JP2000188422A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2000188422A
JP2000188422A JP34342599A JP34342599A JP2000188422A JP 2000188422 A JP2000188422 A JP 2000188422A JP 34342599 A JP34342599 A JP 34342599A JP 34342599 A JP34342599 A JP 34342599A JP 2000188422 A JP2000188422 A JP 2000188422A
Authority
JP
Japan
Prior art keywords
layer
type
electron
gan
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34342599A
Other languages
Japanese (ja)
Inventor
Wang Nang Wang
ナン ワン ワン
Stephen Sen-Tien Lee
セン ティエン リー ステファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arima Optoelectronics Corp
Original Assignee
Arima Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arima Optoelectronics Corp filed Critical Arima Optoelectronics Corp
Publication of JP2000188422A publication Critical patent/JP2000188422A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Abstract

PROBLEM TO BE SOLVED: To make it possible to inject sufficient holes into an active region by constituting a potential well of an active layer where radiative recombination of electrons and holes occurs, a hole emitting layer make of p-type AlGaN, a p-type contact layer made of p-type InGaN, and a metallic ohmic contact. SOLUTION: Asymmetric claddings for prevention of leakage of electrons from an active region are adopted to obtain a high p-type mobility. For the reason, a p-AlGaN cladding layer 10 is added to the structure of GaN-based LED, and a p-IgGaN layer 11 is substituted for a contact p-GaN layer. In addition, an i-GaN current diffusion layer 12 and an electron emitting layer 13 are added for more favorable lateral uniformity of electron injection. Further, a thread displacement stopping layer 4 based on distorted superlattice is provided by either of alternately stacked lattice structure and a distributed black reflector layer which also functions as a mirror.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置、特に、
発光ダイオード(LED)およびレーザダイオード(L
D)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
Light emitting diode (LED) and laser diode (L
D).

【0002】[0002]

【背景技術、課題、および課題を解決するための手段】
本発明は、非対称なクラッドを持つ発光ダイオード構造
であって、四元InAlGaNバッファ層の核化プロセ
スを制御しひずみを低減させる、薄い多孔表面層または
パターン状に形成された多孔構造を持つサファイア基板
と、四元InAlGaNバッファ層と、n−GaN層
と、前記電子放出層と前記活性層の間に位置し、III−
V族物質からなる、トンネル障壁および電子拡散層と、
III−V族物質から成り、電子と正孔に対する単一また
は多数の電位の井戸を形成し、その電位の井戸において
は電子と正孔の発光再結合が起きる、活性層と、p型A
lGaNからなる正孔放出層と、p型InGaNからな
るp型コンタクト層と、前記正孔放出層に対する金属の
オーミックコンタクト部と、を備えて構成される発光ダ
イオード構造を提供する。
Background Art, Problems, and Means for Solving the Problems
The present invention is a light emitting diode structure with an asymmetric cladding, a sapphire substrate with a thin porous surface layer or a patterned porous structure that controls the nucleation process of the quaternary InAlGaN buffer layer and reduces distortion. A quaternary InAlGaN buffer layer, an n-GaN layer, and an III-
A tunnel barrier and an electron diffusion layer comprising a group V material;
An active layer comprising a group III-V material, forming a single or multiple potential well for electrons and holes, in which luminescent recombination of electrons and holes occurs, and a p-type A
Provided is a light emitting diode structure including a hole emitting layer made of lGaN, a p-type contact layer made of p-type InGaN, and an ohmic contact portion of a metal to the hole emitting layer.

【0003】好ましくは、トンネル障壁および電子拡散
層は5ないし50Åの厚さを持ち、活性層は5Åないし
0.1μmの幅を持ち、正孔放出層は50Åないし1μ
mの幅を持ち、p型コンタクト層は50Åないし1μm
の幅を持つ。n型または無ドープのIII−V族物質から
成り、電子に対する電位の井戸および電子蓄積層を構成
する電子放出層(例えば幅50Åないし1μm)があっ
てもよい。
Preferably, the tunnel barrier and the electron diffusion layer have a thickness of 5 to 50 °, the active layer has a width of 5 to 0.1 μm, and the hole emitting layer has a thickness of 50 to 1 μm.
m, and the p-type contact layer has a thickness of 50 ° to 1 μm.
With a width of There may be an electron emitting layer (e.g., 50 [deg.] to 1 [mu] m wide) made of an n-type or undoped III-V material and constituting a potential well for electrons and an electron storage layer.

【0004】LEDの設計においては、達成されるべき
下記の点がある。
In designing an LED, there are the following points to be achieved.

【0005】活性領域への十分な正孔の注入。[0005] Sufficient hole injection into the active region.

【0006】活性領域の結晶構造の品質。The quality of the crystal structure of the active region.

【0007】高い内部効率。High internal efficiency.

【0008】より向上した光の抽出。[0008] Improved light extraction.

【0009】上記の点を達成するために、下記の特徴が
この発明の実施例において使用される。それらはまた、
個別にまたは組合せて本発明の特徴である。
[0009] To achieve the above points, the following features are used in embodiments of the present invention. They also
Features of the invention, individually or in combination.

【0010】活性領域からの電子の漏洩を防止するため
に非対称のクラッドを設けること。
An asymmetric cladding is provided to prevent leakage of electrons from the active region.

【0011】四元バッファ層。Quaternary buffer layer.

【0012】スレッド転位(threading dislocation)
の活性領域への侵入を阻止し、その構造からの光の抽出
を向上させるため、ひずみを与えられた超格子。
[0012] Threading dislocation
Strained superlattice to prevent intrusion into the active region and improve light extraction from its structure.

【0013】クラッドと活性領域との間の格子の整合を
与える四元合金クラッド。
A quaternary alloy cladding that provides lattice matching between the cladding and the active region.

【0014】光を発生しないキャリヤの再結合を防止す
るために側方閉じ込めがなされた活性領域。
Active region laterally confined to prevent recombination of non-light emitting carriers.

【0015】四元合金バッファ層の核化プロセスを制御
し、エピタキシャル層内のひずみを低減させる、多孔サ
ファイア表面。
A porous sapphire surface that controls the nucleation process of the quaternary buffer layer and reduces the strain in the epitaxial layer.

【0016】図1は、サファイア基板1と、GaNバッ
ファ2と、n−GaN層3と、InGaN活性層4と、
p−GaN層5と、nコンタクトと、およびpコンタク
トとを備えて構成された、GaNを主成分とするLED
の簡単な従来の構造を示す。
FIG. 1 shows a sapphire substrate 1, a GaN buffer 2, an n-GaN layer 3, an InGaN active layer 4,
GaN-based LED configured with p-GaN layer 5, n-contact, and p-contact
1 shows a simple conventional structure.

【0017】図2は、サファイア基板と、GaNバッフ
ァ2と、n−GaN層3と、下側のn−AlGaN第2
クラッド層6と、下側のn−InGaN第1クラッド層
7と、InGaN活性層4と、上側のp−AlGaN第
1クラッド層8と、上側のp−AlGaN第2クラッド
層9と、p−GaN層5と、nコンタクトと、pコンタ
クトとを備えて構成された、対称なクラッドを有する従
来技術のGaNを主成分とする単一量子井戸LEDを示
す。
FIG. 2 shows a sapphire substrate, a GaN buffer 2, an n-GaN layer 3, and a lower n-AlGaN second layer.
A cladding layer 6, a lower n-InGaN first cladding layer 7, an InGaN active layer 4, an upper p-AlGaN first cladding layer 8, an upper p-AlGaN second cladding layer 9, 1 illustrates a prior art GaN-based single quantum well LED with a symmetric cladding configured with a GaN layer 5, an n-contact, and a p-contact.

【0018】[0018]

【発明の実施の形態】本発明は、活性領域からの電子の
漏洩を防ぐための非対称のクラッドが、低いp型の移動
度に関係する問題を克服するために採用されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention employs an asymmetric cladding to prevent electron leakage from the active region to overcome the problems associated with low p-type mobility.

【0019】図3においては、p−AlGaNクラッド
層10が付加され、また図1のコンタクトp−GaN層
5がp−IngaN層11により置き換えられている。
さらにi−GaN電流拡散層12が、電子注入のより良
い側方均一性のために付加されている。
In FIG. 3, a p-AlGaN cladding layer 10 is added, and the contact p-GaN layer 5 of FIG.
In addition, an i-GaN current spreading layer 12 has been added for better lateral uniformity of electron injection.

【0020】図4においては、電子放出層13が、より
良い電子注入の側方均一性のために付加されている。
In FIG. 4, an electron emitting layer 13 has been added for better lateral uniformity of electron injection.

【0021】図5においては、さらに、ひずみ超格子に
基づくスレッド転位阻止層14が、交互積重超格子構造
(alternated superlattice structure)、または、鏡
の働きもする分布ブラッグ反射器層のいずれかによって
もたらされている。
In FIG. 5, furthermore, a threaded dislocation blocking layer 14 based on strained superlattices is provided by either an alternate superlattice structure or a distributed Bragg reflector layer which also acts as a mirror. Has been brought.

【0022】図6においては、金属層または金属−誘電
体干渉フィルタに基づく外鏡15が用いられている。
In FIG. 6, an outer mirror 15 based on a metal layer or a metal-dielectric interference filter is used.

【0023】図7においては、格子の整合を行うため
に、クラッド16および17中の四元合金の組成を調節
することにより、活性層4内のひずみが抑えられてい
る。勾配がつけられたクラッド層18を付加することに
よっても、同じ目的を達成する。
In FIG. 7, the distortion in the active layer 4 is suppressed by adjusting the composition of the quaternary alloy in the claddings 16 and 17 for lattice matching. The same purpose is achieved by adding a graded cladding layer 18.

【0024】図8は、閉じ込め層19および20により
提供される広ギャップマトリックス中に埋め込まれた分
離された島から構成される活性領域4の内部におけるキ
ャリヤの側方閉じ込めを用いる進んだ構造を示す。
FIG. 8 shows an advanced structure using lateral confinement of carriers within an active region 4 consisting of isolated islands embedded in a wide gap matrix provided by confinement layers 19 and 20. .

【0025】図9は、前側の透明金属コンタクト部の形
成を容易にした、図3の構造を逆にした変形である。
FIG. 9 is a modification of the structure shown in FIG. 3 in which the formation of the front transparent metal contact portion is facilitated.

【0026】前述の各例において、GaNを主成分とす
る化合物半導体3の結晶は、式(GaxAl1-xyIn
1-yN(但し、0=x=1,0=y=1)により表されるバ
ッファ層2の表面上に成長させられる(図3)。Inの
付加は結晶欠陥の発生を抑え、それにより優れた結晶化
度とかなり優れた平坦度を達成できる。Inの付加は、
また、結晶の成長速度を大きくし、それによりバッファ
層に要する析出時間を短縮する。従来のバッファ層上に
p型のGaN層を成長させることは困難である。なぜな
らその膜は非常に結晶化度が低いからである。この理由
のために、従来は、n型のGaNをサファイア基板の上
に成長させていた。本発明の1例によれば、逆にされた
LED構造としてp型の(GaxAl1-xyIn1-yNを
バッファ上に直接に成長させるための成長法が提供され
る(図9)。
In each of the above-described examples, the crystal of the compound semiconductor 3 containing GaN as a main component is represented by the formula (Ga x Al 1 -x ) y In
It is grown on the surface of the buffer layer 2 represented by 1-yN (where 0 = x = 1, 0 = y = 1) (FIG. 3). The addition of In suppresses the generation of crystal defects, thereby achieving excellent crystallinity and excellent flatness. The addition of In
Further, the crystal growth rate is increased, thereby shortening the deposition time required for the buffer layer. It is difficult to grow a p-type GaN layer on a conventional buffer layer. This is because the film has a very low crystallinity. For this reason, n-type GaN has conventionally been grown on a sapphire substrate. According to one embodiment of the present invention, there is provided a growth method for growing p-type (Ga x Al 1 -x ) y In 1 -y N directly on a buffer as an inverted LED structure ( (FIG. 9).

【0027】下記もまた個別にまたは組合せて本発明の
特徴である。
The following are also features of the present invention, individually or in combination.

【0028】GaNを主成分とするバッファ層の核化プ
ロセスを制御しひずみを低減させるための、薄い多孔表
面層またはパターンが形成された構造を持つサファイア
基板の使用。この多孔表面層またはパターンが形成され
た構造は、適切なマスクを用いた、レーザー走査、プラ
ズマエッチングまたは化学気相成長法により形成するこ
とができる。
The use of a sapphire substrate with a thin porous surface layer or a patterned structure to control the nucleation process of the GaN-based buffer layer and reduce distortion. The structure having the porous surface layer or pattern formed thereon can be formed by laser scanning, plasma etching, or chemical vapor deposition using an appropriate mask.

【0029】このLEDの構造は非対称である。この主
な理由は、p型のGaNの移動度(約数十cm2/V・
sec)が、n型のGaN(300cm2/V・se
c)に較べてずっと小さいことである。これは、互換的
なp型およびn型の移動度を持つ他の種類の化合物半導
体LED装置とは非常に異なる。そのためp型GaN側
に挿入された追加の層が脱走電子の漏洩を防止する(図
3,4,5,6および7)。
The structure of this LED is asymmetric. The main reason for this is that the mobility of p-type GaN (about several tens cm 2 / V ·
sec) is n-type GaN (300 cm 2 / V · se
It is much smaller than c). This is very different from other types of compound semiconductor LED devices having compatible p-type and n-type mobilities. Therefore, the additional layer inserted on the p-type GaN side prevents leakage of escape electrons (FIGS. 3, 4, 5, 6, and 7).

【0030】スレッド転位の活性領域への侵入を阻止
し、その構造からの光の抽出を向上させるためのひずみ
超格子の使用(図5)。
The use of strained superlattices to prevent thread dislocations from penetrating into the active region and improve light extraction from the structure (FIG. 5).

【0031】クラッドと活性領域の間の格子整合をもた
らすための四元合金クラッドの使用(図7)。
Use of quaternary alloy cladding to provide lattice matching between the cladding and the active region (FIG. 7).

【0032】光を発生しないキャリヤの再結合を防止す
るための側方閉じ込めされた活性領域の使用(図8)。
この側方閉じ込めされた活性領域は、組成(GaxAl
1-x)In1-yNからなる量子点のような量子構造を使用
することにより形成できる。
Use of laterally confined active regions to prevent recombination of non-light emitting carriers (FIG. 8).
The laterally confined active region has a composition (Ga x Al
1-x ) In 1-y N can be formed by using a quantum structure such as a quantum dot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】GaNを主成分とするLEDの簡単な従来の構
造を示す図である。
FIG. 1 is a diagram showing a simple conventional structure of an LED mainly composed of GaN.

【図2】対称なクラッドを有する従来技術のGaNを主
成分とする単一量子井戸LEDを示す図である。
FIG. 2 illustrates a prior art GaN-based single quantum well LED with a symmetric cladding.

【図3】本発明の一実施形態を示す図である。FIG. 3 is a diagram showing one embodiment of the present invention.

【図4】本発明の一実施形態を示す図である。FIG. 4 is a diagram showing one embodiment of the present invention.

【図5】本発明の一実施形態を示す図である。FIG. 5 is a diagram showing one embodiment of the present invention.

【図6】本発明の一実施形態を示す図である。FIG. 6 is a diagram showing an embodiment of the present invention.

【図7】本発明の一実施形態を示す図である。FIG. 7 is a diagram showing one embodiment of the present invention.

【図8】本発明の一実施形態を示す図である。FIG. 8 is a diagram showing one embodiment of the present invention.

【図9】本発明の一実施形態を示す図である。FIG. 9 is a diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 サファイア基板 2 バッファ層 3 n−GaN層 4 活性層 5 コンタクトp−GaN層 10 p−AlGaNクラッド層 13 電子放出層 16,17 四元合金クラッド 19,20 側方閉じ込め層 Reference Signs List 1 sapphire substrate 2 buffer layer 3 n-GaN layer 4 active layer 5 contact p-GaN layer 10 p-AlGaN cladding layer 13 electron emission layer 16, 17 quaternary alloy cladding 19, 20 lateral confinement layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ステファン セン ティエン リー 台湾 台北 チェンカンロード レーン 325 アリー18 29号 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Stephan Sentien Lee Taiwan Taipei Chengkang Road Lane 325 Ally 18 No. 29

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非対称なクラッドを有する発光ダイオー
ド構造であって、 四元InAlGaNバッファ層の核化プロセスを制御し
ひずみを低減させる、薄い多孔表面層またはパターン状
に形成された多孔構造を持つ、サファイア基板と、 四元InAlGaNバッファ層と、 n−GaN層と、 前記電子放出層と前記活性層の間に位置し、III−V族
物質からなる、トンネル障壁および電子拡散層と、 III−V族物質から成り、電子と正孔に対する単一また
は多数の電位の井戸を形成し、その電位の井戸において
は電子と正孔の発光再結合が起きる、活性層と、 p型AlGaNからなる正孔放出層と、 p型InGaNからなるp型コンタクト層と、 前記正孔放出層に対する金属のオーミックコンタクト部
と、 を備える発光ダイオード構造。
1. A light emitting diode structure having an asymmetric cladding having a thin porous surface layer or a patterned porous structure that controls the nucleation process of a quaternary InAlGaN buffer layer and reduces distortion. A sapphire substrate, a quaternary InAlGaN buffer layer, an n-GaN layer, a tunnel barrier and an electron diffusion layer, which is located between the electron emission layer and the active layer and is made of a group III-V material, An active layer formed of a group III substance and having a single or multiple potential wells for electrons and holes, in which radiative recombination of electrons and holes occurs, and holes formed of p-type AlGaN. A light emitting diode structure comprising: an emission layer; a p-type contact layer made of p-type InGaN; and an ohmic contact portion of a metal with respect to the hole emission layer.
【請求項2】 前記活性層が5Åないし50Åの厚さを
持ち、前記活性層が5Åから0.1μmの幅を持ち、前
記正孔放出層が50Åないし1μmの幅を持ち、前記p
型コンタクト層が50Åないし1μmの幅を持つ請求項
1記載の構造。
2. The active layer has a thickness of 5 ° to 50 °, the active layer has a width of 5 ° to 0.1 μm, the hole emitting layer has a width of 50 ° to 1 μm,
The structure of claim 1 wherein the mold contact layer has a width of 50 ° to 1 µm.
【請求項3】 n型または無ドープのIII−V族物質か
らなる電子放出層が付加され、その電子放出層は電子に
対する電位の井戸および電子蓄積層を構成する、請求項
1記載の構造。
3. The structure according to claim 1, further comprising an electron-emitting layer comprising an n-type or undoped III-V material, said electron-emitting layer constituting a potential well for electrons and an electron storage layer.
【請求項4】 前記多孔表面層またはパターンが形成さ
れた構造が、適切なマスクを用いた、レーザー走査、プ
ラズマエッチング、または化学気相成長法により形成さ
れる請求項1記載の構造。
4. The structure according to claim 1, wherein the structure having the porous surface layer or pattern formed thereon is formed by laser scanning, plasma etching, or chemical vapor deposition using an appropriate mask.
【請求項5】 非対称な構造を有する請求項1記載の構
造。
5. The structure according to claim 1, which has an asymmetric structure.
【請求項6】 スレッド転位の活性領域への侵入を阻止
し、その構造からの光の抽出を向上させるために、ひず
み超格子を使用した請求項1記載の構造。
6. The structure of claim 1, wherein a strained superlattice is used to prevent thread dislocations from penetrating into the active region and enhance light extraction from the structure.
【請求項7】 クラッドと活性領域との間の格子の整合
を提供するための四元合金クラッドを使用した請求項1
記載の構造。
7. A quaternary alloy cladding for providing lattice matching between the cladding and the active region.
The described structure.
【請求項8】 光を発生しないキャリヤの再結合を防ぐ
ための側方閉じ込めされた活性領域を使用した請求項1
記載の構造。
8. The method of claim 1, wherein a laterally confined active region is used to prevent recombination of non-light emitting carriers.
The described structure.
JP34342599A 1998-12-02 1999-12-02 Semiconductor device Pending JP2000188422A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9826517.6 1998-12-02
GBGB9826517.6A GB9826517D0 (en) 1998-12-02 1998-12-02 Semiconductor devices

Publications (1)

Publication Number Publication Date
JP2000188422A true JP2000188422A (en) 2000-07-04

Family

ID=10843532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34342599A Pending JP2000188422A (en) 1998-12-02 1999-12-02 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2000188422A (en)
GB (2) GB9826517D0 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387099B1 (en) * 2001-05-02 2003-06-12 광주과학기술원 GaN-Based Light Emitting Diode and Fabrication Method thereof
KR20040050735A (en) * 2002-12-09 2004-06-17 (주)옵트로닉스 The Method For Improving Ohmic-Contact In P-Type Ⅲ-Nitride Compound Semiconductor
KR100691283B1 (en) 2005-09-23 2007-03-12 삼성전기주식회사 Nitride semiconductor device
KR100780212B1 (en) 2006-03-30 2007-11-27 삼성전기주식회사 Nitride semiconductor device
CN102468384A (en) * 2010-11-18 2012-05-23 台湾积体电路制造股份有限公司 Etching growth layers of light emitting devices to reduce leakage current
JP2014112599A (en) * 2012-12-05 2014-06-19 Stanley Electric Co Ltd Semiconductor light-emitting element and method of manufacturing the same
JP2015115377A (en) * 2013-12-10 2015-06-22 株式会社リコー Compound semiconductor device, light source device, laser device and compound semiconductor device manufacturing method
CN110335927A (en) * 2019-07-11 2019-10-15 马鞍山杰生半导体有限公司 Ultraviolet LED and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304881B1 (en) * 1998-10-15 2001-10-12 구자홍 GaN system compound semiconductor and method for growing crystal thereof
US6596079B1 (en) 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
DE10142653A1 (en) * 2001-08-31 2003-04-30 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component used as an illuminating diode or laser diode, has a semiconductor body with a radiation-producing active layer and a p-conducting contact layer containing indium gallium nitride
TWI262606B (en) 2001-08-30 2006-09-21 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor-element and its production method
JP4088111B2 (en) * 2002-06-28 2008-05-21 日立電線株式会社 Porous substrate and manufacturing method thereof, GaN-based semiconductor multilayer substrate and manufacturing method thereof
US6835957B2 (en) * 2002-07-30 2004-12-28 Lumileds Lighting U.S., Llc III-nitride light emitting device with p-type active layer
KR100611491B1 (en) 2004-08-26 2006-08-10 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
CN105633223B (en) * 2015-12-31 2018-10-09 华灿光电(苏州)有限公司 Semiconductor devices in AlGaN templates, the preparation method of AlGaN templates and AlGaN templates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798537A (en) * 1995-08-31 1998-08-25 Kabushiki Kaisha Toshiba Blue light-emitting device
US5729029A (en) * 1996-09-06 1998-03-17 Hewlett-Packard Company Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices
TW398084B (en) * 1998-06-05 2000-07-11 Hewlett Packard Co Multilayered indium-containing nitride buffer layer for nitride epitaxy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387099B1 (en) * 2001-05-02 2003-06-12 광주과학기술원 GaN-Based Light Emitting Diode and Fabrication Method thereof
KR20040050735A (en) * 2002-12-09 2004-06-17 (주)옵트로닉스 The Method For Improving Ohmic-Contact In P-Type Ⅲ-Nitride Compound Semiconductor
KR100691283B1 (en) 2005-09-23 2007-03-12 삼성전기주식회사 Nitride semiconductor device
KR100780212B1 (en) 2006-03-30 2007-11-27 삼성전기주식회사 Nitride semiconductor device
CN102468384A (en) * 2010-11-18 2012-05-23 台湾积体电路制造股份有限公司 Etching growth layers of light emitting devices to reduce leakage current
JP2014112599A (en) * 2012-12-05 2014-06-19 Stanley Electric Co Ltd Semiconductor light-emitting element and method of manufacturing the same
JP2015115377A (en) * 2013-12-10 2015-06-22 株式会社リコー Compound semiconductor device, light source device, laser device and compound semiconductor device manufacturing method
CN110335927A (en) * 2019-07-11 2019-10-15 马鞍山杰生半导体有限公司 Ultraviolet LED and preparation method thereof
CN110335927B (en) * 2019-07-11 2020-10-30 马鞍山杰生半导体有限公司 Ultraviolet LED and preparation method thereof

Also Published As

Publication number Publication date
GB9928531D0 (en) 2000-02-02
GB2344461A (en) 2000-06-07
GB9826517D0 (en) 1999-01-27
GB2344461B (en) 2002-05-22

Similar Documents

Publication Publication Date Title
US6614060B1 (en) Light emitting diodes with asymmetric resonance tunnelling
JP5084837B2 (en) Deep ultraviolet light emitting device and method for manufacturing the same
TWI287256B (en) Semiconductor substrate and semiconductor device manufactured by epitaxial growth on the semiconductor substrate
KR100902109B1 (en) Gallium nitride compound semiconductor element
KR101622309B1 (en) Nano-structured light emitting device
US6855959B2 (en) Nitride based semiconductor photo-luminescent device
JP2000188422A (en) Semiconductor device
US20110062487A1 (en) Semiconductor light emitting device
JP2007201195A (en) Nitride semiconductor light emitting device
KR20070036073A (en) Nitride semiconductor light-emitting device
JP2006245162A (en) Nitride semiconductor light-emitting element
KR100330228B1 (en) GaN-based Semiconductor Light Emitting Devices of Quantum Well Electronic Structures Resonating with Two-dimensional Electron Gas
KR100545999B1 (en) nitride semiconductor device
JPH10145004A (en) Gan system light emitting element
JP2000208875A (en) Multiplex quantum well structure semiconductor light- emitting element
JP4877294B2 (en) Manufacturing method of semiconductor light emitting device
KR100728132B1 (en) Light-emitting diode using current spreading layer
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP3724213B2 (en) Gallium nitride compound semiconductor light emitting device
JP2008028385A (en) Semiconductor substrate with less defect, semiconductor light emitting devices and method for fabrication thereof
JP4229625B2 (en) Nitride semiconductor layer and nitride semiconductor device including the same
JP4104234B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3219231B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
KR101373804B1 (en) White light emitting diode and fabrication method thereof
US20230395750A1 (en) Light emitting element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127