic imaging method capable of controlling such a problem and controlling the shading of a puncture needle to a desired width.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明者はMRI装置による撮像において、穿刺針
の陰影に影響を与える条件を検討し、透視撮像中にこれ
ら条件を切り替えることにより所望の陰影幅に制御可能
とした。
In order to achieve the above object, the present inventor examines conditions affecting the shadow of a puncture needle in imaging with an MRI apparatus, and switches these conditions during fluoroscopic imaging. The desired shade width can be controlled.

【0007】即ち、本発明のMRI装置は、被検体が置
かれる空間に静磁場、傾斜磁場、高周波磁場の各磁場を
発生する手段と、被検体から生じる核磁気共鳴(NM
R)信号を検出する手段と、NMR信号をもとに被検体
の画像を再構成する手段と、画像を表示する手段と、こ
れら各手段による撮像、再構成、画像表示の条件を設定
し制御する制御手段とを備えたMRI装置において、制
御手段は、被検体の断層像の撮像、再構成、画像表示を
連続して行い、リアルタイムに連続画像表示を行う透視
撮像中に、撮像条件を切り替え、前記被検体内の特定の
対象の陰影を所望の幅に制御する手段を備え、陰影幅の
異なる複数の画像を表示することを特徴とする。
That is, the MRI apparatus of the present invention comprises a means for generating a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field in a space where a subject is placed, and a nuclear magnetic resonance (NM) generated from the subject.
R) a means for detecting a signal, a means for reconstructing an image of a subject based on an NMR signal, a means for displaying an image, and setting and controlling conditions of imaging, reconstruction, and image display by each of these means. In the MRI apparatus provided with the control unit, the control unit continuously performs imaging, reconstruction, and image display of tomographic images of the subject, and switches imaging conditions during fluoroscopic imaging in which continuous image display is performed in real time. Means for controlling a shadow of a specific object in the subject to a desired width, and displaying a plurality of images having different shadow widths.

【0008】本発明のMRI装置では、被検体の断層像
の撮像、再構成、画像表示を連続して行い、リアルタイ
ムに連続画像表示を行う際に、透視撮像中に、透視撮像
条件を切り替え、被検体内の特定の対象の陰影を所望の
幅に制御し、陰影幅の異なる複数の画像を表示する。
In the MRI apparatus of the present invention, imaging, reconstruction, and image display of a tomographic image of a subject are continuously performed, and when performing continuous image display in real time, the fluoroscopic imaging conditions are switched during fluoroscopic imaging. The shading of a specific object in the subject is controlled to a desired width, and a plurality of images having different shading widths are displayed.

【0009】この穿刺針の陰影の幅および形状に影響を
与える撮像条件としては、1)撮像シーケンスのタイ
プ、2)読み出し方向(周波数工ンコード方向)傾斜磁
場の強度、3)静磁場の方向とシーケンスの読み出し方
向とのなす角度、4)静磁場の方向と穿刺針の方向との
なす角度、がある。
The imaging conditions that affect the width and shape of the puncture needle shadow include: 1) the type of imaging sequence, 2) the readout direction (frequency code direction), the intensity of the gradient magnetic field, and 3) the direction of the static magnetic field. There is an angle between the sequence readout direction and 4) an angle between the direction of the static magnetic field and the direction of the puncture needle.

【0010】穿刺針は、スピンエコー法を基本とする撮
像法で撮像した場合、グラディエントエコー法を基本と
する撮像法で撮像した場合よりも陰影の幅が細い。ま
た、シーケンスの読み出し方向傾斜磁場の強度を大きく
すると、陰影の幅は細くなり、強度を低くすると太くな
る。さらに、静磁場の方向とシーケンスの読み出し方向
が平行の時に陰影の幅が太くなり、垂直の時に細くな
る。
[0010] The puncture needle has a narrower shade when it is imaged by an imaging method based on the spin echo method than when it is imaged by an imaging method based on the gradient echo method. Also, when the intensity of the gradient magnetic field in the readout direction of the sequence is increased, the width of the shadow is reduced, and when the intensity is reduced, the width of the shadow is increased. Further, when the direction of the static magnetic field and the reading direction of the sequence are parallel, the width of the shadow becomes large, and when the direction is vertical, the width of the shadow becomes thin.

【0011】本発明のMRI装置は上述した撮像条件の
うち、装置側の設定によって切り替え、変更することが
可能である1)〜3)の条件を切り替え可能にしたもの
である。従って、例えば、透視開始時および穿刺針進行
中は透視撮像シーケンスのタイプをグラディエントエコ
ー(GrE)法とし、比較的太い陰影の穿刺針を表示す
ることにより、穿刺針の確認が容易となり、穿刺針が目
的病変に近づいたらGrE法からスピンエコー(SE)
法に切り替え、比較的細い陰影の穿刺針を表示すること
により、その方向と位置を正確に確認することができ
る。
In the MRI apparatus of the present invention, among the above-mentioned imaging conditions, the conditions 1) to 3) which can be switched and changed by the setting of the apparatus can be switched. Therefore, for example, at the start of the fluoroscopy and during the progress of the puncture needle, the type of the fluoroscopic imaging sequence is set to the gradient echo (GrE) method, and the puncture needle with a relatively thick shade is displayed, so that the puncture needle can be easily confirmed. When the target approaches the target lesion, spin echo (SE) from GrE method
By switching to the method and displaying the puncture needle with a relatively thin shadow, the direction and position can be confirmed accurately.

【0012】或いは撮像シーケンスのタイプは変えない
で、透視撮像中に読み出し方向傾斜磁場の強度を撮影開
始には比較的小さく設定し、その後大きくする。この場
合にもタイプを切り替える場合と同様に比較的太い陰影
の表示から細い陰影の表示に切り替えることができる。
或いは撮像シーケンスのタイプは変えないで、透視撮像
シーケンスの位相エンコード方向と読み出し方向を切り
替えてもよい。
Alternatively, without changing the type of the imaging sequence, the intensity of the readout direction gradient magnetic field is set to be relatively small at the start of imaging during fluoroscopic imaging, and then increased. In this case as well, it is possible to switch from the display of relatively thick shadows to the display of thin shadows as in the case of switching the type.
Alternatively, the phase encoding direction and the reading direction of the fluoroscopic imaging sequence may be switched without changing the type of the imaging sequence.

【0013】尚、条件の切り替えは、穿刺針の進行状況
に応じて、実際に視認した状況に応じて、陰影が太く示
される条件と陰影が細く表示される条件との間でどちら
側へも、また何回でも切り替えることができる。
The switching of the condition is performed in accordance with the progress of the puncture needle, and depending on the situation visually recognized, the condition is changed to either side between the condition in which the shadow is shown thick and the condition in which the shadow is displayed thin. , And can be switched any number of times.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例を添付図面
を参照して詳細に説明する。図1は、本発明が適用され
るMRI装置の全体構成を示すブロック図である。この
MRI装置は、核磁気共鳴現象を利用して被検体中の所
望の検査部位における原子核スピンの密度分布、緩和時
間分布を計測して、その計測データから被検体の任意断
面の画像を表示するもので、静磁場発生磁石1と、傾斜
磁場発生系2と、シーケンサ3と、送信系4と、受信系
5と、信号処理系6と、中央処理装置(CPU)7と、
操作部8とを備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing the overall configuration of an MRI apparatus to which the present invention is applied. This MRI apparatus uses the nuclear magnetic resonance phenomenon to measure the nuclear spin density distribution and relaxation time distribution at a desired examination site in a subject, and displays an image of an arbitrary cross section of the subject from the measurement data. A static magnetic field generating magnet 1, a gradient magnetic field generating system 2, a sequencer 3, a transmitting system 4, a receiving system 5, a signal processing system 6, a central processing unit (CPU) 7,
An operation unit 8 is provided.

【0015】静磁場発生磁石1は、被検体9のまわりに
その体軸方向または体軸と直交する方向に均一な静磁場
を発生させるもので、被検体9のまわりのある広がりを
もった空間に永久磁石方式、常電導方式または超電導方
式の磁場発生手段が配置されている。
The static magnetic field generating magnet 1 generates a uniform static magnetic field around the subject 9 in a body axis direction or a direction orthogonal to the body axis, and has a certain space around the subject 9. A permanent magnet type, normal conduction type or superconducting type magnetic field generating means is disposed.

【0016】傾斜磁場発生系2は、X,Y,Zの三軸方
向の傾斜磁場コイル10と、それぞれのコイルを駆動す
る傾斜磁場電源11とから成り、シーケンサ3からの命
令に従ってそれぞれのコイルの傾斜磁場電源11を駆動
することにより、X,Y,Zの三軸方向に、傾斜磁場G
s(スライス方向傾斜磁場)、Gp(位相エンコード方
向傾斜磁場)、Gf(周波数エンコード方向傾斜磁場)
を被検体9に印加する。この傾斜磁場の印加方法によ
り、被検体9に対するスライス位置や断面を設定するこ
とができる。
The gradient magnetic field generation system 2 includes a gradient magnetic field coil 10 in three axial directions of X, Y and Z, and a gradient magnetic field power supply 11 for driving each coil. By driving the gradient magnetic field power supply 11, the gradient magnetic field G
s (Gradient magnetic field in slice direction), Gp (Gradient magnetic field in phase encoding direction), Gf (Gradient magnetic field in frequency encoding direction)
Is applied to the subject 9. The slice position and the cross section with respect to the subject 9 can be set by the method of applying the gradient magnetic field.

【0017】シーケンサ3は、被検体9の生体組織を構
成する原子の原子核に核磁気共鳴を起こさせる高周波パ
ルスと傾斜磁場を所定のパルスシーケンスで繰り返し印
加し、計測データを収集する制御手段であり、CPU7
の制御で動作し、被検体9の断層像のデータ収集に必要
な種々の命令を、送信系4及び傾斜磁場発生系2並びに
受信系5に送る。
The sequencer 3 is a control means for repeatedly applying a high frequency pulse and a gradient magnetic field for causing nuclear magnetic resonance to the nuclei of the atoms constituting the living tissue of the subject 9 in a predetermined pulse sequence, and collecting measurement data. , CPU7
And sends various commands necessary for data collection of tomographic images of the subject 9 to the transmission system 4, the gradient magnetic field generation system 2, and the reception system 5.

【0018】送信系4は、シーケンサ3から命令される
高周波パルスにより被検体9の生体組織を構成する原子
の原子核に核磁気共鳴を起こさせるために高周波パルス
を照射するもので、高周波発振器12と変調器13と高
周波増幅器14と照射コイル15とから成り、高周波発
振器12から出力された高周波パルスをシーケンサ3の
命令に従って変調器13で振幅変調し、この振幅変調さ
れた高周波パルスを高周波増幅器14で増幅した後に被
検体9に近接して配置された照射コイル15に供給する
ことにより、電磁波を被検体9に照射する。
The transmission system 4 irradiates a high-frequency pulse to cause nuclear nuclei of the nuclei of the atoms constituting the living tissue of the subject 9 by a high-frequency pulse commanded by the sequencer 3. The modulator 13 includes a modulator 13, a high-frequency amplifier 14, and an irradiation coil 15. The high-frequency pulse output from the high-frequency oscillator 12 is amplitude-modulated by the modulator 13 in accordance with a command from the sequencer 3. After amplification, the electromagnetic wave is applied to the irradiation coil 15 arranged close to the subject 9 to irradiate the subject 9 with electromagnetic waves.

【0019】受信系5は、被検体1の生体組織の原子核
の磁気共鳴により放出されるエコー信号(NMR信号)
を検出するもので、受信コイル16と増幅器17と直交
位相検波器18とA/D変換器19とから成り、照射コ
イル15から照射された電磁波による被検体9の応答の
電磁波(NMR信号)は、被検体9に近接して配置され
た受信コイル16で検出され、増幅器17及び直交位相
検波器18を介して二系列の収集データとされ、A/D
変換器19に入力してディジタル量に変換され、その信
号が、信号処理系6に送られる。
The receiving system 5 is an echo signal (NMR signal) emitted by magnetic resonance of atomic nuclei of the living tissue of the subject 1.
It comprises a receiving coil 16, an amplifier 17, a quadrature detector 18 and an A / D converter 19, and the electromagnetic wave (NMR signal) of the response of the subject 9 due to the electromagnetic wave emitted from the irradiation coil 15 is , Are detected by a receiving coil 16 disposed in close proximity to the subject 9, are converted into two series of collected data via an amplifier 17 and a quadrature detector 18,
The signal is input to the converter 19, converted into a digital quantity, and the signal is sent to the signal processing system 6.

【0020】信号処理系6は、CPU7と、磁気ディス
ク20及び光ディスク21などの記録装置と、CRTな
どのディスプレイ22とから成り、CPU7でフーリエ
変換、補正係数演算、画像再構成などの処理を行い、被
検体9の任意断面の原子核スピンの密度分布、緩和時間
分布の計測データに適当な演算を行い、得られた分布を
画像化してディスプレイ22に断層像として表示する。
The signal processing system 6 includes a CPU 7, a recording device such as a magnetic disk 20 and an optical disk 21, and a display 22 such as a CRT. The CPU 7 performs processing such as Fourier transform, correction coefficient calculation, and image reconstruction. An appropriate operation is performed on the measured data of the nuclear spin density distribution and relaxation time distribution of an arbitrary cross section of the subject 9, and the obtained distribution is imaged and displayed on the display 22 as a tomographic image.

【0021】CPU7は上述した画像再構成のための演
算のほか、シーケンサ3を介して傾斜磁場発生系2、送
信系4および受信系5を制御し、所定の撮像方法、条件
で撮像、画像の再構成、表示を行う。撮像方法やその条
件および信号処理系6で行う処理の制御情報は、キーボ
ード23等の入力手段を備えた操作部8から入力、設定
される。
The CPU 7 controls the gradient magnetic field generation system 2, the transmission system 4 and the reception system 5 via the sequencer 3 in addition to the above-described operations for image reconstruction, and performs image capturing and image Reconstruct and display. The imaging method, its conditions, and control information of processing performed by the signal processing system 6 are input and set from the operation unit 8 having input means such as the keyboard 23.

【0022】本発明では、撮像方法として透視撮像方法
が採用されたときに、撮像中に、撮像条件を切り替え、
被検体内の特定の対象の陰影を所望の幅に制御する機能
がCPU7および操作部8に備えられている。このよう
な機能は、例えば操作部8において1)撮像タイプの切
り替え、2)読み出し傾斜磁場強度の変更、3)読み出
し傾斜磁場と位相エンコード傾斜磁場の軸の変更という
個々の指令を独立して或いはツリー構造にして選択でき
るようにしてもよいし、穿刺針の幅の変更(太くする、
細くする)を選択できるようにしてもよい。ツリー構造
にする場合には、例えばまず1)撮像タイプの切り替え
を行い、2)選択された撮像タイプについて読み出し傾
斜磁場強度を変更し、或いは変更しない選択をし、3)
次に軸の変更(するか、しないか)を選択する。1)〜
3)のステップはどのような順序であってもよい。
In the present invention, when the perspective imaging method is adopted as the imaging method, the imaging conditions are switched during the imaging,
The CPU 7 and the operation unit 8 have a function of controlling the shading of a specific object in the subject to a desired width. Such a function can be performed, for example, in the operation unit 8 independently of individual commands of 1) switching of imaging type, 2) change of readout gradient magnetic field intensity, 3) change of axes of readout gradient magnetic field and phase encoding gradient magnetic field. You can make it selectable with a tree structure, or change the width of the puncture needle (make it thicker,
May be selected. In the case of using a tree structure, for example, first, 1) the imaging type is switched, 2) the readout gradient magnetic field intensity is changed or not changed for the selected imaging type, and 3) selection is made.
Next, select whether to change the axis or not. 1) ~
Step 3) may be performed in any order.

【0023】次にこのようなMRI装置を用いて、被検
体に穿刺針を進めながら透視撮像する方法について図2
〜図4を参照して説明する。図2は、本発明による透視
撮像方法の一実施例のフローチャートを示す図で、図3
は本実施例で実行される2つのタイプのパルスシーケン
スを示す図で、(a)はGrE法によるパルスシーケン
ス、(b)はSE法によるパルスシーケンスである。ま
た図4は透視撮像方法の実行により表示される被検体の
画像40を模式的に示す図で、(a)および(b)はそ
れぞれ穿刺針の幅が異なる画像を示している。
Next, a method of performing fluoroscopic imaging using such an MRI apparatus while advancing a puncture needle to a subject will be described with reference to FIG.
This will be described with reference to FIGS. FIG. 2 is a flowchart showing one embodiment of the perspective imaging method according to the present invention.
3A and 3B are diagrams showing two types of pulse sequences executed in the present embodiment, wherein FIG. 3A shows a pulse sequence based on the GrE method, and FIG. 3B illustrates a pulse sequence based on the SE method. FIG. 4 is a view schematically showing an image 40 of the subject displayed by executing the fluoroscopic imaging method. FIGS. 4A and 4B show images in which the widths of the puncture needles are different.

【0024】まず撮像が開始すると(ステップ24)、
図3(a)に示すGrE法によるパルスシーケンスが実
行される(ステップ25)。即ちスライス選択磁場Gs
とともに高周波パルスを印加し、次いで位相エンコード
傾斜磁場Gpを印加するとともに読み出し傾斜磁場Gf
を印加し、エコー信号を計測する。位相エンコード傾斜
磁場Gpの強度を変化させながら、高周波パルス印加か
らエコー信号計測までを所定の繰り返し時間で繰り返
し、画像再構成に必要な数のエコー信号を計測する。C
PU7はこのような繰り返しにより得られたエコー信号
の組を用いて画像を再構成し、これをディスプレイ22
に表示させる(ステップ26,27)。
First, when imaging starts (step 24),
A pulse sequence according to the GrE method shown in FIG. 3A is executed (step 25). That is, the slice selection magnetic field Gs
, A high-frequency pulse is applied, then a phase encoding gradient magnetic field Gp is applied, and a readout gradient magnetic field Gf is applied.
And measure the echo signal. While changing the intensity of the phase encoding gradient magnetic field Gp, the process from application of a high-frequency pulse to measurement of an echo signal is repeated at a predetermined repetition time, and the number of echo signals required for image reconstruction is measured. C
The PU 7 reconstructs an image using the set of echo signals obtained by such repetition, and displays the reconstructed image on the display 22.
(Steps 26 and 27).

【0025】表示された画像において穿刺針44は、収
集した信号(計測データ)が欠損し、陰影となる。Gr
E法によって撮像された陰影は、図4(b)に示すよう
に比較的幅が広く、穿刺開始時や穿刺針を進めている段
階ではその位置や方向を確認しやすい。このような撮
像、画像再構成、表示を連続して繰り返しながら、移動
する穿刺針をモニターする。
In the displayed image, the puncture needle 44 loses the collected signal (measurement data) and becomes a shadow. Gr
The shadow captured by the E method is relatively wide as shown in FIG. 4B, and its position and direction can be easily checked at the start of puncturing or at the stage when the puncture needle is advanced. The moving puncture needle is monitored while continuously repeating such imaging, image reconstruction, and display.

【0026】尚、撮像、画像再構成を繰り返す際に、公
知の透視撮像法の手法に従い時間的に連続する複数枚の
画像間で計測データを共用したり、低位相エンコード量
データのみを繰り返し取得し更新するようにしてもよ
い。
When imaging and image reconstruction are repeated, measurement data is shared between a plurality of temporally consecutive images according to a known fluoroscopic imaging method, or only low-phase encoding amount data is repeatedly obtained. May be updated.

【0027】穿刺針44がさらに進み病変42に近づい
たときには、穿刺針44の針先と病変42との位置関係
をより正確に把握することが必要となり、陰影は細い方
が良い。そこで操作部8を介して撮像シーケンスをSE
法のパルスシーケンスに切り替える。切り替えの指令が
入力されると、シーケンサ3は図3(a)のパルスシー
ケンスの繰り返し時間の経過を待って、或いは1枚の画
像を再構成するのに必要なパルスシーケンスの繰り返し
の終了を待って、撮像シーケンスを図3(b)のSE法
のパルスシーケンスに切り替える(ステップ28,2
9)。繰り返し時間経過後すぐに切り替えた場合には、
計測データの一部は無駄となるが指令に対し応答性よく
画像を切り替えることができる。
When the puncture needle 44 further advances and approaches the lesion 42, it is necessary to more accurately grasp the positional relationship between the tip of the puncture needle 44 and the lesion 42, and the thinner the shadow, the better. Therefore, the imaging sequence is set to SE through the operation unit 8.
Switch to the modal pulse sequence. When the switching command is input, the sequencer 3 waits for the elapse of the repetition time of the pulse sequence in FIG. 3A or the end of the repetition of the pulse sequence necessary to reconstruct one image. Then, the imaging sequence is switched to the pulse sequence of the SE method in FIG. 3B (steps 28 and 2).
9). If you switch immediately after the repetition time elapses,
Although a part of the measurement data is wasted, the image can be switched with good response to the command.

【0028】SE法のパルスシーケンスでは、高周波パ
ルスによる選択されたスライスの励起後、スピンを反転
させる高周波パルスを印加し、エコー信号を計測する。
ここでも位相エンコード傾斜磁場Gpの強度を変えなが
ら、繰り返し時間TR毎に高周波パルス印加からエコー
信号計測までのステップを繰り返し、画像再構成に必要
なエコー信号を計測する。これによりディスプレイには
GrE法によって得られた画像とは異なり、図4(a)
に示すように、穿刺針43の陰影の幅が細い画像が表示
される。これにより穿刺針43が病変41の画像と重な
る位置まで進んだ場合でも、穿刺針43の位置、方向を
正確に確認することができ、病変41の画像を見えにく
くすることがない。
In the pulse sequence of the SE method, a high-frequency pulse for inverting spin is applied after excitation of a selected slice by a high-frequency pulse, and an echo signal is measured.
Here, the steps from the application of the high-frequency pulse to the measurement of the echo signal are repeated for each repetition time TR while changing the intensity of the phase encoding gradient magnetic field Gp, and the echo signal necessary for image reconstruction is measured. As a result, unlike the image obtained by the GrE method, the display shown in FIG.
As shown in FIG. 7, an image in which the width of the shadow of the puncture needle 43 is small is displayed. Thus, even when the puncture needle 43 has advanced to a position overlapping the image of the lesion 41, the position and direction of the puncture needle 43 can be accurately confirmed, and the image of the lesion 41 is not difficult to see.

【0029】尚、図3では基本的なGrE法とSE法の
パルスシーケンスを示したが、パルスシーケンスはこれ
らを応用した各種パルスシーケンスを採用することがで
き、例えば穿刺針の陰影幅が比較的太く表示される撮像
シーケンスとして、1回の励起で複数のエコー信号を計
測するエコープレナー(EPI)法、分割EPI法、ス
パイラルスキャン法などを採用できる。また穿刺針の陰
影幅が比較的太く表示される撮像シーケンスとして反転
パルスによるスピンの反転を繰り返す高速スピンエコー
法などが採用できる。
FIG. 3 shows the basic pulse sequences of the GrE method and the SE method. However, various pulse sequences using these pulse sequences can be adopted. For example, the shadow width of the puncture needle is relatively large. As an imaging sequence displayed thickly, an echo planar (EPI) method for measuring a plurality of echo signals by one excitation, a divided EPI method, a spiral scan method, or the like can be adopted. In addition, as an imaging sequence in which the shadow width of the puncture needle is displayed relatively thick, a high-speed spin echo method that repeats spin inversion by an inversion pulse or the like can be adopted.

【0030】このような撮像シーケンスの切り替えは、
必要に応じSE法からGrE法からへも行うことができ
(ステップ30,31)、これらシーケンス間で複数回
の切り替えを行ってもよい。
The switching of the imaging sequence is as follows.
If necessary, the method can be switched from the SE method to the GrE method (steps 30 and 31), and switching between these sequences may be performed a plurality of times.

【0031】次に撮像シーケンスの切り替えのみでは十
分に穿刺針の陰影が細くならない場合、或いは穿刺針の
陰影が細すぎて穿刺針の陰影の視認が困難な場合等に
は、読み出し傾斜磁場強度を変更する(ステップ32,
33)。読み出し傾斜磁場強度(図3の38,39)は
数値で設定してもよいし、太い陰影或いは細い陰影を選
択するようにしてもよい。穿刺針の陰影を表示されてい
る画像よりも太くしたい場合には、読み出し傾斜磁場強
度をより小さくなるように設定し、細くしたい場合に
は、読み出し傾斜磁場強度をより大きくなるように設定
する。このような読み出し傾斜磁場強度の変更が設定さ
れると、シーケンサ3は図3(b)のパルスシーケンス
の繰り返し時間の経過を待って、読み出し傾斜磁場強度
を指定の強度へ変更する。この場合には撮像シーケンス
のタイプに連続性があるので、計測データを無駄にする
ことなく条件を切り替えることができる。
Next, when the shadow of the puncture needle is not sufficiently thinned only by switching the imaging sequence, or when the shadow of the puncture needle is too thin to visually recognize the shadow of the puncture needle, the readout gradient magnetic field intensity is reduced. Change (step 32,
33). The read gradient magnetic field strength (38, 39 in FIG. 3) may be set by a numerical value, or a thick shadow or a thin shadow may be selected. When the shadow of the puncture needle is to be made thicker than the displayed image, the readout gradient magnetic field strength is set to be smaller, and when it is desired to be thinner, the readout gradient magnetic field strength is set to be larger. When such a change in the read gradient magnetic field strength is set, the sequencer 3 changes the read gradient magnetic field strength to the specified strength after the elapse of the repetition time of the pulse sequence in FIG. In this case, since the type of the imaging sequence has continuity, the conditions can be switched without wasting the measurement data.

【0032】このように読み出し傾斜磁場強度を変更し
た後或いは読み出し傾斜磁場強度を変更することなく、
傾斜磁場の軸を変更することによってさらに穿刺針の陰
影の幅を制御してもよい(ステップ34,35)。例え
ば図3に示すパルスシーケンスで、位相エンコード傾斜
磁場Gpがx方向の傾斜磁場であり、読み出し傾斜磁場
Gfは静磁場方向と同じz方向の傾斜磁場であるとする
と、軸の変更では位相エンコード傾斜磁場Gpをz方向
に、読み出し傾斜磁場Gfをx方向に変更する。
As described above, after changing the read gradient magnetic field strength or without changing the read gradient magnetic field strength,
The width of the shadow of the puncture needle may be further controlled by changing the axis of the gradient magnetic field (steps 34 and 35). For example, in the pulse sequence shown in FIG. 3, assuming that the phase encoding gradient magnetic field Gp is a gradient magnetic field in the x direction and the readout gradient magnetic field Gf is a gradient magnetic field in the same z direction as the static magnetic field direction, the phase encoding gradient is changed by changing the axis. The magnetic field Gp is changed in the z direction, and the readout gradient magnetic field Gf is changed in the x direction.

【0033】このような設定も操作部8を介して設定さ
れ、このような指令があると、シーケンサ3は繰り返し
時間の経過を待って、或いは1枚の画像を再構成するの
に必要なパルスシーケンスの繰り返しの終了を待って、
傾斜磁場Gp,Gfの軸を入替える。
Such settings are also set via the operation unit 8, and when such a command is issued, the sequencer 3 waits for the elapse of the repetition time or the pulse necessary for reconstructing one image. Wait for the end of the sequence repetition,
The axes of the gradient magnetic fields Gp and Gf are exchanged.

【0034】穿刺針の陰影は、読み出し傾斜磁場Gfの
方向が静磁場方向と平行なときに陰影の幅が太くなり、
読み出し傾斜磁場Gfの方向が静磁場方向と垂直なとき
に陰影の幅が細くなるので、上述の変更により穿刺針の
陰影幅は、さらに細くなるように制御される。もちろん
初期設定状態で読み出し傾斜磁場Gfが静磁場方向に垂
直である場合には、静磁場方向と平行である位相エンコ
ード傾斜磁場と軸の入替えを行うことにより、穿刺針の
陰影幅を太く制御できる。
The width of the shadow of the puncture needle becomes large when the direction of the readout gradient magnetic field Gf is parallel to the direction of the static magnetic field.
When the direction of the readout gradient magnetic field Gf is perpendicular to the direction of the static magnetic field, the width of the shadow becomes narrow. Therefore, the shadow width of the puncture needle is controlled to be further narrowed by the above change. Of course, when the readout gradient magnetic field Gf is perpendicular to the static magnetic field direction in the initial setting state, the shade width of the puncture needle can be controlled to be wide by exchanging the axis with the phase encoding gradient magnetic field parallel to the static magnetic field direction. .

【0035】尚、スライス傾斜磁場が静磁場方向と平行
である場合には、位相エンコード傾斜磁場と読み出し傾
斜磁場はともに静磁場方向に垂直であるので、軸を入替
えても穿刺針の陰影幅は変らない。従って軸の入替えに
よる穿刺針の陰影幅の制御は静磁場方向と平行ではない
断面の撮像の際に有効である。
When the slice gradient magnetic field is parallel to the static magnetic field direction, the phase encoding gradient magnetic field and the readout gradient magnetic field are both perpendicular to the static magnetic field direction. No change. Therefore, the control of the shadow width of the puncture needle by changing the axis is effective when imaging a cross section that is not parallel to the direction of the static magnetic field.

【0036】このように本発明のMRI装置では、穿刺
針の進行をモニターしながら透視撮像を実行し、穿刺針
の陰影の幅が太すぎる場合には、透視撮像中に、透視撮
像シーケンスのタイプをGrE法からSE法に切り替
え、または透視撮像シーケンスの読み出し傾斜磁場強度
を大きくする。逆に陰影の幅が細すぎる場合は、SE法
からGrE法に切り替え、または透視撮像シーケンスの
読み出し傾斜磁場強度を小さくする。さらに、静磁場の
方向と透視撮像シーケンスの読み出し方向とのなす角度
によっては、透視撮像中に、透視撮像シーケンスの位相
エンコード方向と読み出し方向を切り替える。このよう
に連続表示される画像を見て、穿刺針の陰影幅を任意に
制御しながら透視撮像を行い、撮像を終了する(ステッ
プ36,37)。
As described above, in the MRI apparatus of the present invention, the fluoroscopic imaging is executed while monitoring the progress of the puncture needle. If the width of the shadow of the puncture needle is too large, the type of fluoroscopic imaging sequence is performed during the fluoroscopic imaging. Is switched from the GrE method to the SE method, or the readout gradient magnetic field strength of the fluoroscopic imaging sequence is increased. Conversely, if the width of the shadow is too narrow, the SE method is switched to the GrE method, or the readout gradient magnetic field strength of the fluoroscopic imaging sequence is reduced. Further, the phase encoding direction and the reading direction of the fluoroscopic imaging sequence are switched during the fluoroscopic imaging depending on the angle between the direction of the static magnetic field and the reading direction of the fluoroscopic imaging sequence. While seeing the images displayed continuously in this manner, fluoroscopic imaging is performed while arbitrarily controlling the shade width of the puncture needle, and the imaging ends (steps 36 and 37).

【0037】尚、以上の実施例ではまず撮像シーケンス
のタイプを切り替え、次に読み出し傾斜磁場強度を設定
する場合を説明したが、読み出し傾斜磁場強度を変更設
定した後、さらに撮像シーケンスのタイプを切り替える
ようにしてもよい。また穿刺針の陰影幅を決定する3つ
の条件のいずれか一方のみを設定可能にしてもよいし、
これらを独立して選択、設定することも可能である。3
つの条件を組合せた場合に陰影幅を最も細かく制御する
ことが可能となる。このような設定、切り替えは撮像
中、必要に応じて何回でも行うことが可能である。
In the above embodiment, the case where the type of the imaging sequence is switched first and then the readout gradient magnetic field intensity is set has been described. However, after the readout gradient magnetic field intensity is changed and set, the type of the imaging sequence is further switched. You may do so. Further, only one of the three conditions for determining the shade width of the puncture needle may be settable,
These can be independently selected and set. 3
When the two conditions are combined, it is possible to control the shadow width most finely. Such setting and switching can be performed as many times as necessary during imaging.

【0038】[0038]

【発明の効果】本発明のMRI装置は、透視撮像等の撮
像中に撮像条件を切り替え、被検体内の特定の対象の陰
影を所望の幅に制御する手段を備えているので、例えば
IVMR等で被検体に穿刺針を進める場合に、穿刺針の
進行状況に応じて陰影幅の異なる画像を表示させること
ができ、穿刺針の位置や方向を正確に確認できる。さら
に、穿刺針の視認性を向上できる。
The MRI apparatus of the present invention is provided with means for switching imaging conditions during imaging such as fluoroscopic imaging and controlling the shading of a specific object in a subject to a desired width. When the puncture needle is advanced to the subject, images having different shade widths can be displayed according to the progress of the puncture needle, and the position and direction of the puncture needle can be accurately confirmed. Further, the visibility of the puncture needle can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用されるMRI装置の全体構成を示
すブロック図。
FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus to which the present invention is applied.

【図2】本発明のMRI装置における透視撮像方法の一
実施例を示す流れ図。
FIG. 2 is a flowchart showing one embodiment of a fluoroscopic imaging method in the MRI apparatus of the present invention.

【図3】透視撮像法で採用する異なるパルスシーケンス
を示す図で、(a)はGrE法のパルスシーケンス、
(b)はSE法のパルスシーケンスである。
3A and 3B are diagrams showing different pulse sequences used in the fluoroscopic imaging method, wherein FIG. 3A shows a pulse sequence of the GrE method,
(B) is a pulse sequence of the SE method.

【図4】透視撮像で得られた陰影幅の異なる2種の画像
を模式的に示す図で、(a)は穿刺針の陰影幅が細い画
像、(b)は穿刺針の陰影幅が太い画像をそれぞれ示
す。
4A and 4B are diagrams schematically showing two types of images having different shadow widths obtained by fluoroscopic imaging, wherein FIG. 4A is an image in which the puncture needle has a narrow shadow width, and FIG. 4B is a diagram in which the puncture needle has a wide shadow width. Each image is shown.

【符号の説明】[Explanation of symbols]

1 静磁場発生磁石(磁場発生手段) 2 傾斜磁場発生系(磁場発生手段) 3 シーケンサ(制御手段) 4 送信系(磁場発生手段) 5 受信系(検出手段) 6 信号処理系 7 CPU(制御手段) 8 操作部 9 被検体 Reference Signs List 1 static magnetic field generating magnet (magnetic field generating means) 2 gradient magnetic field generating system (magnetic field generating means) 3 sequencer (control means) 4 transmitting system (magnetic field generating means) 5 receiving system (detecting means) 6 signal processing system 7 CPU (control means) ) 8 Operation unit 9 Subject

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体が置かれる空間に静磁場、傾斜磁
場、高周波磁場の各磁場を発生する手段と、前記被検体
から生じる核磁気共鳴信号を検出する手段と、前記核磁
気共鳴信号をもとに前記被検体の画像を再構成する手段
と、前記画像を表示する手段と、これら各手段による撮
像、再構成、画像表示の条件を設定し制御する制御手段
とを備えた磁気共鳴イメージング装置において、 前記制御手段は、被検体の断層像の撮像、再構成、画像
表示を連続して行い、リアルタイムに連続画像表示を行
う透視撮像中に、前記撮像条件を切り替え、前記被検体
内の特定の対象の陰影を所望の幅に制御する手段を備
え、陰影幅の異なる複数の画像を表示することを特徴と
する磁気共鳴イメージング装置。
A means for generating a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field in a space where an object is placed; a means for detecting a nuclear magnetic resonance signal generated from the object; A magnetic resonance imaging system comprising: means for originally reconstructing the image of the subject; means for displaying the image; and control means for setting and controlling conditions for imaging, reconstruction, and image display by each of these means. In the apparatus, the control unit continuously performs imaging, reconstruction, and image display of a tomographic image of the subject, and switches the imaging conditions during fluoroscopic imaging in which continuous image display is performed in real time. A magnetic resonance imaging apparatus comprising: means for controlling a shadow of a specific object to have a desired width, and displaying a plurality of images having different shadow widths.
JP37628398A 1998-12-24 1998-12-24 Magnetic resonance imaging system Expired - Fee Related JP4219028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37628398A JP4219028B2 (en) 1998-12-24 1998-12-24 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37628398A JP4219028B2 (en) 1998-12-24 1998-12-24 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2000189398A true JP2000189398A (en) 2000-07-11
JP2000189398A5 JP2000189398A5 (en) 2006-02-09
JP4219028B2 JP4219028B2 (en) 2009-02-04

Family

ID=18506883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37628398A Expired - Fee Related JP4219028B2 (en) 1998-12-24 1998-12-24 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4219028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253528A (en) * 2001-03-02 2002-09-10 Toshiba Medical System Co Ltd Magnetic resonance imaging diagnostic system
CN111481827A (en) * 2020-04-17 2020-08-04 上海深透科技有限公司 Quantitative magnetic susceptibility imaging and methods for DBS potentially stimulated target region localization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253528A (en) * 2001-03-02 2002-09-10 Toshiba Medical System Co Ltd Magnetic resonance imaging diagnostic system
CN111481827A (en) * 2020-04-17 2020-08-04 上海深透科技有限公司 Quantitative magnetic susceptibility imaging and methods for DBS potentially stimulated target region localization
CN111481827B (en) * 2020-04-17 2023-10-20 上海深透科技有限公司 Quantitative susceptibility imaging and method for locating target area of potential stimulation of DBS

Also Published As

Publication number Publication date
JP4219028B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US6876198B2 (en) Magnetic resonance imaging system
JP3976845B2 (en) Magnetic resonance imaging system
EP0372814A2 (en) Magnetic resonance imaging system
JP3847554B2 (en) Magnetic resonance imaging system
JP2004008398A (en) Medical image diagnostic apparatus
JP3514547B2 (en) Magnetic resonance imaging system
JP3501182B2 (en) Magnetic resonance imaging device capable of calculating flow velocity images
JP3911602B2 (en) Magnetic resonance imaging device
JP4219028B2 (en) Magnetic resonance imaging system
JP4397137B2 (en) Magnetic resonance imaging device
JP2000316830A (en) Magnetic resonance imaging method and magnetic resonance imaging device using the same
JP2002253524A (en) Magnetic resonance imaging system
JP4047457B2 (en) Magnetic resonance imaging system
JP3292305B2 (en) Magnetic resonance imaging equipment
JP4343345B2 (en) Magnetic resonance imaging system
JP4118119B2 (en) Magnetic resonance imaging system
JP4155769B2 (en) Magnetic resonance imaging system
JP3369586B2 (en) Magnetic resonance imaging equipment
JP2002143121A (en) Magnetic resonance imaging equipment
JP4558219B2 (en) Magnetic resonance imaging system
JP2000237163A (en) Magnetic resonance imaging device
JPS63109847A (en) Nuclear magnetic resonance imaging apparatus
JPH05123314A (en) Multislice image pick-up method in magnetic resonance imaging device
JP3170000B2 (en) Magnetic resonance imaging equipment
JPH06335469A (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees