JP2000186910A - Optical displacement gauge - Google Patents

Optical displacement gauge

Info

Publication number
JP2000186910A
JP2000186910A JP10363095A JP36309598A JP2000186910A JP 2000186910 A JP2000186910 A JP 2000186910A JP 10363095 A JP10363095 A JP 10363095A JP 36309598 A JP36309598 A JP 36309598A JP 2000186910 A JP2000186910 A JP 2000186910A
Authority
JP
Japan
Prior art keywords
light
optical displacement
measured
light receiving
displacement meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10363095A
Other languages
Japanese (ja)
Inventor
Yasushi Yoshida
吉田  康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP10363095A priority Critical patent/JP2000186910A/en
Publication of JP2000186910A publication Critical patent/JP2000186910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely direct regular reflected light to be incident on the area of a light-receiving face, even if an optical displacement gauge is inclined slightly with respect to a measured object. SOLUTION: This triangulation type optical displacement gauge has a projection means 2 for irradiating a measured object 6 which is disposed in a slant direction to the measured object 6 having a surface, such as a mirror surface, a glossy surface, a glass surface, or the like; a projection lens 3 for condensing irradiation light 101 irradiated obliquely on the measured object 6 from the projection means 2; and a light-receiving means 4 for receiving regular reflected light 102 generated by regular reflection of the irradiation light 101 on the measured object 6. The optical displacement gauge measures the displacement of the measured object 6 by a light-receiving face 5 of the light-receiving means 4. A cylindrical lens 8 for making the regular reflected light 102 incident on an area of the light-receiving face 5 of the light-receiving means 4 is disposed between the measured object 6 and the light-receiving means 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、物体からの正反射
光を利用して測定物体の変位を測定するようにした、三
角測量方式による正反射タイプの光学式変位計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specular reflection type optical displacement meter based on a triangulation method, which measures the displacement of a measurement object by using regular reflection light from the object.

【0002】[0002]

【従来の技術】従来の三角測量方式による光学式変位計
は、物体からの正反射光を利用して鏡面、光沢面または
ガラス面などの表面を有する被測定物体の変位を測定す
る正反射タイプの光学式変位計と、物体表面からの拡散
反射光を利用し、表面で光を拡散反射する被測定物体の
変位を測定する拡散反射タイプの光学式変位計が提案さ
れている。第1の従来例として、正反射タイプの光学式
変位計は図5のようになっている。11は光学式変位
計、2は被測定物体表面に斜め方向から照射光を照射す
る投光手段であって、半導体レーザやLEDなどの光学
素子、あるいは光ファイバからなる。3は投光手段2の
照射光101を被測定物体6に投光させる投光レンズで
あって、球面レンズ、非球面レンズもしくはそれらを組
み合わせたものである。4は被測定物体6の表面で正反
射した正反射光102を受光する受光手段であり、例え
ば、PSD(位置検出素子)やCCDからなる。5は受光
手段上にあり、光の入射位置を検出する受光面であり、
形状は紙面に水平方向(位置検出可能な方向)に長く、
紙面垂直方向に短い長方形形状をしている。また、受光
面5は、被測定物体6からの正反射光102に対し垂直
となるように配置されている。このような光学式変位計
11は、被測定物体6が位置6aにあるとき、被測定物
体6からの正反射光102aは、受光手段4の受光面5
上の位置5aに入射する。つぎに、被測定物体6が距離
dだけ変位し位置6bに移動すると、被測定物体6から
の正反射光102bは受光面5上の位置5bに入射す
る。この受光面5上の入射位置の変化を受光手段4で検
出し、図示していない信号処理回路で信号処理すること
により、被測定物体6の変位量が測定できる。図6に、
正反射タイプの光学式変位計の側面図を示す。投光手段
2、投光レンズ3は図示していない。このように、光学
式変位計11が被測定物体6に対し垂直に設置された状
態で、正反射光102は、受光手段4の受光面5に入射
する。また、第2の従来例として、拡散反射タイプの光
学式変位計は図7のようになっている。12は光学式変
位計、2は投光手段、3は投光レンズ、4は受光手段で
あり、投光手段2から被測定物体6の表面へ照射光を垂
直に照射するために投光手段2と投光レンズ3を被測定
物体6の表面に向かって垂直に配置してある。7は被測
定物体6と受光手段4の間に設けられ、被測定物体6表
面で拡散反射された拡散反射光の一部を受光面上に集光
させる結像レンズ、8は結像レンズ7と受光手段4の間
に設けられ、紙面に垂直方向の集光を行い、光のスポッ
トを円形に近づけ輝度を上げるためのシリンドリカルレ
ンズ8である。このような光学式変位計12は、被測定
物体6が位置6aにあるとき、投光手段2から照射され
た照射光101は、被測定物体6の表面で拡散反射され
る。この拡散反射光の一部104aを結像レンズ7で集
光し、さらにシリンドリカルレンズ8で紙面垂直方向に
のみ集光し、受光手段4の受光面5上の位置5aに入射
する。つぎに、被測定物体6が距離dだけ変位し位置6
bに移動すると、被測定物体6からの拡散反射光の一部
104bは受光面5上の位置5bに入射する。この受光
面5上の入射位置の変化を受光手段4で検出することに
より、被測定物体6の変位量が測定できる。
2. Description of the Related Art A conventional triangulation optical displacement meter measures the displacement of an object to be measured having a surface such as a mirror surface, a glossy surface, or a glass surface using specular reflection light from the object. And a diffuse reflection type optical displacement meter that measures the displacement of an object to be measured that diffuses and reflects light on the surface by using diffusely reflected light from the surface of the object. As a first conventional example, a regular reflection type optical displacement meter is as shown in FIG. Reference numeral 11 denotes an optical displacement meter, and 2 denotes a light projecting means for irradiating irradiation light to the surface of the object to be measured from an oblique direction. Reference numeral 3 denotes a light projecting lens for projecting the irradiation light 101 of the light projecting means 2 to the measured object 6, which is a spherical lens, an aspherical lens, or a combination thereof. Reference numeral 4 denotes light receiving means for receiving the specularly reflected light 102 specularly reflected on the surface of the measured object 6, and is composed of, for example, a PSD (Position Detector) or a CCD. 5 is a light receiving surface on the light receiving means for detecting the incident position of light,
The shape is long in the horizontal direction on the paper (the direction in which the position can be detected),
It has a rectangular shape that is short in the direction perpendicular to the paper. Further, the light receiving surface 5 is disposed so as to be perpendicular to the regular reflection light 102 from the measured object 6. When the measured object 6 is located at the position 6a, the specular reflected light 102a from the measured object 6
The light enters the upper position 5a. Next, when the measured object 6 is displaced by the distance d and moves to the position 6b, the specularly reflected light 102b from the measured object 6 enters the position 5b on the light receiving surface 5. By detecting the change of the incident position on the light receiving surface 5 by the light receiving means 4 and performing signal processing by a signal processing circuit (not shown), the displacement amount of the measured object 6 can be measured. In FIG.
FIG. 1 shows a side view of a regular reflection type optical displacement meter. The light projecting means 2 and the light projecting lens 3 are not shown. Thus, the specularly reflected light 102 enters the light receiving surface 5 of the light receiving unit 4 in a state where the optical displacement meter 11 is installed perpendicular to the measured object 6. As a second conventional example, a diffuse reflection type optical displacement meter is as shown in FIG. Reference numeral 12 denotes an optical displacement meter, 2 denotes a light projecting means, 3 denotes a light projecting lens, 4 denotes a light receiving means, and a light projecting means for vertically irradiating irradiation light from the light projecting means 2 to the surface of the measured object 6. 2 and the light projecting lens 3 are arranged vertically toward the surface of the object 6 to be measured. Reference numeral 7 denotes an image forming lens provided between the measured object 6 and the light receiving means 4 for condensing a part of the diffusely reflected light diffusely reflected on the surface of the measured object 6 on a light receiving surface. A cylindrical lens 8 provided between the light receiving unit 4 and the light receiving unit 4 for condensing light in a direction perpendicular to the paper surface, bringing the light spot closer to a circle, and increasing the luminance. In such an optical displacement meter 12, when the measured object 6 is at the position 6a, the irradiation light 101 emitted from the light projecting means 2 is diffusely reflected on the surface of the measured object 6. A part 104a of the diffuse reflected light is condensed by the imaging lens 7, further condensed only in the direction perpendicular to the paper by the cylindrical lens 8, and is incident on the position 5a on the light receiving surface 5 of the light receiving means 4. Next, the measured object 6 is displaced by the distance d and the position 6
b, a portion 104b of the diffusely reflected light from the measured object 6 enters the position 5b on the light receiving surface 5. By detecting the change of the incident position on the light receiving surface 5 by the light receiving means 4, the displacement amount of the measured object 6 can be measured.

【0003】[0003]

【発明が解決しようとする課題】ところが、第1の従来
技術では、装置の構成が拡散反射タイプのものに比べて
簡単であるが、図8のように、光学式変位計11が被測
定物体6に対し僅かでも傾くと、正反射光102が受光
面5に入射しなくなり、被測定物体の変位を測定するこ
とができなくなる。そのため、光学式変位計を設置する
際には、被測定物体6に対して光学式変位計11が傾か
ないように精度よく設置しなければならず、変位計設置
の調整が非常に難しいという問題があった。また、第2
の従来技術では、変位計の設置の際の調整が容易にで
き、被測定物体表面で拡散反射が生じるものは測定でき
るものの、例えば半導体製造に用いられるシリコンウェ
ハのような鏡面、あるいは液晶ガラス基板のようなガラ
ス面を有する被測定物体の変位を測定することは不可能
である。また、被測定物体で拡散反射された光は拡散す
るため、集光のために結像レンズが必要であり、装置の
構成が複雑になるとともに装置が高価になるという問題
があった。そこで、本発明は、光学式変位計が被測定物
体に対して僅かでも傾いたとしても、正反射光を受光面
の領域内に確実に入射することができると共に、構造が
簡単で且つ安価な光学式変位計を提供することを目的と
する。
However, in the first prior art, the configuration of the device is simpler than that of the diffuse reflection type. However, as shown in FIG. If it is slightly inclined with respect to 6, the regular reflection light 102 does not enter the light receiving surface 5 and the displacement of the measured object cannot be measured. Therefore, when installing the optical displacement meter, it is necessary to accurately install the optical displacement meter 11 so as not to be inclined with respect to the measured object 6, and it is very difficult to adjust the displacement meter installation. was there. Also, the second
According to the prior art, it is possible to easily adjust the displacement meter at the time of installation, and it is possible to measure the object where diffuse reflection occurs on the surface of the object to be measured, but for example, a mirror surface such as a silicon wafer used in semiconductor manufacturing, or a liquid crystal glass substrate. It is impossible to measure the displacement of an object to be measured having a glass surface as described above. In addition, since the light diffusely reflected by the object to be measured is diffused, an image forming lens is required for condensing light, which causes a problem that the configuration of the apparatus becomes complicated and the apparatus becomes expensive. Therefore, the present invention can reliably enter specularly reflected light into the area of the light receiving surface even if the optical displacement meter is slightly inclined with respect to the measured object, and has a simple and inexpensive structure. An object of the present invention is to provide an optical displacement meter.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は鏡面、光沢面またはガラス面などの表面を
有する被測定物体に対して傾斜した方向に設けられると
共に光を照射する投光手段と、前記投光手段から前記被
測定物体に向かって斜め方向に照射される照射光を集光
する投光レンズと、前記被測定物体によって照射光が正
反射された正反射光を受光する受光手段とを備え、前記
受光手段の受光面により前記被測定物体の変位を測定す
る三角測量方式の光学式変位計において、前記被測定物
体と前記受光手段との間に、前記正反射光を前記受光手
段の受光面の領域内に入射させるようにしたシリンドリ
カルレンズを配置したことを特徴とする。また、前記受
光手段は、位置検出素子PSDまたはCCDからなるも
のである。上記手段により、光学式変位計が傾いても、
被測定物体からの正反射光はシリンドリカルレンズで屈
折し、受光面に入射する。そのため、光学式変位計の設
置調整が容易となる。また、被測定物体からの正反射光
を受光するため正反射タイプの光学式変位計であるた
め、被測定物体表面が鏡面、光沢面またはガラス面など
の被測定物体の変位を測定することは可能である。ま
た、正反射光を集光のための結像レンズは必要なく、装
置の構成が簡単であるとともに装置が安価になる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a light projecting device which is provided in an inclined direction with respect to an object to be measured having a surface such as a mirror surface, a glossy surface or a glass surface and irradiates light. Means, a light projecting lens for condensing irradiation light emitted from the light projecting means in an oblique direction toward the object to be measured, and receiving regular reflection light obtained by regularly reflecting the irradiation light by the object to be measured. A light-receiving means, and a triangulation optical displacement meter for measuring the displacement of the object to be measured by a light-receiving surface of the light-receiving means, wherein the specularly reflected light is provided between the object to be measured and the light-receiving means. It is characterized in that a cylindrical lens is arranged so as to enter the area of the light receiving surface of the light receiving means. Further, the light receiving means comprises a position detecting element PSD or CCD. By the above means, even if the optical displacement meter is tilted,
The specularly reflected light from the object to be measured is refracted by the cylindrical lens and enters the light receiving surface. Therefore, installation adjustment of the optical displacement meter becomes easy. In addition, since it is an optical displacement meter of the specular reflection type to receive specularly reflected light from the measured object, it is not possible to measure the displacement of the measured object such as a mirror surface, glossy surface or glass surface of the measured object surface. It is possible. Further, an imaging lens for condensing specularly reflected light is not required, so that the configuration of the apparatus is simple and the apparatus is inexpensive.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図1は本発明の実施例を示す光学式変
位計の正面図である。図において、従来と同じ構成要素
については同じ符号を付してその説明を省略し、異なる
点のみ説明する。本発明が従来と異なる構成は、以下の
とおりである。すなわち、被測定物体6と受光手段4と
の間に、シリンドリカルレンズ8を配置し、正反射光1
02を受光手段4の受光面5の領域内に入射させるよう
にしたものである。このうち、受光手段4の受光面5と
シリンドリカルレンズ8は、平行に配置してある。この
ような構成で、被測定物体6が距離dだけ変位し位置6
aから6bに移動すると、被測定物体6からの正反射光
102bは受光面5上の位置5bに入射し、受光面5上
の入射位置の変化を受光手段4で検出する。図2は、光
学式変位計1が角度θだけ傾いたときの側面図である。
101は投光手段2より被測定物体6に照射された照射
光、102は被測定物体6の表面で正反射した正反射
光、103はシリンドリカルレンズ8で正反射光102
が屈折した屈折光である。図のように光学式変位計1が
角度θだけ傾くと、正反射光102の角度は倍の2θ傾
くことになる。仮に図2において、シリンドリカルレン
ズ8がない場合は、受光手段4の受光面5に正反射光1
02を入射できないが、シリンドリカルレンズ8を用い
ることにより、正反射光102がシリンドリカルレンズ
8で屈折し受光面5上に屈折光103を入射することが
可能となる。なお、本発明の光学式変位計において、被
測定物体と受光手段の間に結像レンズは必需ではない
が、必要に応じて結像レンズを用いてもかまわない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a front view of an optical displacement meter showing an embodiment of the present invention. In the drawings, the same components as those in the related art are denoted by the same reference numerals, and description thereof will be omitted. Only different points will be described. The configuration in which the present invention is different from the conventional one is as follows. That is, the cylindrical lens 8 is disposed between the measured object 6 and the light receiving unit 4 so that the specular reflected light 1
02 is made to enter the area of the light receiving surface 5 of the light receiving means 4. The light receiving surface 5 of the light receiving means 4 and the cylindrical lens 8 are arranged in parallel. With such a configuration, the measured object 6 is displaced by the distance d and the position 6
When moving from a to 6b, the specularly reflected light 102b from the measured object 6 enters the position 5b on the light receiving surface 5, and the light receiving means 4 detects a change in the incident position on the light receiving surface 5. FIG. 2 is a side view when the optical displacement meter 1 is inclined by the angle θ.
Reference numeral 101 denotes irradiation light emitted from the light projecting means 2 to the object 6 to be measured, 102 denotes specular reflected light regularly reflected on the surface of the measured object 6, and 103 denotes specular reflected light 102 by the cylindrical lens 8.
Is refracted light. When the optical displacement meter 1 is tilted by the angle θ as shown in the figure, the angle of the specularly reflected light 102 is doubled by 2θ. In FIG. 2, if there is no cylindrical lens 8, the specularly reflected light 1
02 cannot be incident, but by using the cylindrical lens 8, the regular reflected light 102 can be refracted by the cylindrical lens 8 and the refracted light 103 can be incident on the light receiving surface 5. In the optical displacement meter of the present invention, an imaging lens is not indispensable between the object to be measured and the light receiving means, but an imaging lens may be used if necessary.

【0006】[0006]

【実施例】上記実施形態の1つの組み合わせとして光学
式変位計を製作し、実際に行った実施例について説明す
る。投光手段2として波長670nmの半導体レーザ、
投光レンズ3として非球面レンズ、受光手段4としてP
SDを用いた。受光手段4の受光面5は、位置検出可能
な方向の長さが3mm、紙面垂直方向の長さが1mmで
ある。光学式変位計1のフレームから被測定物体6間で
の距離が30mmで、照射光の入射角ψ1と正反射光の
反射角ψ2がともに30度になるように、投光手段2、
投光レンズ3、受光手段4とシリンドリカルレンズ8を
配置した。上記光学式変位計の信号処理回路のブロック
図を図3に示す。100は受光手段として用いたPSD
で、1つのカソードC1と2つのアノードA1、A2をも
つ。カソードC1とアノードA1間に流れる電流I1と、
カソードC1とアノードA2間に流れる電流I2をそれぞ
れ電流/電圧変換器101、102によりそれぞれ電圧
1、V2に変換した。つぎに電圧V1、V2を割り算器1
03に入力して、以下の演算をすることにより、光学式
変位計の出力信号Voutを求めた。 Vout=(V1−V2)/(V1+V2) 上記構成の光学式変位計で、表面が鏡面であるシリコン
ウエハの変位を測定した。ここでは、本発明の効果を調
べるために、上記実施例の構成からシリンドリカルレン
ズを取り除き、従来の正反射タイプの光学式変位計を製
作した。この従来の正反射タイプの光学式変位計は0.
4度以上傾けると、被測定物体からの正反射光が受光手
段の受光面からはずれ、変位を測定できなくなった。一
方、本発明の実施例で用いた光学式変位計は、最大3度
傾けるまで変位を測定することができた。図4は本発明
の実施例を示光学式変位計の出力信号であり、横軸に光
学式変位計のフレームから被測定物体までの距離をと
り、縦軸に光学式変位計の出力電圧をとったものであ
る。図において、光学式変位計1を2度傾けたときの変
位測定結果を示すが、光学式変位計を傾ける前と傾けた
後の出力信号の誤差は最大1μmであった。また、上記
の光学式変位計で、被測定物体を光沢のあるアルミニウ
ムや透明なガラスに変更し変位の測定を行った。どちら
の場合も光学式変位計が最大3度傾くまで変位の測定が
行えた。このことから、光学式変位計がある程度傾いて
も、被測定物体の変位を測定することに問題はないこと
がわかった。したがって、正反射形の光学式変位計にお
いて、被測定物体と受光手段との間に、シリンドリカル
レンズを配置し、正反射光を受光手段の受光面の領域内
に入射させるようにしたので。光学式変位計が傾いて
も、被測定物体からの正反射光はシリンドリカルレンズ
で屈折し、受光面に入射するため、光学式変位計の設置
調整が容易となる。また、被測定物体からの正反射光を
受光するため正反射タイプの光学式変位計であるため、
被測定物体表面が鏡面、光沢面またはガラス面などの被
測定物体の変位を何ら支障なく測定することは可能であ
る。なお、正反射光を集光のための結像レンズは必要な
く、装置の構成が簡単であるとともに装置が安くなる。
EXAMPLE An example in which an optical displacement meter was manufactured as one combination of the above-described embodiments and actually performed will be described. A semiconductor laser having a wavelength of 670 nm as the light projecting means 2,
An aspheric lens as the light projecting lens 3 and P as the light receiving means 4
SD was used. The light receiving surface 5 of the light receiving means 4 has a length of 3 mm in the direction in which the position can be detected and a length of 1 mm in the direction perpendicular to the paper. The light projecting means 2 is configured such that the distance between the frame of the optical displacement meter 1 and the measured object 6 is 30 mm, and both the incident angle 照射 1 of the irradiation light and the reflection angle ψ2 of the regular reflection light are 30 degrees.
The light projecting lens 3, the light receiving means 4, and the cylindrical lens 8 are arranged. FIG. 3 shows a block diagram of a signal processing circuit of the optical displacement meter. 100 is a PSD used as a light receiving means
And has one cathode C 1 and two anodes A 1 and A 2 . A current I 1 flowing between the cathode C 1 and the anode A 1 ,
It was converted by the voltage-V 1, V 2 by the cathode C 1 and the anode A 2 between each current / voltage converter 101 and 102 the current I 2 flowing through. Next, the voltages V 1 and V 2 are divided by a divider 1
03, the output signal Vout of the optical displacement meter was obtained by performing the following calculation. In Vout = (V 1 -V 2) / (V 1 + V 2) an optical displacement meter having the above structure, the surface was measured displacement of the silicon wafer are mirror. Here, in order to examine the effects of the present invention, a cylindrical lens was removed from the configuration of the above embodiment, and a conventional regular reflection type optical displacement meter was manufactured. This conventional regular reflection type optical displacement meter has a capacity of 0.1 mm.
When tilted by 4 degrees or more, the specularly reflected light from the measured object deviated from the light receiving surface of the light receiving means, and the displacement could not be measured. On the other hand, the optical displacement meter used in the example of the present invention was able to measure the displacement up to a maximum inclination of 3 degrees. FIG. 4 shows an embodiment of the present invention, which is an output signal of an optical displacement meter. The horizontal axis represents the distance from the frame of the optical displacement meter to the object to be measured, and the vertical axis represents the output voltage of the optical displacement meter. It was taken. In the figure, the displacement measurement result when the optical displacement meter 1 is tilted twice is shown. The error of the output signal before and after the optical displacement meter 1 was tilted was 1 μm at maximum. Further, with the above optical displacement meter, the object to be measured was changed to glossy aluminum or transparent glass, and the displacement was measured. In both cases, the displacement could be measured until the optical displacement meter was tilted up to 3 degrees. From this, it was found that there was no problem in measuring the displacement of the object to be measured even if the optical displacement meter was inclined to some extent. Therefore, in the regular reflection type optical displacement meter, a cylindrical lens is arranged between the object to be measured and the light receiving means, so that the regular reflection light is made to enter the area of the light receiving surface of the light receiving means. Even if the optical displacement meter is tilted, the specularly reflected light from the measured object is refracted by the cylindrical lens and enters the light receiving surface, so that the installation and adjustment of the optical displacement meter becomes easy. In addition, because it is a regular reflection type optical displacement meter to receive regular reflection light from the measured object,
It is possible to measure the displacement of the object to be measured such that the surface of the object to be measured is a mirror surface, a glossy surface, a glass surface, or the like without any trouble. In addition, an imaging lens for condensing the specularly reflected light is not required, and the configuration of the apparatus is simple and the apparatus is inexpensive.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、鏡
面、光沢面またはガラス面などの表面を有する被測定物
体からの正反射光を受光する正反射タイプの光学式変位
計において、被測定物体と受光手段との間にシリンドリ
カルレンズを配置したため、光学式変位計が傾いても、
被測定物体からの正反射光はシリンドリカルレンズで屈
折し、受光面に入射するため、光学式変位計の設置調整
が容易という効果がある。また、正反射光を集光のため
の結像レンズは必要なく、装置の構成が簡単であるとと
もに装置が安くなる。
As described above, according to the present invention, a specular reflection type optical displacement meter for receiving specularly reflected light from an object to be measured having a surface such as a mirror surface, a glossy surface, or a glass surface, Because the cylindrical lens is placed between the measured object and the light receiving means, even if the optical displacement meter is tilted,
Since the specularly reflected light from the object to be measured is refracted by the cylindrical lens and enters the light receiving surface, there is an effect that installation adjustment of the optical displacement meter is easy. Further, an imaging lens for condensing specularly reflected light is not required, so that the configuration of the apparatus is simple and the apparatus is inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す光学式変位計の正面図で
ある。
FIG. 1 is a front view of an optical displacement meter showing an embodiment of the present invention.

【図2】本発明の実施例を示す光学式変位計の側面図で
ある。。
FIG. 2 is a side view of an optical displacement meter showing an embodiment of the present invention. .

【図3】本発明の実施例を示す光学式変位計の信号処理
ブロック図である。
FIG. 3 is a signal processing block diagram of an optical displacement meter showing an embodiment of the present invention.

【図4】本発明の実施例を示す光学式変位計の出力信号
である。
FIG. 4 is an output signal of an optical displacement meter showing an embodiment of the present invention.

【図5】第1の従来例である光学式変位計の正面図であ
る。
FIG. 5 is a front view of an optical displacement meter as a first conventional example.

【図6】第1の従来例である光学式変位計の側面図であ
る。
FIG. 6 is a side view of an optical displacement meter as a first conventional example.

【図7】第2の従来例である光学式変位計の正面図であ
る。
FIG. 7 is a front view of an optical displacement meter as a second conventional example.

【図8】第1の従来例の欠点を示す光学式変位計の側面
図である。
FIG. 8 is a side view of an optical displacement meter showing a defect of the first conventional example.

【符号の説明】[Explanation of symbols]

1:光学式変位計 2:投光手段 3:投光レンズ 4:受光手段 5:受光面 6:被測定物体 8:シリンドリカルレンズ 101:照射光 102:正反射光 103:屈折光 1: Optical displacement meter 2: Light emitting means 3: Light emitting lens 4: Light receiving means 5: Light receiving surface 6: Object to be measured 8: Cylindrical lens 101: Irradiation light 102: Regular reflection light 103: Refraction light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鏡面、光沢面またはガラス面などの表面を
有する被測定物体に対して傾斜した方向に設けられると
共に光を照射する投光手段と、前記投光手段から前記被
測定物体に向かって斜め方向に照射される照射光を集光
する投光レンズと、前記被測定物体によって照射光が正
反射された正反射光を受光する受光手段とを備え、前記
受光手段の受光面により前記被測定物体の変位を測定す
る三角測量方式の光学式変位計において、 前記被測定物体と前記受光手段との間に、前記正反射光
を前記受光手段の受光面の領域内に入射させるようにし
たシリンドリカルレンズを配置したことを特徴とする光
学式変位計。
1. A light projecting means provided in a direction inclined with respect to a measured object having a surface such as a mirror surface, a glossy surface, or a glass surface, and irradiating light, and a light projecting means directed from the light projecting device to the measured object. A light projecting lens for condensing irradiation light irradiated in an oblique direction, and light receiving means for receiving regular reflection light in which the irradiation light is regularly reflected by the object to be measured, and a light receiving surface of the light receiving means In an optical displacement meter of a triangulation method for measuring a displacement of an object to be measured, between the object to be measured and the light receiving means, the specularly reflected light is made to enter a region of a light receiving surface of the light receiving means. An optical displacement meter comprising a cylindrical lens arranged therein.
【請求項2】前記受光手段は、位置検出素子PSDまた
はCCDからなることを特徴とする請求項1記載の光学
式変位計。
2. The optical displacement meter according to claim 1, wherein said light receiving means comprises a position detecting element PSD or CCD.
JP10363095A 1998-12-21 1998-12-21 Optical displacement gauge Pending JP2000186910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10363095A JP2000186910A (en) 1998-12-21 1998-12-21 Optical displacement gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10363095A JP2000186910A (en) 1998-12-21 1998-12-21 Optical displacement gauge

Publications (1)

Publication Number Publication Date
JP2000186910A true JP2000186910A (en) 2000-07-04

Family

ID=18478495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10363095A Pending JP2000186910A (en) 1998-12-21 1998-12-21 Optical displacement gauge

Country Status (1)

Country Link
JP (1) JP2000186910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048575A (en) * 2008-08-19 2010-03-04 Sharp Corp Optical distance measuring sensor and apparatus with sensor mounted
EP2503360A1 (en) * 2011-03-25 2012-09-26 Baumer Innotec AG Method for optically detecting at least partially transparent objects and use of a light source and an optical sensor
CN106352801A (en) * 2016-10-17 2017-01-25 海伯森技术(深圳)有限公司 Laser triangular displacement sensor and correction method of non-linear errors of laser triangular displacement sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048575A (en) * 2008-08-19 2010-03-04 Sharp Corp Optical distance measuring sensor and apparatus with sensor mounted
EP2503360A1 (en) * 2011-03-25 2012-09-26 Baumer Innotec AG Method for optically detecting at least partially transparent objects and use of a light source and an optical sensor
EP2503360B1 (en) 2011-03-25 2020-08-19 Baumer Electric AG Method for optically detecting at least partially transparent objects
CN106352801A (en) * 2016-10-17 2017-01-25 海伯森技术(深圳)有限公司 Laser triangular displacement sensor and correction method of non-linear errors of laser triangular displacement sensor

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US6504615B1 (en) Optical instrument for measuring shape of wafer
JP3264634B2 (en) Surface inspection device and method
JP2010271133A (en) Optical scanning type plane inspection device
JP2000186910A (en) Optical displacement gauge
TWI658289B (en) Focusing and leveling device
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JPH07110966A (en) Method and apparatus for measurement of warp of substance
JP2003097924A (en) Shape measuring system and method using the same
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
CN105807571A (en) Focusing and leveling system used for photo-etching machine and focusing and leveling method thereof
JP3374941B2 (en) Transparent plate thickness measuring device
JPH0968462A (en) Device for measuring reflection coefficient
JP3222214B2 (en) Target surface position detection device
JP2002206920A (en) Inclination detection method and device thereof
JP2565274B2 (en) Height measuring device
JPH10103915A (en) Apparatus for detecting position of face
JPH10176927A (en) Inclination sensor
KR200144702Y1 (en) Lens focus compensator for semiconductor manufacturing equipment
KR200211258Y1 (en) Semiconductor Wafer Deposition Thickness Measuring Equipment
JPH0661115A (en) Gap detection and setting device
KR100187793B1 (en) Thickness measuring method and equipment of a transparent board plank structure
JPH10281721A (en) Displacement measuring device
CN115542672A (en) Focusing and leveling device and photoetching machine
JP2001108406A (en) Device for measuring end surface position of plate body