JP2000188114A - Manufacture of nonaqueous electrolyte battery - Google Patents

Manufacture of nonaqueous electrolyte battery

Info

Publication number
JP2000188114A
JP2000188114A JP10363202A JP36320298A JP2000188114A JP 2000188114 A JP2000188114 A JP 2000188114A JP 10363202 A JP10363202 A JP 10363202A JP 36320298 A JP36320298 A JP 36320298A JP 2000188114 A JP2000188114 A JP 2000188114A
Authority
JP
Japan
Prior art keywords
battery
electrode
electrolyte
negative electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10363202A
Other languages
Japanese (ja)
Inventor
Kenichiro Kami
謙一郎 加美
Hiroshi Uejima
啓史 上嶋
Manabu Yamada
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10363202A priority Critical patent/JP2000188114A/en
Publication of JP2000188114A publication Critical patent/JP2000188114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To productively manufacture a nonaqueous electrolyte battery. SOLUTION: In a manufacturing method for a nonaqueous electrolyte battery equipped with an electrode forming body having an insulating electrolyte penetrating body placed between a positive electrode and a negative electrode, the insulating electrolyte penetrating body is formed by either a crystalline polymer having a fusing point of 150 deg.C or a noncrystal polymer having a glass transition temperature of 150 deg.C, the insulating electrolyte penetrating body is dried at a temperature of at least 80 deg.C, and the electrode forming body having the dried insulating electrolyte penetrating body is immersed in nonaqueous electrolyte. In this manufacturing method, the insulating electrolyte penetrating body can be dried in a short time without lowering its performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極及び負極を隔
離するセパレータ、並びに正極及び負極の少なくとも一
方の表面に形成された多孔質皮膜の少なくとも一方を備
えた非水電解質電池の製造方法に関し、特にリチウム電
池の製造方法に関する。
The present invention relates to a separator for separating a positive electrode and a negative electrode, and a method for manufacturing a non-aqueous electrolyte battery provided with at least one of a porous film formed on at least one surface of the positive electrode and the negative electrode. In particular, it relates to a method for manufacturing a lithium battery.

【0002】[0002]

【従来技術】近年、携帯用電子機器や自動車などのバッ
テリーとして、高性能な二次電池の開発が盛んに行われ
ている。そのような二次電池には、小型、軽量でありな
がら大容量・高出力であること、即ち高エネルギー密度
・高出力密度であることが求められている。また、二次
電池は高エネルギーを貯蔵することから、安全性の確保
が重要である。さらに、二次電池を市場に広く普及させ
るためには、その生産性を向上させることが重要であ
る。
2. Description of the Related Art In recent years, high performance secondary batteries have been actively developed as batteries for portable electronic devices and automobiles. Such a secondary battery is required to have a large capacity and a high output while being small and lightweight, that is, a high energy density and a high output density. Also, since secondary batteries store high energy, it is important to ensure safety. Further, in order to widely spread the secondary battery in the market, it is important to improve the productivity.

【0003】このような二次電池として、リチウムイオ
ンを放出及び吸蔵することができる正極及び負極と、そ
れらの電極間に介在する電解液とを備えたリチウム二次
電池がある。特に、負極に炭素材料からなる負極活物質
が用いられているリチウムイオン二次電池については、
高寿命でかつ安全性が高いため、実用的に優れていると
して携帯用電子機器や自動車などのバッテリーなどへの
利用が期待されている。
[0003] As such a secondary battery, there is a lithium secondary battery including a positive electrode and a negative electrode capable of releasing and occluding lithium ions, and an electrolytic solution interposed between the electrodes. In particular, for a lithium ion secondary battery in which a negative electrode active material made of a carbon material is used for the negative electrode,
Because of its long service life and high safety, it is expected to be used for batteries of portable electronic devices and automobiles as being practically excellent.

【0004】多くの電池では、絶縁性電解質透過体とし
て、正極及び負極の間に、特開平7−65816号公報
に開示されているような絶縁性でかつ多孔質のセパレー
タを介在させている。また、正極及び負極の少なくとも
一方の表面に多孔質皮膜が一体的に形成されている電池
もある。こうしたセパレータや多孔質皮膜は、正極と負
極との間を電解質(支持塩)が移動できるようにしつ
つ、正極と負極との短絡を防止することができる。
[0004] In many batteries, an insulating and porous separator as disclosed in JP-A-7-65816 is interposed between a positive electrode and a negative electrode as an insulating electrolyte permeable material. There is also a battery in which a porous film is integrally formed on at least one surface of a positive electrode and a negative electrode. Such a separator or porous film can prevent a short circuit between the positive electrode and the negative electrode while allowing the electrolyte (supporting salt) to move between the positive electrode and the negative electrode.

【0005】ところで、リチウム二次電池やリチウム一
次電池のように、電極の活物質が水と反応しやすい非水
電解質電池においては、電極に水分が存在すると、その
水分が活物質と反応する結果、電池性能を低下させてし
まう恐れがある。そこで、非水電解質電池を製造する時
には、電極に出来る限り水分が存在しないように電池を
製造することが好ましい。
In a non-aqueous electrolyte battery such as a lithium secondary battery or a lithium primary battery, in which the active material of the electrode easily reacts with water, if water exists in the electrode, the water reacts with the active material. However, there is a possibility that the battery performance is reduced. Therefore, when manufacturing a non-aqueous electrolyte battery, it is preferable to manufacture the battery so that water is not present in the electrodes as much as possible.

【0006】そこで、絶縁性電解質透過体を備えた電池
を製造するときには、従来より、電極を真空乾燥機など
を用いて高温雰囲気で乾燥した後、ドライルーム中で電
極を絶縁性電解質透過体とともに巻回あるいは積層し
て、電池ケース内に組み付けていた。こうして電極に水
分が含まれないように電池を製造することができる。
Therefore, when manufacturing a battery provided with an insulating electrolyte permeable material, conventionally, the electrode is dried in a high-temperature atmosphere using a vacuum dryer or the like, and then the electrode and the insulating electrolyte permeable material are dried in a dry room. It was wound or laminated and assembled in the battery case. Thus, the battery can be manufactured so that the electrode does not contain moisture.

【0007】[0007]

【発明が解決しようとする課題】他方、絶縁性電解質透
過体に水分が含まれていると、その水分が電極に移っ
て、その電極の活物質と反応を起こす恐れがある。そこ
で、非水電解質電池を製造する時には、絶縁性電解質透
過体にも出来る限り水分が存在しないように、絶縁性電
解質透過体も電極と同様に乾燥して、電池を製造するこ
とが好ましい。
On the other hand, if the insulating electrolyte permeable body contains moisture, the moisture may move to the electrode and react with the active material of the electrode. Therefore, when manufacturing a non-aqueous electrolyte battery, it is preferable to manufacture the battery by drying the insulative electrolyte permeation material in the same manner as the electrodes so that moisture is not present in the insulative electrolyte permeation material as much as possible.

【0008】しかし、従来の絶縁性電解質透過体は、ポ
リエチレンなどを材料として形成されているため、それ
を高温で乾燥すると、収縮や溶融が起こってその性能が
低下してしまう問題がある。従って、ポリエチレンなど
よりなる絶縁性電解質透過体は比較的低温で乾燥せざる
を得ない。しかし、絶縁性電解質透過体は多孔質である
ため乾燥しにくく、比較的低温で乾燥させるのに時間が
かってしまう。その結果、電池の製造に多大な時間がか
かって、非水電解質電池を生産性良く製造することがで
きなくなる。
However, since the conventional insulating electrolyte permeable material is made of polyethylene or the like, if it is dried at a high temperature, there is a problem that its performance is reduced due to shrinkage and melting. Therefore, the insulative electrolyte permeable body made of polyethylene or the like must be dried at a relatively low temperature. However, since the insulating electrolyte permeation body is porous, it is difficult to dry, and it takes time to dry at a relatively low temperature. As a result, it takes a lot of time to manufacture the battery, and it becomes impossible to manufacture a nonaqueous electrolyte battery with high productivity.

【0009】本発明は上記実情に鑑みてなされたもので
あり、非水電解質電池を生産性良く製造できる非水電解
質電池の製造方法を提供することを課題とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of manufacturing a nonaqueous electrolyte battery capable of manufacturing a nonaqueous electrolyte battery with high productivity.

【0010】[0010]

【課題を解決するための手段】本発明の非水電解質電池
の製造方法は、正極と、負極と、該正極及び該負極の間
に配置され、非水電解液を透過させる絶縁性電解質透過
体とを有する電極構成体を備えた非水電解質電池の製造
方法において、前記絶縁性電解質透過体を、少なくとも
150℃の融点をもつ結晶性高分子及び少なくとも15
0℃のガラス転移温度をもつ非晶性高分子の少なくとも
一方の高分子から形成するとともに、該絶縁性電解質透
過体を少なくとも80℃の温度で乾燥し、該乾燥された
該絶縁性電解質透過体を有する前記電極構成体を前記非
水電解液に浸すことを特徴とする。
A method for manufacturing a non-aqueous electrolyte battery according to the present invention comprises a positive electrode, a negative electrode, and an insulating electrolyte permeant disposed between the positive electrode and the negative electrode and permeable to a non-aqueous electrolyte. The method of manufacturing a non-aqueous electrolyte battery provided with an electrode structure having the following structure: the insulating electrolyte permeable body is made of a crystalline polymer having a melting point of at least 150 ° C and at least 15
The insulating electrolyte permeable material is formed from at least one of amorphous polymers having a glass transition temperature of 0 ° C, and the insulating electrolyte permeable material is dried at a temperature of at least 80 ° C, and the dried insulating electrolyte permeable material is dried. And dipping the electrode assembly having the above structure in the non-aqueous electrolyte.

【0011】この非水電解質電池の製造方法では、絶縁
性電解質透過体が、少なくとも150℃の融点をもつ結
晶性高分子及び少なくとも150℃のガラス転移温度を
もつ非晶性高分子の少なくとも一方の高分子から形成さ
れているため、少なくとも80℃の温度で絶縁性電解質
透過体を乾燥しても、それに収縮や溶融が起こることが
ない。ちなみに従来のポリエチレンは、80℃で収縮し
てしまう。また、少なくとも80℃の高温では、水分が
蒸発しやすいので、絶縁性電解質透過体を極めて効果的
に乾燥することができ、短時間で乾燥を行うことができ
る。それゆえ、本発明では、絶縁性電解質透過体を、そ
の性能を低下させることなく短時間で乾燥することがで
きる。
In the method of manufacturing a non-aqueous electrolyte battery, the insulating electrolyte permeant may include at least one of a crystalline polymer having a melting point of at least 150 ° C. and an amorphous polymer having a glass transition temperature of at least 150 ° C. Since it is formed from a polymer, even if the insulating electrolyte permeable material is dried at a temperature of at least 80 ° C., no shrinkage or melting occurs. Incidentally, conventional polyethylene shrinks at 80 ° C. Further, at a high temperature of at least 80 ° C., the moisture easily evaporates, so that the insulative electrolyte permeant can be dried very effectively, and can be dried in a short time. Therefore, according to the present invention, the insulating electrolyte permeable body can be dried in a short time without deteriorating its performance.

【0012】本発明では、こうして乾燥させた絶縁性電
解質透過体を有する電極構成体を、非水電解液に浸すた
め、以後、電極構成体を乾燥した条件下で保持しなくと
も、非水電解液によって絶縁性電解質透過体(電極構成
体)に水分が付着することが防止される。また、本発明
では、正極と負極との間に絶縁性電解質透過体を配置し
た状態の電極構成体を少なくとも80℃の温度雰囲気に
晒して、この電極構成体を乾燥することを特徴としてい
る。これによれば、正極、負極及び絶縁性電解質透過体
を同時に乾燥することができる。
In the present invention, since the electrode assembly having the insulating electrolyte permeable material thus dried is immersed in a non-aqueous electrolyte, the non-aqueous electrolyte is not required to be maintained under the dry condition. The liquid prevents moisture from adhering to the insulating electrolyte permeable body (electrode structure). Further, the present invention is characterized in that the electrode structure in a state where the insulating electrolyte permeable body is disposed between the positive electrode and the negative electrode is exposed to an atmosphere of at least 80 ° C., and the electrode structure is dried. According to this, the positive electrode, the negative electrode, and the insulating electrolyte permeable body can be dried at the same time.

【0013】さらに、本発明では、電池ケース内に上記
電極構成体を収納した状態で上記のごとく乾燥すること
を特徴としている。これによれば、電池ケースも同時に
乾燥することができる。以上の結果、絶縁性電解質透過
体、または電極構成体を短時間に乾燥させることがで
き、従って、非水電解質電池を生産性良く製造できるよ
うになる。
Further, the present invention is characterized in that the battery is dried as described above in a state where the electrode assembly is housed in a battery case. According to this, the battery case can be dried at the same time. As a result, the insulative electrolyte permeant or the electrode structure can be dried in a short time, so that a non-aqueous electrolyte battery can be manufactured with high productivity.

【0014】[0014]

【発明の実施の形態】本発明においては、絶縁性電解質
透過体は、正極及び負極の間に介設されるセパレータで
あってもよいし、正極及び負極の少なくとも一方の表面
に形成された多孔質皮膜であってもよい。こうした絶縁
性電解質透過体に用いる高分子は、150℃以上の融点
をもつ結晶性高分子及び150℃以上のガラス転移温度
をもつ非晶性高分子の少なくとも一方の高分子であれ
ば、その種類で特に限定されるものではなく、公知の高
分子材料を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the insulating electrolyte permeable body may be a separator provided between a positive electrode and a negative electrode, or a porous material formed on at least one surface of the positive electrode and the negative electrode. It may be a porous film. The polymer used for such an insulating electrolyte permeant may be any one of a crystalline polymer having a melting point of 150 ° C. or higher and an amorphous polymer having a glass transition temperature of 150 ° C. or higher. Is not particularly limited, and a known polymer material can be used.

【0015】例えば、ポリベンズイミダゾール、ポリイ
ミド、ポリエーテルイミド、ポリアミドイミド、ポリフ
ェニレンエーテル(ポリフェニレンオキシド)、ポリア
リレート、ポリアセタール、ポリフェニレンスルフイ
ド、ポリエーテルスルホン、ポリスルホン、ポリエーテ
ルケトン、ポリブチレンテレフタレート、ポリエチレン
テレフタレート、ポリエチレンナフタレート、エチレン
−シクロオレフィン共重合体、並びにポリフッ化ビニリ
デン及びその共重合体の少なくとも一種を用いることが
好ましい。これらの高分子材料は、150℃以上の温度
において、熱収縮などの変形が生じにくく、酸化分解も
起こりにくい耐熱性高分子である。それゆえ、絶縁性電
解質透過体の材料にこれらの熱可塑性高分子を用いれ
ば、80℃以上の乾燥温度に対して耐熱性が極めて高い
ものが得られ、かつシャットダウン機能を効果的に働か
せることができるものが得られる。さらに、これらの高
分子材料は熱可塑性高分子でもあるため、絶縁性電解質
透過体を容易に形成することができる。
For example, polybenzimidazole, polyimide, polyetherimide, polyamideimide, polyphenylene ether (polyphenylene oxide), polyarylate, polyacetal, polyphenylene sulfide, polyether sulfone, polysulfone, polyether ketone, polybutylene terephthalate, polyethylene It is preferable to use at least one of terephthalate, polyethylene naphthalate, ethylene-cycloolefin copolymer, polyvinylidene fluoride and its copolymer. At a temperature of 150 ° C. or higher, these polymer materials are heat-resistant polymers that hardly undergo deformation such as heat shrinkage and hardly cause oxidative decomposition. Therefore, if these thermoplastic polymers are used as the material of the insulative electrolyte permeant, a material having extremely high heat resistance at a drying temperature of 80 ° C. or higher can be obtained, and the shutdown function can be effectively operated. You get what you can. Further, since these polymer materials are also thermoplastic polymers, an insulating electrolyte permeable body can be easily formed.

【0016】また、絶縁性電解質透過体の機械的強度を
さらに向上させるため、ガラスファイバー、カーボンフ
ァイバーなどの無機繊維、アラミド、ポリフェニレンス
ルフイド、ポリエステルなどの高分子繊維を加えてもよ
い。絶縁性電解質透過体の厚さについては、所望の電池
性能が得られるように適切に選択する。また、上記耐熱
性高分子のうち異なる耐熱性高分子からなる複数種の絶
縁性電解質透過体を組み合わせて用いてもよい。
Further, in order to further improve the mechanical strength of the insulating electrolyte permeable body, inorganic fibers such as glass fiber and carbon fiber, and polymer fibers such as aramid, polyphenylene sulfide, and polyester may be added. The thickness of the insulating electrolyte permeable material is appropriately selected so as to obtain desired battery performance. Further, a plurality of types of insulating electrolyte permeants made of different heat resistant polymers among the above heat resistant polymers may be used in combination.

【0017】絶縁性電解質透過体の形成方法について
は、特に限定されるものではないが、例えば下記の実施
例の形成方法を用いることができる。すなわち、正極及
び負極の間に介設されるセパレータについては、下記の
実施例1の形成方法を用いることができ、正極及び負極
の少なくとも一方の表面上に形成される多孔質皮膜につ
いては、実施例2の形成方法を用いることができる。
The method for forming the insulative electrolyte permeable body is not particularly limited, but for example, the following embodiment can be used. That is, for the separator interposed between the positive electrode and the negative electrode, the formation method of the following Example 1 can be used, and for the porous film formed on at least one surface of the positive electrode and the negative electrode, The forming method of Example 2 can be used.

【0018】一方、絶縁性電解質透過体を少なくとも8
0℃の温度で乾燥する手段については、特に限定される
ものではなく、公知の乾燥手段を用いることができる。
例えば、熱風乾燥機や恒温槽、真空乾燥機などを用いる
ことができる。乾燥時間も特に限定されるものではな
く、乾燥を行う前に電極及び絶縁性電解質透過体に含ま
れる水分量に応じて適切に選択する。
On the other hand, at least 8
Means for drying at a temperature of 0 ° C. is not particularly limited, and a known drying means can be used.
For example, a hot air drier, a thermostat, a vacuum drier, or the like can be used. The drying time is not particularly limited, either, and is appropriately selected before drying according to the amount of water contained in the electrode and the insulating electrolyte permeable material.

【0019】一方、絶縁性電解質透過体を乾燥させてか
ら電解液に浸すまでの間、絶縁性電解質透過体が乾燥時
に得た熱を保持しているため、それが大気など水分が含
まれる雰囲気に曝されても、その保持している熱によっ
てそれらに水分が付着することを防止することもでき
る。特に、この間、絶縁性電解質透過体の雰囲気が乾燥
した状態にあれば、絶縁性電解質透過体に水分が付着す
ることが完全に防止される。従って、電極構成体を電解
液に浸す操作は、それを乾燥させた装置中で引き続いて
行うか、あるいはドライルーム中で行うことが好まし
い。
On the other hand, since the insulating electrolyte permeable body retains the heat obtained at the time of drying until the insulating electrolyte permeable body is immersed in the electrolytic solution, the insulating electrolyte permeable body is in an atmosphere containing moisture such as air. Even when exposed to water, it is possible to prevent moisture from adhering to them due to the retained heat. In particular, during this time, if the atmosphere of the insulating electrolyte permeable body is in a dry state, the adhesion of moisture to the insulating electrolyte permeable body is completely prevented. Therefore, the operation of immersing the electrode assembly in the electrolytic solution is preferably performed continuously in a device where the electrode assembly is dried or in a dry room.

【0020】なお、絶縁性電解質透過体を乾燥した後、
すぐに電池ケース内に組み付けることができないときに
は、電池ケースとは別に、非水電解液が入れられた電解
液槽に浸しておけばよい。この間、その電解液槽が、水
分が含まれる雰囲気中に置かれても、電解液槽の非水電
解液によってその雰囲気中に含まれる水分が絶縁性電解
質透過体に付着することが防止される。すなわち、電池
ケース外に用意された電解液中で、絶縁性電解質透過体
に水分が付着しないように保持することができる。従っ
て、乾燥した電極構成体を直ぐに使用せずに電池ケース
外で保存しておく場合、乾燥した環境下でその電極構成
体を保存しなくとも、電極構成体に水分が付着しないよ
うに保存することができるようになる。
After drying the insulating electrolyte permeable material,
If the battery cannot be immediately assembled in the battery case, it may be immersed separately from the battery case in an electrolyte tank containing a non-aqueous electrolyte. During this time, even if the electrolytic solution tank is placed in an atmosphere containing moisture, the non-aqueous electrolytic solution in the electrolytic solution tank prevents moisture contained in the atmosphere from adhering to the insulating electrolyte permeable body. . That is, in the electrolyte prepared outside the battery case, it is possible to keep the insulating electrolyte permeable body from adhering moisture. Therefore, when storing the dried electrode assembly outside the battery case without using it immediately, it is necessary to store the electrode assembly in a dry environment so that moisture does not adhere to the electrode assembly. Will be able to do it.

【0021】その後、雰囲気を乾燥状態として、その乾
燥状態を保持しつつ、絶縁性電解質透過体を有する電極
構成体を電池ケースに組み付けてから、電池ケース内に
非水電解液を注入してもよいし、電池ケース内に非水電
解液を注入してから、電極構成体を電池ケースに組み付
けてもよい。本発明では、前記正極と前記負極との間に
前記絶縁性電解質透過体を配置した状態の前記電極構成
体を少なくとも80℃の温度雰囲気に晒して、前記電極
構成体の前記正極、前記負極、前記絶縁性電解質透過体
を同時に乾燥することが好ましい。このように絶縁性電
解質透過体を電極と同時に乾燥することにより、効率的
に絶縁性電解質透過体を乾燥することができるようにな
る。すなわち、電極の乾燥工程を、絶縁性電解質透過体
の乾燥工程と別に行わなくてもよくなるため、電池の製
造時間をさらに縮めることができるようになり、電池の
生産性を向上させることができる。
After that, the electrode structure having the insulating electrolyte permeable body is assembled into the battery case while the atmosphere is kept in a dry state, and the non-aqueous electrolyte solution is injected into the battery case. Alternatively, the electrode structure may be assembled to the battery case after the non-aqueous electrolyte is injected into the battery case. In the present invention, the electrode structure in a state where the insulating electrolyte permeable body is disposed between the positive electrode and the negative electrode is exposed to a temperature atmosphere of at least 80 ° C., and the positive electrode of the electrode structure, the negative electrode, It is preferable that the insulating electrolyte permeants are simultaneously dried. By drying the insulating electrolyte permeable body at the same time as the electrodes, the insulating electrolyte permeable body can be efficiently dried. That is, the electrode drying step does not need to be performed separately from the insulating electrolyte permeation body drying step, so that the battery manufacturing time can be further shortened, and the battery productivity can be improved.

【0022】さらに、本発明では、前記電極構成体を収
容する電池ケースを備えており、前記電極構成体を前記
電池ケース内に収容した状態で該電極構成体を乾燥する
ことが好ましい。この方法では、電池ケース内も同時に
乾燥することができるため、効率的に絶縁性電解質透過
体を乾燥することができるようになる。すなわち、電池
ケース内の乾燥工程を、絶縁性電解質透過体及び電極の
乾燥工程と別に行わなくてもよくなるため、電池の製造
時間をさらに縮めることができるようになり、電池の生
産性を向上させることができる。
Further, in the present invention, it is preferable that a battery case accommodating the electrode assembly is provided, and the electrode assembly be dried while the electrode assembly is accommodated in the battery case. According to this method, the inside of the battery case can be dried at the same time, so that the insulating electrolyte permeable body can be efficiently dried. That is, the step of drying the inside of the battery case does not have to be performed separately from the step of drying the insulative electrolyte permeable body and the electrode, so that the battery manufacturing time can be further shortened and the productivity of the battery is improved. be able to.

【0023】本発明で製造する非水電解質電池の種類は
特に限定されるものでなく、公知の非水電解質電池のい
ずれも製造することができる。特に、リチウム一次電池
やリチウム二次電池といったリチウム電池のように、電
極に水分が存在すると優れた電池性能が得られなくなる
恐れのある非水電解質電池であることが好ましい。ま
た、このリチウム二次電池としては、リチウム(Li)
を含み、かつ充電時にはそのLiをイオンの形態で放出
し、放電時にはそのLiイオンを吸蔵することのできる
正極と、炭素材料からなり、充電時にはそのLiイオン
を吸蔵し、放電時にはそのLiイオンを放出することの
できる負極と、有機溶媒にLiが含まれる支持塩が溶解
されて調製された非水電解液とを備えるリチウムイオン
二次電池であることが好ましい。
The type of the non-aqueous electrolyte battery manufactured in the present invention is not particularly limited, and any known non-aqueous electrolyte battery can be manufactured. In particular, a non-aqueous electrolyte battery, such as a lithium battery such as a lithium primary battery or a lithium secondary battery, which may not be able to obtain excellent battery performance when moisture is present in the electrode, is preferable. As the lithium secondary battery, lithium (Li)
And a positive electrode capable of releasing the Li in the form of ions at the time of charging, absorbing the Li ions at the time of discharging, and a carbon material, absorbing the Li ions at the time of charging, and discharging the Li ions at the time of discharging. It is preferable that the lithium ion secondary battery includes a negative electrode that can be released and a non-aqueous electrolyte prepared by dissolving a supporting salt containing Li in an organic solvent.

【0024】この場合、正極の活物質には公知の正極活
物質を用いることができるが、LiMn24などのリチ
ウム及び遷移金属の複合酸化物を用いることが好まし
い。また、負極の炭素材料には公知のものを用いること
ができるが、中でも結晶性の高い天然黒鉛や人造黒鉛な
どからなるものを用いることが好ましい。このような結
晶性の高い炭素材を用いることにより、負極のリチウム
イオンの吸蔵及び放出効率を向上させることができる。
また、炭素材以外に酸化物及び硫黄化物などを活物質と
して用いてもよい。
In this case, a known positive electrode active material can be used as the positive electrode active material, but it is preferable to use a composite oxide of lithium and a transition metal such as LiMn 2 O 4 . A known carbon material can be used as the carbon material of the negative electrode, and among them, a material made of natural graphite or artificial graphite having high crystallinity is preferable. By using such a highly crystalline carbon material, the efficiency of inserting and extracting lithium ions in the negative electrode can be improved.
Further, an oxide, a sulfide, or the like may be used as an active material in addition to the carbon material.

【0025】さらに、正極及び負極のいずれも、活物質
を含む活物質層を集電体上に形成した電極を用いること
が好ましい。非水電解液にも公知のものを用いることが
できる。特に、LiPF6などのリチウム塩をエチレン
カーボネートなどの有機カーボネート系の有機溶媒に溶
解した非水電解液を用いることが好ましい。
Further, it is preferable to use an electrode in which an active material layer containing an active material is formed on a current collector for both the positive electrode and the negative electrode. Known nonaqueous electrolytes can also be used. In particular, it is preferable to use a non-aqueous electrolyte in which a lithium salt such as LiPF 6 is dissolved in an organic carbonate-based organic solvent such as ethylene carbonate.

【0026】電極の構造形態も特に限定されるものでは
なく、例えば、平板状の正極板および負極板が交互に積
層されたもの(積層型)や、帯状の正極板および負極板
が重ねられて巻回されたもの(巻回型)など、公知のい
ずれの構造形態であってもよい。こうした積層型の電池
や巻回型の電池では、電極を絶縁性電解質透過体ととも
に積層または巻回する前に、両方を一緒に80℃以上で
あり、かつ該融点または該ガラス転移温度より低い温度
で乾燥し、積層または巻回してから電解液に浸してもよ
いが、電極を絶縁性電解質透過体とともに積層または巻
回した後に、電極及び絶縁性電解質透過体を、80℃以
上であり、かつ該融点または該ガラス転移温度より低い
温度で乾燥してから電解液に浸すことが好ましい。この
ように乾燥を行うことにより、効率的に電極及び絶縁性
電解質透過体を乾燥させることができる。
The structure of the electrode is not particularly limited either. For example, a plate-like positive electrode plate and a negative electrode plate are alternately laminated (laminated type), or a band-like positive electrode plate and a negative electrode plate are stacked. Any known structure such as a wound type (winding type) may be used. In such a laminated battery or a wound battery, before the electrodes are laminated or wound together with the insulating electrolyte permeable material, both are together at a temperature of 80 ° C. or higher and a temperature lower than the melting point or the glass transition temperature. May be immersed in an electrolytic solution after lamination or winding, but after laminating or winding the electrode together with the insulating electrolyte permeable body, the electrode and the insulating electrolyte permeable body are at 80 ° C. or higher, and It is preferable to dry at a temperature lower than the melting point or the glass transition temperature and then immerse in an electrolyte solution. By performing the drying in this manner, the electrode and the insulating electrolyte permeable body can be efficiently dried.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)本実施例では、絶縁性電解質透過体として
正極及び負極の間にセパレータを介設した巻回型のリチ
ウムイオン二次電池を次のようにして作製した。 [セパレータの形成]ポリフェニレンエーテルからな
り、孔径の小さい空孔を緻密に有するセパレータを次の
ようにして形成した。なお、ポリフェニレンエーテル
は、150℃以上のガラス転移温度をもつ非晶性の熱可
塑性高分子である。
The present invention will be described below in detail with reference to examples. (Example 1) In this example, a wound lithium ion secondary battery in which a separator was interposed between a positive electrode and a negative electrode as an insulative electrolyte permeable material was manufactured as follows. [Formation of Separator] A separator composed of polyphenylene ether and having dense pores having a small pore diameter was formed as follows. Note that polyphenylene ether is an amorphous thermoplastic polymer having a glass transition temperature of 150 ° C. or higher.

【0028】先ず、ポリフェニレンエーテル(GEプラ
スチック社製、NOLYL PPO534)を用意し、
このポリフェニレンエーテル・リチウムビストリフルオ
ロメチルスルホニルイミドをNMPに所定割合で溶解し
て合剤を得た。また、基材としてポリエステルフィルム
を用意し、このポリエステルフィルムに先の合剤をブレ
ードコーターを用いて所定の厚さで塗布して、基材上に
合剤層を形成した。
First, polyphenylene ether (NOLYL PPO534, manufactured by GE Plastics) was prepared.
This polyphenylene ether / lithium bistrifluoromethylsulfonylimide was dissolved in NMP at a predetermined ratio to obtain a mixture. Further, a polyester film was prepared as a substrate, and the mixture was applied to the polyester film at a predetermined thickness using a blade coater to form a mixture layer on the substrate.

【0029】次いで、合剤層を基材もろともイソプロピ
ルアルコールに所定時間浸漬した。なお、イソプロピル
アルコールはポリフェニレンエーテルの貧溶媒である。
その結果、合剤層中にポリフェニレンエーテルが析出し
た。このとき、合剤層が基材から剥離した。続いて、合
剤層を熱風乾燥機を用いて乾燥させた。その結果、合剤
層中の溶媒が蒸発して、合剤層が多孔質となった。こう
して、ポリフェニレンエーテルからなる多孔質のセパレ
ータを得た。 [リチウム二次電池の作製]上記のようにセパレータを
形成した一方で、正極を次のようにして形成した。
Next, the mixture layer was immersed in isopropyl alcohol for a predetermined period of time together with the substrate. In addition, isopropyl alcohol is a poor solvent for polyphenylene ether.
As a result, polyphenylene ether was precipitated in the mixture layer. At this time, the mixture layer was separated from the substrate. Subsequently, the mixture layer was dried using a hot air drier. As a result, the solvent in the mixture layer was evaporated, and the mixture layer became porous. Thus, a porous separator made of polyphenylene ether was obtained. [Production of Lithium Secondary Battery] While the separator was formed as described above, the positive electrode was formed as follows.

【0030】先ず、正極活物質としてLiMn24粉末
を用意した。また、導電材としてグラファイト粉末(ロ
ンザ社製KS−15)を用意し、結着剤としてポリビニ
リデンフロライド(PVDF)を用意した。分散溶媒と
してN−メチル−2ピロリドン(NMP)を用意した。
これらLiMn24粉末、炭素粉末及びPVDFを所定
の割合でNMPに加え、よく混ぜ合わせてスラリー様の
正極用合剤を得た。次いで、アルミニウムよりなるシー
ト状の正極集電体を用意し、正極用合剤をこの正極集電
体の表面上に所定の塗布厚さで塗布した。塗布された正
極用合剤を高温槽で十分に乾燥させた後、プレス処理し
て所定の密度にして、正極活物質層を形成した。
First, LiMn 2 O 4 powder was prepared as a positive electrode active material. In addition, graphite powder (KS-15, manufactured by Lonza) was prepared as a conductive material, and polyvinylidene fluoride (PVDF) was prepared as a binder. N-methyl-2-pyrrolidone (NMP) was prepared as a dispersion solvent.
These LiMn 2 O 4 powder, carbon powder and PVDF were added to NMP at a predetermined ratio and mixed well to obtain a slurry-like positive electrode mixture. Next, a sheet-shaped positive electrode current collector made of aluminum was prepared, and a positive electrode mixture was applied on the surface of the positive electrode current collector at a predetermined coating thickness. The coated positive electrode mixture was sufficiently dried in a high-temperature bath, and then pressed to a predetermined density to form a positive electrode active material layer.

【0031】こうして、正極集電体と、その正極集電体
の表面上に形成された正極活物質層とからなる正極を形
成した。その一方で、負極を次のようにして形成した。
先ず、負極活物質としてメソフェーズカーボンマイクロ
ビーズ(MCMB)粉末を用意し、このMCMB及び結
着剤であるPVDFを所定の割合でNMPに加え、よく
混ぜ合わせてスラリー様の負極用合剤を得た。次いで、
銅よりなる板状の負極集電体を用意し、負極用合剤をこ
の負極集電体の表面上に所定の塗布厚さで塗布した。塗
布された負極用合剤を高温槽で十分に乾燥させた後、プ
レス処理して所定の密度にして負極活物質層を形成し
た。こうして、負極集電体と、その負極集電体の表面上
に形成された負極活物質層とからなる負極を形成した。
Thus, a positive electrode comprising the positive electrode current collector and the positive electrode active material layer formed on the surface of the positive electrode current collector was formed. On the other hand, a negative electrode was formed as follows.
First, mesophase carbon microbead (MCMB) powder was prepared as a negative electrode active material, and this MCMB and PVDF as a binder were added to NMP at a predetermined ratio to NMP, and mixed well to obtain a slurry-like negative electrode mixture. . Then
A plate-shaped negative electrode current collector made of copper was prepared, and a negative electrode mixture was applied on the surface of the negative electrode current collector at a predetermined coating thickness. The applied negative electrode mixture was sufficiently dried in a high-temperature bath, and then pressed to a predetermined density to form a negative electrode active material layer. Thus, a negative electrode including the negative electrode current collector and the negative electrode active material layer formed on the surface of the negative electrode current collector was formed.

【0032】以上で得られた正極及び負極を、先に形成
したセパレータを間に挟んで重ね合わせ、所定数巻回し
て電極巻回体を形成した。この電極巻回体を円筒状の有
底電池ケースに挿入して組み付けた。その一方で電解液
を次のようにして調製した。エチレンカーボネートとジ
エチルカーボネートとをそれぞれ所定の割合で混合して
有機溶媒を得た。この有機溶媒に支持塩としてLiPF
6を1モル/リットルの濃度で溶解して、電解液を調製
した。
The positive electrode and the negative electrode obtained as described above were overlapped with the previously formed separator interposed therebetween, and were wound a predetermined number of times to form an electrode wound body. The wound electrode body was inserted into a cylindrical bottomed battery case and assembled. Meanwhile, an electrolytic solution was prepared as follows. Ethylene carbonate and diethyl carbonate were mixed at a predetermined ratio, respectively, to obtain an organic solvent. LiPF is used as a supporting salt in this organic solvent.
6 was dissolved at a concentration of 1 mol / liter to prepare an electrolytic solution.

【0033】次いで、図1に示す手順の流れにより電池
を組み立てた。先ず、高真空を保持することができる真
空チャンバーを備え、真空チャンバー内を120℃以上
で加熱できる真空乾燥機を用意し、電極巻回体が組み付
けられた電池ケースを真空チャンバー内に設置した。真
空チャンバー内を1Torr以下の真空度にした後、真
空チャンバー内を120℃に加熱して、電極巻回体を電
池ケースとともに8時間乾燥した。
Next, a battery was assembled according to the procedure shown in FIG. First, a vacuum dryer provided with a vacuum chamber capable of maintaining a high vacuum and capable of heating the inside of the vacuum chamber at a temperature of 120 ° C. or higher was prepared, and a battery case with an electrode wound body was installed in the vacuum chamber. After the inside of the vacuum chamber was evacuated to 1 Torr or less, the inside of the vacuum chamber was heated to 120 ° C., and the wound electrode body was dried together with the battery case for 8 hours.

【0034】続いて、真空チャンバー内に乾燥した空気
を導入して、真空チャンバー内を常圧にした後、電池ケ
ース内に先に調製した電解液を注入した。電池ケースに
蓋を取り付け、かしめを行って電池ケース内を密封し
た。こうして、正極及び負極の間にセパレータを介設し
た巻回型リチウム二次電池を完成した。 (比較例1)セパレータとして、ポリエチレンからなる
セパレータ(東燃タピルス株式会社製の製品No.SE
TERA E25MMS)を用いた他は、実施例1と同
様にして巻回型リチウム二次電池を作製した。 (比較例2)実施例1と同様にして、正極及び負極を形
成するとともに電解液を調製した。次いで、比較例1と
同様のセパレータを用い、図2に示す手順の流れにより
電池を組み立てた。
Subsequently, dry air was introduced into the vacuum chamber to bring the inside of the vacuum chamber to normal pressure, and then the previously prepared electrolytic solution was injected into the battery case. A cover was attached to the battery case, and caulking was performed to seal the inside of the battery case. Thus, a wound lithium secondary battery in which the separator was interposed between the positive electrode and the negative electrode was completed. Comparative Example 1 As a separator, a separator made of polyethylene (product No. SE manufactured by Tonen Tapils Co., Ltd.)
A wound lithium secondary battery was produced in the same manner as in Example 1 except that TERA E25MMS) was used. Comparative Example 2 A positive electrode and a negative electrode were formed and an electrolyte was prepared in the same manner as in Example 1. Next, using the same separator as in Comparative Example 1, a battery was assembled according to the flow of the procedure shown in FIG.

【0035】実施例1で用いた真空乾燥機と同じ真空乾
燥機を用意し、正極及び負極を真空チャンバー内に設置
した。真空チャンバー内を1Torr以下の真空度にし
た後、真空チャンバー内を120℃に加熱して、正極及
び負極を8時間乾燥した。続いて、ドライルーム内で、
正極と負極との間にセパレータが介在するようにそれら
正極、負極及びセパレータを所定数巻回して電極巻回体
を形成した。
The same vacuum dryer as that used in Example 1 was prepared, and the positive electrode and the negative electrode were set in a vacuum chamber. After the inside of the vacuum chamber was evacuated to 1 Torr or less, the inside of the vacuum chamber was heated to 120 ° C., and the positive electrode and the negative electrode were dried for 8 hours. Then, in the dry room,
A predetermined number of turns of the positive electrode, the negative electrode, and the separator were wound so that the separator was interposed between the positive electrode and the negative electrode, to form an electrode wound body.

【0036】この電極巻回体を円筒状の有底電池ケース
に挿入した後、電池ケース内に先に調製した電解液を注
入した。最後に、電池ケースに蓋を取り付け、かしめを
行って電池ケース内を密封した。こうして、正極及び負
極の間にセパレータを介設した巻回型リチウム二次電池
を完成した。 (実施例2)本実施例では、絶縁性電解質透過体として
負極の表面に多孔質皮膜が形成された巻回型のリチウム
イオン二次電池を次のようにして作製した。
After inserting this electrode wound body into a cylindrical bottomed battery case, the previously prepared electrolytic solution was injected into the battery case. Finally, a lid was attached to the battery case, and caulking was performed to seal the inside of the battery case. Thus, a wound lithium secondary battery in which the separator was interposed between the positive electrode and the negative electrode was completed. (Example 2) In this example, a wound lithium ion secondary battery in which a porous film was formed on the surface of a negative electrode as an insulative electrolyte permeant was manufactured as follows.

【0037】正極は、実施例1と同様にして形成した。
一方、負極は次のようにして形成した。先ず、炭素材と
してMCMB粉末を用意し、PVDFとともに所定の割
合で所定量のNMPとともに良く混合してペースト状の
負極用合剤を得た。次いで、この負極用合剤を銅箔にブ
レードコーターを用いて塗布した。この塗布した負極用
合剤を高温槽で乾燥させることにより合剤中のNMPを
揮発させて除去し、合剤を固化させた。最後に、この固
化させた負極用合剤を所定の密度となるようにプレス成
形して、負極活物質層を形成した。
The positive electrode was formed in the same manner as in Example 1.
On the other hand, the negative electrode was formed as follows. First, MCMB powder was prepared as a carbon material, and mixed well with PVDF at a predetermined ratio with a predetermined amount of NMP to obtain a paste-like negative electrode mixture. Next, this negative electrode mixture was applied to a copper foil using a blade coater. The applied negative electrode mixture was dried in a high-temperature bath to volatilize and remove NMP in the mixture, thereby solidifying the mixture. Lastly, the solidified negative electrode mixture was press-formed so as to have a predetermined density to form a negative electrode active material layer.

【0038】次いで、ポリフェニレンエーテル・リチウ
ムビストリフルオロメチルスルホニルイミドをNMPに
溶解して合剤を得た。この合剤をブレードコーターを用
いて負極活物質層の表面上に塗布し、負極活物質層上に
合剤層を形成した。この合剤層を負極活物質層及び集電
体もろともイソプロピルアルコール液に所定時間浸漬し
た。その結果、この合剤層中にポリフェニレンエーテル
が均質に析出した。
Next, polyphenylene ether / lithium bistrifluoromethylsulfonylimide was dissolved in NMP to obtain a mixture. This mixture was applied on the surface of the negative electrode active material layer using a blade coater to form a mixture layer on the negative electrode active material layer. This mixture layer was immersed in an isopropyl alcohol solution for a predetermined time, together with the negative electrode active material layer and the current collector. As a result, polyphenylene ether was uniformly deposited in the mixture layer.

【0039】この合剤層を熱風乾燥機を用いて乾燥させ
た。その結果、析出させたポリフェニレンエーテルが負
極活物質層上に多孔質被膜となって残された。こうし
て、多孔質被膜を一体的に有する負極が形成された。以
上で得られた正極及び負極をそれらの間に多孔質皮膜が
挟まれるように重ね合わせ、所定数巻回して電極巻回体
を形成した。この電極巻回体を円筒状の有底電池ケース
に挿入して組み付けた。
This mixture layer was dried using a hot air drier. As a result, the deposited polyphenylene ether was left as a porous film on the negative electrode active material layer. Thus, a negative electrode having a porous coating integrally was formed. The positive electrode and the negative electrode obtained above were overlapped so that a porous film was sandwiched between them, and a predetermined number of turns were formed to form an electrode wound body. The wound electrode body was inserted into a cylindrical bottomed battery case and assembled.

【0040】その一方で、実施例1と同様にして電解液
を調製した。次いで、実施例1で用いた真空乾燥機と同
じ真空乾燥機を用意し、電極巻回体が組み付けられた電
池ケースを真空チャンバー内に設置した。真空チャンバ
ー内を1Torr以下の真空度にした後、真空チャンバ
ー内を120℃に加熱して、電極巻回体を電池ケースと
ともに8時間乾燥した。
On the other hand, an electrolytic solution was prepared in the same manner as in Example 1. Next, the same vacuum dryer as the vacuum dryer used in Example 1 was prepared, and the battery case to which the electrode winding body was attached was placed in a vacuum chamber. After the inside of the vacuum chamber was evacuated to 1 Torr or less, the inside of the vacuum chamber was heated to 120 ° C., and the wound electrode body was dried together with the battery case for 8 hours.

【0041】続いて、真空チャンバー内に乾燥した空気
を導入して、真空チャンバー内を常圧にした後、電池ケ
ース内に先に調製した電解液を注入した。電池ケースに
蓋を取り付け、かしめを行って電池ケース内を密封し
た。こうして、負極の表面に多孔質皮膜が形成された巻
回型のリチウムイオン二次電池を完成した。 [電池の評価]以上のように、実施例1及び実施例2、
並びに比較例1及び比較例2で作製された各リチウムイ
オン二次電池について、正極と負極との間の内部抵抗を
それぞれ測定した。
Subsequently, dry air was introduced into the vacuum chamber to bring the inside of the vacuum chamber to normal pressure, and then the previously prepared electrolytic solution was injected into the battery case. A cover was attached to the battery case, and caulking was performed to seal the inside of the battery case. Thus, a wound lithium ion secondary battery in which a porous film was formed on the surface of the negative electrode was completed. [Evaluation of Battery] As described above, Examples 1 and 2
The internal resistance between the positive electrode and the negative electrode was measured for each of the lithium ion secondary batteries produced in Comparative Examples 1 and 2.

【0042】その結果、実施例1及び実施例2の各電池
については、内部抵抗の値が変わらず、絶縁性が維持さ
れていた。一方、比較例1及び比較例2の電池では、内
部抵抗が下がり、短絡していた。この比較例1の電池を
分解したところ、セパレータが収縮していることがわか
った。従って、比較例1及び比較例2で作製されたリチ
ウムイオン二次電池は、優れた電池性能を有していると
は言えないものであることがわかった。
As a result, in each of the batteries of Example 1 and Example 2, the value of the internal resistance did not change, and the insulation was maintained. On the other hand, in the batteries of Comparative Example 1 and Comparative Example 2, the internal resistance was reduced and the batteries were short-circuited. When the battery of Comparative Example 1 was disassembled, it was found that the separator had shrunk. Therefore, it was found that the lithium ion secondary batteries manufactured in Comparative Examples 1 and 2 did not have excellent battery performance.

【0043】次に、実施例1及び比較例2で作製された
各リチウムイオン二次電池から、正極活物質層、負極活
物質層及びセパレータの一部をそれぞれサンプリング
し、ドライルーム中でカールフィッシャー法により、各
サンプル中に含まれている水分の量をそれぞれ測定し
た。その測定結果をもとに、18650型電池1個分の
水分量に換算したところ、実施例1の電池では、18.
8mgの量の水分が含まれ、比較例2の電池では、2
0.6mgの量の水分が含まれていることがわかった。
Next, each of the positive electrode active material layer, the negative electrode active material layer and a part of the separator was sampled from each of the lithium ion secondary batteries prepared in Example 1 and Comparative Example 2, and was subjected to Karl Fischer The amount of water contained in each sample was measured by the method. Based on the measurement result, the water content of one 18650 type battery was converted into a value.
The battery of Comparative Example 2 contained 8 mg of water,
It was found that a water content of 0.6 mg was contained.

【0044】以上の結果より、実施例1及び実施例2の
電池の製造方法では、絶縁性電解質透過体が収縮や溶融
が起こることがなく、正極、負極及び絶縁性電解質透過
体を十分に乾燥することができることがわかる。それゆ
え、比較例の電池の製造方法に比べて、極めて短時間で
乾燥を行うことができる。また、工程が増加しているこ
ともない。
From the above results, in the method of manufacturing the batteries of Examples 1 and 2, the insulative electrolyte permeable material did not shrink or melt, and the positive electrode, the negative electrode and the insulative electrolyte permeable material were sufficiently dried. You can see that it can be done. Therefore, the drying can be performed in an extremely short time as compared with the method of manufacturing the battery of the comparative example. Also, there is no increase in the number of steps.

【0045】従って、実施例1及び実施例2の各非水電
解質電池の製造方法では、優れた電池性能を有する非水
電解質電池を生産性良く製造できることがわかる。
Accordingly, it can be seen that the non-aqueous electrolyte batteries having the excellent battery performance can be manufactured with high productivity by the non-aqueous electrolyte battery manufacturing methods of Example 1 and Example 2.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1において、電池の組立の手順の流れ
を概略的に示したフローチャートである。
FIG. 1 is a flowchart schematically showing a flow of a procedure of assembling a battery in a first embodiment.

【図2】 比較例2において、電池の組立の手順の流れ
を概略的に示したフローチャートである。
FIG. 2 is a flowchart schematically showing a flow of a procedure of assembling a battery in Comparative Example 2.

フロントページの続き (72)発明者 山田 学 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 5H003 AA08 BA01 BA02 BB32 BC05 BD01 5H014 AA02 BB01 BB03 BB05 BB08 CC01 HH08 5H021 AA06 BB01 BB04 BB12 BB13 BB17 CC04 CC17 EE01 EE02 EE21 HH06 5H024 AA02 AA12 BB02 BB03 BB10 BB18 CC02 CC04 CC12 CC20 DD09 DD17 EE09 FF11 FF19 HH11 5H029 AJ14 AK03 AL06 AM01 AM02 AM06 AM07 BJ02 BJ03 BJ04 BJ12 BJ14 BJ27 CJ02 CJ03 CJ07 CJ08 CJ12 CJ13 CJ22 DJ02 DJ04 DJ06 DJ08 DJ13 EJ01 EJ04 EJ05 EJ12 HJ14Continuation of front page (72) Inventor Manabu Yamada 1-1-1 Showa-cho, Kariya-shi, Aichi F-term in DENSO Corporation (Reference) 5H003 AA08 BA01 BA02 BB32 BC05 BD01 5H014 AA02 BB01 BB03 BB05 BB08 CC01 HH08 5H021 AA06 BB01 BB04 BB12 BB13 BB17 CC04 CC17 EE01 EE02 EE21 HH06 5H024 AA02 AA12 BB02 BB03 BB10 BB18 CC02 CC04 CC12 CC20 DD09 DD17 EE09 FF11 FF19 HH11 5H029 AJ14 AK03 AL06 AM01 AM02 AM06 AM07 BJ02 CJBJJ BJ02 C07 DJ08 DJ13 EJ01 EJ04 EJ05 EJ12 HJ14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、該正極及び該負極の間
に配設され、非水電解液を透過させる絶縁性電解質透過
体とを有する電極構成体を備えた非水電解質電池の製造
方法において、 前記絶縁性電解質透過体を、少なくとも150℃の融点
をもつ結晶性高分子及び少なくとも150℃のガラス転
移温度をもつ非晶性高分子の少なくとも一方の高分子か
ら形成するとともに、該絶縁性電解質透過体を少なくと
も80℃の温度で乾燥し、該乾燥された該絶縁性電解質
透過体を有する前記電極構成体を前記非水電解液に浸す
ことを特徴とする非水電解質電池の製造方法。
1. Production of a non-aqueous electrolyte battery provided with an electrode structure having a positive electrode, a negative electrode, and an insulating electrolyte permeant disposed between the positive electrode and the negative electrode and permeable to a non-aqueous electrolyte. The method of claim 1, wherein the insulating electrolyte permeable body is formed from at least one of a crystalline polymer having a melting point of at least 150 ° C. and an amorphous polymer having a glass transition temperature of at least 150 ° C. A method for producing a non-aqueous electrolyte battery, comprising: drying a porous electrolyte permeable body at a temperature of at least 80 ° C .; and immersing the electrode assembly having the dried insulating electrolyte permeable body in the non-aqueous electrolyte. .
【請求項2】 前記正極と前記負極との間に前記絶縁性
電解質透過体を配置した状態の前記電極構成体を少なく
とも80℃の温度雰囲気に晒して、前記電極構成体の前
記正極、前記負極、前記絶縁性電解質透過体を同時に乾
燥することを特徴とする請求項1に記載の非水電解質電
池。
2. The method according to claim 1, further comprising: exposing the electrode assembly in a state where the insulating electrolyte permeable body is disposed between the positive electrode and the negative electrode to an atmosphere of at least 80 ° C .; 2. The non-aqueous electrolyte battery according to claim 1, wherein the insulating electrolyte permeable body is dried at the same time.
【請求項3】 前記電極構成体を収容する電池ケースを
備えており、前記電極構成体を前記電池ケース内に収容
した状態で該電極構成体を乾燥することを特徴とする請
求項2に記載の非水電解質電池の製造方法。
3. The battery pack according to claim 2, further comprising a battery case accommodating the electrode assembly, wherein the electrode assembly is dried while the electrode assembly is accommodated in the battery case. Of manufacturing a non-aqueous electrolyte battery.
JP10363202A 1998-12-21 1998-12-21 Manufacture of nonaqueous electrolyte battery Pending JP2000188114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10363202A JP2000188114A (en) 1998-12-21 1998-12-21 Manufacture of nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10363202A JP2000188114A (en) 1998-12-21 1998-12-21 Manufacture of nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2000188114A true JP2000188114A (en) 2000-07-04

Family

ID=18478755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10363202A Pending JP2000188114A (en) 1998-12-21 1998-12-21 Manufacture of nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000188114A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039139A (en) * 2003-07-18 2005-02-10 Asahi Kasei Electronics Co Ltd Non-aqueous-based lithium power storage element and manufacturing method
JP2005209514A (en) * 2004-01-23 2005-08-04 Mitsubishi Heavy Ind Ltd Dryer for electrode film, electrode for non aqueous electrolysis secondary battery, and non aqueous electrolysis secondary battery
JP2009135540A (en) * 2009-03-17 2009-06-18 Asahi Kasei Corp Nonaqueous lithium power storage element and manufacturing method
DE102015109036A1 (en) 2014-06-11 2015-12-17 Jtekt Corporation A method of drying a separator for a non-aqueous electrical storage device and method of making an electrical storage apparatus
JP2016085941A (en) * 2014-10-29 2016-05-19 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery, and electrode body used therefor
US9391341B2 (en) 2011-06-29 2016-07-12 Sumitomo Electric Industries, Ltd. Manufacturing method for molten salt battery and molten salt battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039139A (en) * 2003-07-18 2005-02-10 Asahi Kasei Electronics Co Ltd Non-aqueous-based lithium power storage element and manufacturing method
JP2005209514A (en) * 2004-01-23 2005-08-04 Mitsubishi Heavy Ind Ltd Dryer for electrode film, electrode for non aqueous electrolysis secondary battery, and non aqueous electrolysis secondary battery
JP2009135540A (en) * 2009-03-17 2009-06-18 Asahi Kasei Corp Nonaqueous lithium power storage element and manufacturing method
US9391341B2 (en) 2011-06-29 2016-07-12 Sumitomo Electric Industries, Ltd. Manufacturing method for molten salt battery and molten salt battery
DE102015109036A1 (en) 2014-06-11 2015-12-17 Jtekt Corporation A method of drying a separator for a non-aqueous electrical storage device and method of making an electrical storage apparatus
JP2016085941A (en) * 2014-10-29 2016-05-19 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery, and electrode body used therefor

Similar Documents

Publication Publication Date Title
JP4743747B2 (en) Separator, manufacturing method thereof, and nonaqueous electrolyte battery
US9166250B2 (en) Separator for battery, method for manufacturing the same, and lithium secondary battery
KR100271237B1 (en) Method of fabrication a lithium ion secondary battery
KR101628901B1 (en) Flexible electrode, manufacturing method thereof and secondary battery using the same
KR100783305B1 (en) A method of assembling a cell
JP2006164761A5 (en)
KR20120025518A (en) Batteries utilizing anode coating directly on nanoporous separators
JP2008041581A (en) Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
KR20120108212A (en) Electrode assembly for secondary battery preparation method of electrode assembly thereof
KR101696625B1 (en) Separator for electrochemical device, method of preparing the same, and electrochemical device including the same
JP4031635B2 (en) Electrochemical devices
KR20010062467A (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
WO2003012896A1 (en) Porous separator and method of manufacturing the same
WO2023201913A1 (en) Integrated preparation method for lithium battery separator and battery
JP2015088430A (en) Nonaqueous electrolyte secondary battery separator, and nonaqueous electrolyte secondary battery having the same
JP2002042877A (en) Nonaqueous electrolyte secondary battery
JP2001325951A (en) Nonaqueous electrolyte secondary cell electrode, its manufacturing method and nonaqueous electrolyte secondary cell
JP4565713B2 (en) Sheet-like lithium battery structure and method for producing sheet-like lithium battery
JP3297034B2 (en) Secondary battery and method of manufacturing the same
JP2000188114A (en) Manufacture of nonaqueous electrolyte battery
US20220247034A1 (en) Method for manufacturing separator and separator manufactured thereby
JP3183270B2 (en) Manufacturing method of organic electrolyte battery
CN115579508A (en) Sodium ion battery diaphragm and preparation method thereof
JP2005108454A (en) Nonaqueous electrolyte secondary battery
JP2001319641A (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080502