JP2000186866A - Absorption refrigeration apparatus - Google Patents

Absorption refrigeration apparatus

Info

Publication number
JP2000186866A
JP2000186866A JP10363865A JP36386598A JP2000186866A JP 2000186866 A JP2000186866 A JP 2000186866A JP 10363865 A JP10363865 A JP 10363865A JP 36386598 A JP36386598 A JP 36386598A JP 2000186866 A JP2000186866 A JP 2000186866A
Authority
JP
Japan
Prior art keywords
refrigerant
concentration
regenerator
liquid
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10363865A
Other languages
Japanese (ja)
Inventor
Yasuhei Hayashi
泰平 林
Norio Joden
紀夫 上殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP10363865A priority Critical patent/JP2000186866A/en
Publication of JP2000186866A publication Critical patent/JP2000186866A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep stable capability by eliminating refrigerant vapor leakage into a regenerator and an overflow of an absorption solution into a refrigerant recovery tank. SOLUTION: An intermediate concentration absorption solution separation cylinder 12 is enclosed with an absorption solution limit plate 15 equipped with a valve mechanism 16. When a liquid level of an absorption solution in the intermediate concentration absorption solution separation cylinder 12 is low, refrigerant vapor separated from an absorber passes through the valve mechanism 16 and is moved to a refrigerant recovery tank 10. When the liquid level of the absorption solution is high, a float valve structure 17 closes a valve hole and hence the absorption solution is prevented from being overflowed to the refrigerant recovery tank 10. The refrigerant vapor produced here moves from a small opening 18 to the refrigerant recovery tank 10, but since an opening area is small, the amount of the movement is restricted and hence pressure in the intermediate concentration absorption solution separation cylinder 12 becomes higher, whereby supply of a solution to the regenerator from the absorption solution pump is reduced and the amount of discharge from the regenerator is increased. Further, variations of the liquid level of the absorption solution are limited, and hence stable capability is kept.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、臭化リチウムなど
の水溶液を吸収液として吸収サイクルを形成した吸収式
冷凍装置に関し、特に、加熱手段によって加熱される再
生器内の吸収液の液位の安定化に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating apparatus in which an absorption cycle is formed by using an aqueous solution of lithium bromide or the like as an absorbing liquid, and more particularly, to the level of an absorbing liquid in a regenerator heated by a heating means. Related to stabilization.

【0002】[0002]

【従来の技術】従来、吸収式冷凍装置を用いた吸収式空
調装置では、吸収式冷凍装置の吸収サイクルにおいて、
加熱手段によって高温再生器内の低濃度吸収液を加熱し
て、低濃度吸収液内の冷媒を蒸発させて分離して中濃度
吸収液とし、さらに、高温再生器内の冷媒蒸気の潜熱に
よって低温再生器内の中濃度吸収液を加熱して、同様
に、中濃度吸収液から冷媒を蒸発分離して高濃度吸収液
とする。
2. Description of the Related Art Conventionally, in an absorption air conditioner using an absorption refrigeration system, an absorption cycle of the absorption refrigeration system is
The low-concentration absorbent in the high-temperature regenerator is heated by the heating means, and the refrigerant in the low-concentration absorbent is evaporated and separated into a medium-concentration absorbent, and the low-temperature absorbent is cooled by the latent heat of the refrigerant vapor in the high-temperature regenerator. The medium concentration absorbent in the regenerator is heated, and similarly, the refrigerant is evaporated and separated from the medium concentration absorbent to form a high concentration absorbent.

【0003】低温再生器で濃縮された高濃度吸収液は、
吸収器へ供給され、各再生器で分離された冷媒は、凝縮
器で凝縮して冷媒液とされて、蒸発器へ供給される。蒸
発器では、蒸発コイル上で供給される冷媒液を蒸発さ
せ、この冷媒液の蒸発によって蒸発コイル(冷温水配
管)内の冷温水から熱を奪って、冷却された冷温水を冷
却源とする。
[0003] The high-concentration absorbent concentrated in a low-temperature regenerator
The refrigerant supplied to the absorber and separated by each regenerator is condensed by the condenser to be a refrigerant liquid, and supplied to the evaporator. In the evaporator, the refrigerant liquid supplied on the evaporator coil is evaporated, and the refrigerant liquid evaporates to remove heat from the cold / hot water in the evaporator coil (cold / hot water pipe) to use the cooled cold / hot water as a cooling source. .

【0004】他方、吸収器では、蒸発器で発生した冷媒
蒸気を高濃度吸収液に吸収させて、低濃度吸収液にする
とともに、吸収時に発生する熱を冷却コイル(冷却水配
管)内を通過する冷却水で冷却する。吸収器で低濃度に
なった吸収液は、吸収液ポンプによって高温再生器へ戻
され、上記吸収サイクルにおいて循環を繰り返す。
[0004] On the other hand, in the absorber, the refrigerant vapor generated in the evaporator is absorbed by the high-concentration absorbing liquid to make the low-concentration absorbing liquid, and the heat generated at the time of absorption is passed through a cooling coil (cooling water pipe). Cool with cooling water. The absorbent having a low concentration in the absorber is returned to the high-temperature regenerator by the absorbent pump, and the circulation is repeated in the absorption cycle.

【0005】上記吸収サイクルの循環において、吸収器
から高温再生器へ吸収液を戻すための吸収液ポンプは、
バーナ等の加熱手段によって加熱されて高温、高圧とな
っている高温再生器内へ吸収液を送り込むに際して、高
温再生器内の圧力より大きな圧力を確保しなければなら
ない。しかし、高温再生器内の圧力は一定ではなく、運
転状態(冷凍負荷)に応じて変化する。このため、従来
では、高温再生器内の吸収液の温度を検知することによ
って、高温再生器内の圧力を代用検知して、検知された
吸収液温度に基づいて吸収液ポンプの回転数を制御して
いる。
[0005] In the circulation of the absorption cycle, the absorption pump for returning the absorption liquid from the absorber to the high-temperature regenerator includes:
When sending the absorbing liquid into a high-temperature, high-pressure regenerator heated by a heating means such as a burner, a pressure higher than the pressure in the high-temperature regenerator must be secured. However, the pressure in the high-temperature regenerator is not constant, and changes according to the operation state (refrigeration load). For this reason, conventionally, by detecting the temperature of the absorbent in the high-temperature regenerator, the pressure in the high-temperature regenerator is detected instead, and the rotation speed of the absorbent pump is controlled based on the detected temperature of the absorbent. are doing.

【0006】[0006]

【発明が解決しようとする課題】吸収式冷凍装置におい
ては、高温再生器内の圧力は、吸収液温度が同じであっ
ても高温再生器内へ戻される吸収液の濃度の影響を受け
る。このため、上記のとおり高温再生器内の圧力を検知
する代わりに、高温再生器内の吸収液温度を検知するよ
うに構成された従来の吸収式冷凍装置においては、実際
には、高温再生器内の圧力は吸収液温度だけでは特定す
ることができない。従って、吸収液温度に基づいて吸収
液ポンプの回転数を制御することでは、高温再生器内の
吸収液の液位を常に一定に制御することができず、高温
再生器内の吸収液の液位が、高温再生器から低温再生器
へ中濃度吸収液を供給するための中濃度吸収液流路の流
出口より下がってしまうと、高温再生器内の冷媒蒸気が
中濃度吸収液流路へ漏れて、低温再生器へ流出してしま
うなどの不具合を生じて、効率の低下を招くなどの問題
が生じる。逆に、高温再生器内の吸収液の液位が上昇し
て高温再生器の外の冷媒回収タンクに溢れだすと、吸収
液から分離された冷媒と吸収液が混合してしまい、冷凍
能力低下をもたらすという問題がある。
In the absorption refrigeration system, the pressure in the high-temperature regenerator is affected by the concentration of the absorbent returned to the high-temperature regenerator even if the temperature of the absorbent is the same. Therefore, instead of detecting the pressure in the high-temperature regenerator as described above, in the conventional absorption refrigerating apparatus configured to detect the temperature of the absorbent in the high-temperature regenerator, actually, the high-temperature regenerator The internal pressure cannot be specified only by the absorption liquid temperature. Therefore, by controlling the number of revolutions of the absorbent pump based on the temperature of the absorbent, the level of the absorbent in the high-temperature regenerator cannot be constantly controlled, and the level of the absorbent in the high-temperature regenerator cannot be controlled. When the temperature drops below the outlet of the medium-concentration absorbent flow path for supplying the medium-concentration absorbent from the high-temperature regenerator to the low-temperature regenerator, the refrigerant vapor in the high-temperature regenerator flows to the medium-concentration absorbent liquid flow path. Problems such as leakage and leakage to the low-temperature regenerator may occur, leading to problems such as a reduction in efficiency. Conversely, if the level of the absorbing liquid in the high-temperature regenerator rises and overflows into the refrigerant recovery tank outside the high-temperature regenerator, the refrigerant separated from the absorbing liquid and the absorbing liquid are mixed, and the refrigeration capacity is reduced. There is a problem that brings.

【0007】本発明は、高温再生器内の吸収液の液位の
安定化を図り、冷媒蒸気の漏れや吸収液の溢れを防止
し、安定した能力を確保することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to stabilize the liquid level of an absorbing solution in a high-temperature regenerator, to prevent refrigerant vapor from leaking and overflowing the absorbing solution, and to ensure stable performance.

【0008】[0008]

【課題を解決するための手段】この発明は、請求項1で
は、加熱手段により加熱される再生器において低濃度吸
収液を高濃度吸収液と冷媒とに分離し、蒸発器におい
て、内部を空調用熱媒体としての冷温水が流れる蒸発コ
イル上に冷媒液を散布して蒸発させるとともに前記冷温
水を冷却し、吸収器において、冷却塔に連結されるとと
もに内部を排熱用の冷却水が流れる冷却コイル上に前記
高濃度吸収液を散布して前記蒸発した冷媒を吸収させ、
冷媒を吸収して低濃度化した低濃度吸収液を低濃度吸収
液流路に設けた吸収液ポンプにより前記再生器に戻す吸
収式冷凍装置において、前記加熱手段によって加熱され
る前記再生器の加熱部から上方に向かって延長容器部を
形成し該延長容器部の下部に吸収液が流出する吸収液流
出管の開口を配置するとともに、該再生器内の吸収液の
液面で浮遊する浮き弁体によって弁口を開閉させる弁機
構を前記延長容器部の上部に設け、該弁機構の上方側を
冷媒回収部としたことを特徴とする。
According to a first aspect of the present invention, a low-concentration absorbent is separated into a high-concentration absorbent and a refrigerant in a regenerator heated by a heating means, and the inside of the evaporator is air-conditioned. A refrigerant liquid is sprayed and evaporated on an evaporating coil through which cold and hot water flows as a heat medium for cooling, and the cold and hot water is cooled. In the absorber, cooling water connected to a cooling tower and cooling water for exhaust heat flows inside. Spraying the high concentration absorbing liquid on the cooling coil to absorb the evaporated refrigerant,
In an absorption refrigeration apparatus in which a low-concentration absorbing solution that has absorbed a refrigerant and reduced in concentration is returned to the regenerator by an absorbing solution pump provided in a low-concentration absorbing solution channel, heating of the regenerator heated by the heating means A floating valve which forms an extension container part upward from the part, arranges an opening of an absorption liquid outflow pipe through which the absorption liquid flows out at the lower part of the extension container part, and floats on the level of the absorption liquid in the regenerator. A valve mechanism for opening and closing a valve port by a body is provided at an upper portion of the extension container section, and an upper side of the valve mechanism is a refrigerant recovery section.

【0009】請求項2は、請求項1において、前記延長
容器部の上部に、前記弁機構の弁口とは別に前記冷媒回
収部と連通する小開口を形成したこと特徴とする。
According to a second aspect of the present invention, in the first aspect, a small opening communicating with the refrigerant recovery portion is formed at an upper portion of the extension container portion separately from a valve port of the valve mechanism.

【0010】[0010]

【発明の作用・効果】この吸収式冷凍装置では、請求項
1では、吸収器内で冷媒を吸収して低濃度となった低濃
度吸収液は、吸収液ポンプによって再生器内へ送り込ま
れる。再生器には、加熱手段に加熱される加熱部の上方
に延長容器部が形成されていて、再生器内の吸収液の液
面で浮遊する浮き弁体によって弁口を開閉させる弁機構
を延長容器部の上部に設けている。また、延長容器部の
下部には、吸収液が流出する吸収液流出管の開口があ
る。
According to the first aspect of the present invention, in the first aspect, the low-concentration absorbing liquid that has absorbed the refrigerant in the absorber and has a low concentration is sent into the regenerator by the absorbing liquid pump. In the regenerator, an extension container part is formed above the heating part heated by the heating means, and the valve mechanism that opens and closes the valve port by a floating valve body floating on the level of the absorbent in the regenerator is extended. It is provided on the upper part of the container part. In addition, an opening of an absorbent outflow pipe through which the absorbent flows out is provided at a lower portion of the extension container portion.

【0011】従って、再生器内の吸収液の液位が低く、
弁機構の浮き弁体が弁口を閉鎖していない場合には、再
生器内へ供給されて加熱された吸収液から分離した冷媒
は、弁機構の弁口を上方向に通過して再生器の外側の冷
媒回収部へ分離される。他方、再生器内の吸収液は、冷
媒回収部と連通した再生器内の圧力に応じて、吸収液流
出管の開口から再生器外へ流出する。
Therefore, the level of the absorbing liquid in the regenerator is low,
When the floating valve body of the valve mechanism does not close the valve port, the refrigerant supplied into the regenerator and separated from the heated absorption liquid passes through the valve port of the valve mechanism in the upward direction and regenerates. To the refrigerant recovery part outside the On the other hand, the absorbent in the regenerator flows out of the regenerator through the opening of the absorbent outflow pipe according to the pressure in the regenerator communicating with the refrigerant recovery unit.

【0012】再生器内へ供給される吸収液量が増えて、
再生器内の吸収液の液位が上昇して弁機構の浮き弁体に
よって弁口が閉鎖されると、再生器内の圧力が上昇し、
吸収液ポンプからの吸収液の供給量が減る。さらに、再
生器内の吸収液は、再生器内の圧力に応じて吸収液流出
管の開口から流出するため、再生器内の吸収液の液位は
低下し、弁機構の浮き弁体が下がって弁口を開放する。
The amount of the absorbing liquid supplied to the regenerator increases,
When the liquid level of the absorbent in the regenerator rises and the valve port is closed by the floating valve body of the valve mechanism, the pressure in the regenerator increases,
The supply amount of the absorbing liquid from the absorbing liquid pump is reduced. Further, since the absorbent in the regenerator flows out of the opening of the absorbent outflow pipe according to the pressure in the regenerator, the level of the absorbent in the regenerator drops, and the floating valve of the valve mechanism drops. To open the valve.

【0013】弁口が開くと、高温再生器内の圧力が低下
するため、液位が再び上昇し、再び浮き弁体は弁口を閉
鎖し、以後、弁口の開閉を繰り返し、再生器内の吸収液
の液位は、再生器内の上方の液位に維持される。
When the valve port is opened, the pressure in the high-temperature regenerator decreases, so that the liquid level rises again, and the floating valve body closes the valve port again. Is maintained at the upper liquid level in the regenerator.

【0014】従って、再生器内の吸収液の液位が上昇し
て弁機構による閉鎖が生じるように吸収サイクル内を循
環する吸収液の流量を従来の場合と比較して多めに設定
しておくことで、上記の如く弁機構による弁口の開閉に
よって、再生器内の液位は弁口近傍の上方に維持され、
吸収液流出管の開口位置まで吸収液の液位が低下しすぎ
ることがなくなる。
Therefore, the flow rate of the absorbent circulating in the absorption cycle is set to be relatively large as compared with the conventional case, so that the liquid level of the absorbent in the regenerator rises and is closed by the valve mechanism. By opening and closing the valve port by the valve mechanism as described above, the liquid level in the regenerator is maintained above the vicinity of the valve port,
The liquid level of the absorbing liquid does not drop too much to the opening position of the absorbing liquid outflow pipe.

【0015】また、再生器内へ供給される吸収液が過剰
になるような場合には、弁機構が閉鎖するため、再生器
内へ供給される吸収液は、吸収液流出管の開口から流出
するため、再生器の上方で溢れることがなく、分離され
た冷媒と吸収液とが再度混合してしまう不具合が生じな
い。この結果、吸収液の液位の変動に伴って冷凍能力低
下が生じることがなく、安定した冷凍能力を確保するこ
とができる。
When the amount of the absorbing liquid supplied to the regenerator becomes excessive, the valve mechanism is closed, so that the absorbing liquid supplied to the regenerator flows out of the opening of the absorbing liquid outlet pipe. As a result, there is no possibility of overflowing above the regenerator, and the problem that the separated refrigerant and the absorbing liquid are mixed again does not occur. As a result, a stable refrigerating capacity can be ensured without a decrease in the refrigerating capacity due to a change in the liquid level of the absorbing liquid.

【0016】請求項2では、延長容器部の上部に、弁機
構の弁口とは別に冷媒回収部と連通する小開口を形成し
ているため、再生器内の延長容器部の吸収液の液位が上
昇して弁機構が閉鎖したときには、再生器内で発生した
冷媒蒸気は、小開口から冷媒回収部へと移動する。従っ
て、冷媒蒸気が小開口から流出することによって、浮き
弁体に作用する弁口側への冷媒蒸気の押圧力を小さくし
て、吸収液の液位が下がったときに、弁機構の浮き弁体
の自重により確実に開放させることができる。従って、
弁機構の開閉を円滑に行うことができる。
According to the second aspect of the present invention, a small opening communicating with the refrigerant recovery portion is formed in the upper portion of the extension container portion separately from the valve port of the valve mechanism. When the position rises and the valve mechanism closes, the refrigerant vapor generated in the regenerator moves from the small opening to the refrigerant recovery section. Therefore, when the refrigerant vapor flows out of the small opening, the pressure of the refrigerant vapor acting on the floating valve body to the valve port side is reduced, and when the level of the absorbing liquid falls, the floating valve of the valve mechanism The body can be reliably opened by its own weight. Therefore,
The opening and closing of the valve mechanism can be performed smoothly.

【0017】[0017]

【発明の実施の形態】図1は本発明の吸収式冷凍装置を
用いた空調機を示す。空調機は冷凍機本体101および
冷却塔(クーリングタワー)CTからなる吸収式冷凍装
置100を室外機として備えるとともに、室内機200
が付設されている。この空調機は、制御装置300によ
り制御される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an air conditioner using an absorption refrigeration system according to the present invention. The air conditioner includes an absorption refrigeration apparatus 100 including a refrigerator main body 101 and a cooling tower (cooling tower) CT as an outdoor unit.
Is attached. This air conditioner is controlled by the control device 300.

【0018】冷凍機本体101は、高温再生器1および
低温再生器2を備え、高温再生器1の下方には、加熱源
としてのガスバーナBが配置されている。低温再生器2
の外周には吸収器3および蒸発器4が設けられ、蒸発器
4の上方には凝縮器5が設置されている。
The refrigerator main body 101 includes a high-temperature regenerator 1 and a low-temperature regenerator 2, and a gas burner B as a heating source is disposed below the high-temperature regenerator 1. Low temperature regenerator 2
An absorber 3 and an evaporator 4 are provided on the outer periphery of the device, and a condenser 5 is provided above the evaporator 4.

【0019】高温再生器1は、ガスバーナBによって加
熱され、内部の低濃度吸収液を沸騰させる加熱タンク1
1と、該加熱タンク11の頂部から上方に延長され、冷
媒蒸気と、該冷媒蒸気の蒸発により濃化した中濃度吸収
液とを分離する中濃度吸収液分離筒12とを有する。中
濃度吸収液分離筒12の外周には、冷媒蒸気を回収する
縦型円筒形の気密性冷媒回収タンク10が設けられてい
る。加熱タンク11は、略逆碗形状を呈し、ガスバーナ
Bの燃焼空間の上方を閉塞している。
A high-temperature regenerator 1 is heated by a gas burner B, and heats a tank 1 for boiling the low-concentration absorbing liquid therein.
1 and a medium-concentration-absorbent-liquid separating cylinder 12 that extends upward from the top of the heating tank 11 and separates refrigerant vapor and medium-concentration-absorbent liquid that has been concentrated by evaporation of the refrigerant vapor. A vertical cylindrical airtight refrigerant recovery tank 10 for recovering the refrigerant vapor is provided on the outer periphery of the medium-concentration absorption liquid separation cylinder 12. The heating tank 11 has a substantially inverted bowl shape, and closes the upper part of the combustion space of the gas burner B.

【0020】中濃度吸収液分離筒12の内側には、吸収
液仕切り容器13が配され、中濃度吸収液分離筒12と
吸収液仕切り容器13との間には、吸収液上昇流14が
形成されている。中濃度吸収液分離筒12は、吸収液仕
切り容器13の上方で吸収液制限板15によって上下に
二分されている。吸収液制限板15の中央部には弁機構
16が設けられている。
An absorbing liquid partitioning vessel 13 is disposed inside the medium concentration absorbing liquid separating cylinder 12, and an absorbing liquid ascending flow 14 is formed between the medium concentration absorbing liquid separating cylinder 12 and the absorbing liquid dividing vessel 13. Have been. The medium-concentration absorbent separation cylinder 12 is divided into upper and lower parts by an absorbent restricting plate 15 above the absorbent partitioning vessel 13. A valve mechanism 16 is provided at the center of the absorbing liquid limiting plate 15.

【0021】弁機構16は、図2に示すように、吸収液
制限板15のほぼ中央を上下に連通させる弁口16aか
らから下方に向かって形成された筒状体15a内に、中
濃度吸収液分離筒12内の吸収液で浮く浮き弁体17に
よって弁口16aを開閉するもので、中濃度吸収液分離
筒12内の吸収液の液位が上昇すると弁口16aを閉鎖
し、吸収液の液位が下降すると弁口16aを開放して吸
収液制限板15の上下を連通する。ここでは、弁口16
aの直径が約10mmに設定してある。尚、筒状体15
a内から浮き弁体17が外れないようにするため、邪魔
片19が設けられ、筒状体15aと邪魔片19との間隙
を浮き弁体17の径より小さくしている。
As shown in FIG. 2, the valve mechanism 16 is provided with a medium-concentration absorbing member in a cylindrical body 15a formed downward from a valve port 16a for vertically communicating substantially the center of the absorbing liquid restricting plate 15. The valve opening 16a is opened and closed by a floating valve element 17 floating with the absorbing liquid in the liquid separating cylinder 12. When the liquid level of the absorbing liquid in the medium concentration absorbing liquid separating cylinder 12 rises, the valve opening 16a is closed and the absorbing liquid is closed. When the liquid level falls, the valve port 16a is opened to communicate the upper and lower sides of the absorbing liquid restricting plate 15. Here, the valve port 16
The diameter of a is set to about 10 mm. In addition, the cylindrical body 15
In order to prevent the floating valve element 17 from coming off from the inside a, a baffle piece 19 is provided, and the gap between the cylindrical body 15a and the baffle piece 19 is made smaller than the diameter of the floating valve body 17.

【0022】吸収液制限板15には、弁機構16の近傍
に、小開口18が形成されている。この小開口18は、
弁機構16が弁口16aを閉鎖したときに、中濃度吸収
液分離筒12内で発生する冷媒蒸気を吸収液制限板15
の上方へ移動させるためのオリフィスを形成するもの
で、ここでは、上述の弁機構16の弁口16aの面積に
比較して十分に小さくなるように、直径が約1mmの穴
が形成されている。この小開口18によって、弁機構1
6が閉鎖した場合に中濃度吸収液分離筒12内の過剰な
圧力を逃がしてやるとともに、浮き弁体17に作用する
弁口16a側へ冷媒蒸気の押圧力を小さくして、中濃度
吸収液分離筒12内の吸収液の液位が下降した場合に
は、弁機構16の浮き弁体17を自重により円滑に開放
させることができる。
A small opening 18 is formed in the absorbing liquid limiting plate 15 near the valve mechanism 16. This small opening 18
When the valve mechanism 16 closes the valve port 16a, the refrigerant vapor generated in the medium-concentration absorption liquid separation cylinder 12 is removed by the absorption liquid restriction plate 15
In this case, a hole having a diameter of about 1 mm is formed so as to be sufficiently smaller than the area of the valve port 16a of the valve mechanism 16 described above. . This small opening 18 allows the valve mechanism 1
When the valve 6 is closed, the excess pressure in the medium-concentration absorbing liquid separation cylinder 12 is released, and the pressing force of the refrigerant vapor is reduced toward the valve port 16a acting on the floating valve body 17 to reduce the medium-concentration absorbing liquid. When the level of the absorbing liquid in the separation cylinder 12 drops, the floating valve element 17 of the valve mechanism 16 can be smoothly opened by its own weight.

【0023】加熱タンク11内には、後述する吸収器3
と連結された低濃度吸収液流路L3の流出部が開口して
いる。また、吸収液仕切り容器13の下部には、後述す
る暖房用吸収液流路L4の流出口が開口している。
The heating tank 11 contains an absorber 3 to be described later.
The outflow portion of the low-concentration absorption liquid flow path L3 connected to is opened. In addition, an outlet of a heating-use absorbing liquid channel L4, which will be described later, is opened at a lower portion of the absorbing liquid partitioning container 13.

【0024】低温再生器2は、冷媒回収タンク10の外
周に偏心して設置した縦型円筒形の低温再生器ケース2
0を有する。低温再生器ケース20は、天井に冷媒蒸気
出口21が設けられるとともに、頂部が中濃度吸収液流
路L1により吸収液仕切り容器13の側壁内と連結され
ている。
The low-temperature regenerator 2 is a vertical cylindrical low-temperature regenerator case 2 installed eccentrically on the outer periphery of the refrigerant recovery tank 10.
Has zero. The low-temperature regenerator case 20 is provided with a refrigerant vapor outlet 21 on the ceiling, and has a top connected to the inside of the side wall of the absorbent partitioning vessel 13 by a medium-concentration absorbent flow path L1.

【0025】低温再生器ケース20内には、圧力差によ
り熱交換器Hを介して中濃度吸収液が供給され、冷媒回
収タンク10の外壁を熱源として再沸騰し、冷媒蒸気と
高濃度吸収液とに分離される。低温再生器ケース20の
外周には、縦型円筒形で気密性の蒸発・吸収ケース30
が同心的に配され、蒸発・吸収ケース30は上方に延設
されて凝縮器ケース50となっている。低温再生器ケー
ス20の上部は、気液分離部22となっており、冷媒蒸
気出口21および隙間5Aを介して凝縮器ケース50内
と連通している。
The low-temperature regenerator case 20 is supplied with a medium-concentration absorbent through a heat exchanger H by a pressure difference, re-boils using the outer wall of the refrigerant recovery tank 10 as a heat source, and produces refrigerant vapor and high-concentration absorbent. And separated. On the outer periphery of the low-temperature regenerator case 20, a vertical cylindrical airtight evaporation / absorption case 30 is provided.
Are concentrically arranged, and the evaporating / absorbing case 30 is extended upward to form a condenser case 50. The upper part of the low-temperature regenerator case 20 serves as a gas-liquid separation part 22 and communicates with the inside of the condenser case 50 via the refrigerant vapor outlet 21 and the gap 5A.

【0026】吸収器3は、蒸発・吸収ケース30内の内
側部分内に縦型円筒状に巻設した冷却コイル31を配置
し、その上方に該冷却コイル31に高濃度吸収液を散布
するための高濃度吸収液散布具32を装着してなる。吸
収器3は、冷房運転時に使用され、冷却コイル31内に
は、冷却塔CTで冷却された排熱用冷却水が循環してい
る。
The absorber 3 is provided with a cooling coil 31 wound in a vertical cylindrical shape inside an inner portion of the evaporating / absorbing case 30, and for spraying the high-concentration absorbing liquid to the cooling coil 31 above the cooling coil 31. Is attached. The absorber 3 is used during the cooling operation, and the cooling water for exhaust heat cooled by the cooling tower CT is circulated in the cooling coil 31.

【0027】低温再生器2の高濃度吸収液受け部23
は、熱交換器Hを介して高濃度吸収液流路L2により、
高濃度吸収液散布具32へ連結している。高濃度吸収液
散布具32は、高濃度吸収液が流入し、流入した高濃度
吸収液は、冷却コイル31の上端に散布され、冷却コイ
ル31の表面に付着して膜状になり、重力の作用で下方
に流下して行く。吸収器3の底部33と加熱タンク11
との間は、熱交換器Hおよび吸収液ポンプP1が装着さ
れた低濃度吸収液流路L3で連結されている。
The high concentration absorbent receiving portion 23 of the low temperature regenerator 2
Is connected to the high-concentration absorbent flow path L2 via the heat exchanger H.
It is connected to the high-concentration absorbent sprayer 32. The high-concentration absorbent is sprayed on the upper end of the cooling coil 31 and adheres to the surface of the cooling coil 31 to form a film. It flows down by the action. Bottom 33 of absorber 3 and heating tank 11
Are connected by a low-concentration absorbent flow path L3 to which a heat exchanger H and an absorbent pump P1 are attached.

【0028】蒸発器4は、蒸発・吸収ケース30内の冷
却コイル31の外周に、縦型円筒形で連通口付き仕切壁
40を設け、該仕切壁40の外周に、内部を冷暖房用の
冷温水が流れる縦型円筒形の蒸発コイル41を配設し、
その上方に冷媒液散布具42を取り付けてなる。蒸発器
4の底部43は、暖房用電磁弁V1を有する暖房用吸収
液流路L4により中濃度吸収液分離筒12の底部と連通
している。
The evaporator 4 is provided with a vertical cylindrical partition wall 40 having a communication port on the outer periphery of the cooling coil 31 in the evaporator / absorber case 30. A vertical cylindrical evaporation coil 41 through which water flows is provided,
A refrigerant liquid dispersing tool 42 is attached above it. The bottom 43 of the evaporator 4 communicates with the bottom of the medium-concentration absorption liquid separation cylinder 12 through a heating absorption liquid flow path L4 having a heating electromagnetic valve V1.

【0029】冷媒液散布具42は、冷房運転時に使用さ
れ、冷媒液を蒸発コイル41の上に滴下させる。滴下さ
れた冷媒は、表面張力で蒸発コイル41の表面を濡らし
て膜状となり重力の作用で下方に降下しながら、低圧と
なっている蒸発・吸収ケース30内で蒸発コイル41か
ら気化熱を奪って蒸発し、蒸発コイル41内を流れる冷
暖房用の冷温水を冷却する。
The refrigerant liquid sprayer 42 is used during the cooling operation, and causes the refrigerant liquid to drop on the evaporating coil 41. The dropped refrigerant wets the surface of the evaporating coil 41 by surface tension, becomes a film, and descends downward due to the action of gravity, and takes the vaporization heat from the evaporating coil 41 in the evaporating / absorbing case 30 at a low pressure. Then, the cooling and heating water for cooling and heating flowing in the evaporation coil 41 is cooled.

【0030】凝縮器5は、冷房運転時に使用され、凝縮
器ケース50の内部に、内部を冷却塔CTで冷却された
排熱用冷却水が循環している冷却コイル51を配設して
なる。凝縮器ケース50は、冷媒流路L5により冷媒回
収タンク10の底部と連通するとともに、冷媒蒸気出口
21および隙間5Aを介して低温再生器2と連通してお
り、いずれも圧力差により冷媒が供給される。
The condenser 5 is used at the time of cooling operation, and is provided with a cooling coil 51 in which cooling water for exhaust heat cooled by the cooling tower CT is circulated inside the condenser case 50. . The condenser case 50 communicates with the bottom of the refrigerant recovery tank 10 through the refrigerant flow path L5, and communicates with the low temperature regenerator 2 through the refrigerant vapor outlet 21 and the gap 5A. Is done.

【0031】凝縮器ケース50に供給された冷媒は、冷
却コイル51により冷却されて液化する。凝縮器5の下
部と蒸発器4の蒸発コイル41の上方に設置された冷媒
液散布具42とは、冷媒液供給路L6で連通している。
液化した冷媒液は、冷媒液供給路L6に設けられた冷媒
冷却器52を経て冷媒液散布具42に供給される。
The refrigerant supplied to the condenser case 50 is cooled by the cooling coil 51 and liquefied. The lower part of the condenser 5 and the refrigerant liquid dispersing device 42 installed above the evaporator coil 41 of the evaporator 4 communicate with each other through a refrigerant liquid supply path L6.
The liquefied refrigerant liquid is supplied to the refrigerant liquid sprayer 42 via the refrigerant cooler 52 provided in the refrigerant liquid supply path L6.

【0032】この実施例では、冷却コイル31は冷却コ
イル51に接続し、さらに冷却塔CTと冷却水流路34
で接続してある。冷却水流路34には、冷却水ポンプP
2が装着され、冷却コイル31および冷却コイル51で
吸熱して高温となった冷却水が、冷却塔CTに供給され
て大気中に放熱して低温度になる排熱サイクルを形成し
ている。
In this embodiment, the cooling coil 31 is connected to the cooling coil 51, and the cooling tower CT and the cooling water flow path 34
Connected by A cooling water pump P
2, the cooling water heated to a high temperature by absorbing heat in the cooling coil 31 and the cooling coil 51 is supplied to the cooling tower CT to form a heat discharge cycle in which the temperature of the cooling water is reduced to a low temperature.

【0033】冷房運転時には、冷却水ポンプP2により
冷却水が、冷却塔CT→冷却コイル31→冷却コイル5
1→冷却塔CTの順に循環している。なお、吸収液は、
高温再生器1→低温再生器2→吸収器3→吸収液ポンプ
P1→高温再生器1の順に循環する。
During the cooling operation, the cooling water is supplied from the cooling tower CT to the cooling coil 31 to the cooling coil 5 by the cooling water pump P2.
1 → the cooling tower CT. The absorbing liquid is
It circulates in the order of high temperature regenerator 1 → low temperature regenerator 2 → absorber 3 → absorbent pump P1 → high temperature regenerator 1.

【0034】室内機200は、空調熱交換器44、およ
びブロワ45を有する。蒸発コイル41の両端は、冷温
水流路46で空調熱交換器44に連結されている。冷温
水流路46には、冷温水ポンプP3が設けられており、
空調熱交換器44に冷温水を循環させる。
The indoor unit 200 has an air conditioning heat exchanger 44 and a blower 45. Both ends of the evaporating coil 41 are connected to the air-conditioning heat exchanger 44 through a cold / hot water flow path 46. The cold / hot water flow path 46 is provided with a cold / hot water pump P3.
Cold and hot water is circulated through the air conditioning heat exchanger 44.

【0035】暖房運転時は、暖房用電磁弁V1を開弁
し、吸収液ポンプP1を作動させる。高温度の中濃度吸
収液は蒸発器4に底43から流入する。蒸発コイル41
内の冷温水は、加熱されて冷温水ポンプP3により冷温
水流路46で室内機200内の空調熱交換器44に供給
され、暖房の熱源となる。蒸発器4内の中濃度吸収液
は、仕切壁40の連通口から吸収器3側に入り、低濃度
吸収液流路L3を経て、吸収液ポンプP1により加熱タ
ンク11へ戻される。
During the heating operation, the heating electromagnetic valve V1 is opened and the absorption liquid pump P1 is operated. The high-temperature medium-concentration absorbing liquid flows into the evaporator 4 from the bottom 43. Evaporation coil 41
The cold and hot water inside is heated and supplied to the air conditioning heat exchanger 44 in the indoor unit 200 through the cold and hot water flow path 46 by the cold and hot water pump P3 to serve as a heat source for heating. The medium-concentration absorbent in the evaporator 4 enters the absorber 3 through the communication port of the partition wall 40, returns to the heating tank 11 by the absorbent pump P1 via the low-concentration absorbent flow path L3.

【0036】使用者が空調を停止するため、室内機20
0のオン・オフスイッチにより作動停止操作をすると、
吸収式冷凍装置100は、室内機200の作動停止後も
一定時間の間、吸収液の晶析防止のための希釈運転が必
要であり、そのためガスバーナBの燃焼を停止したのち
吸収液ポンプP1および冷却水ポンプP2は前記希釈運
転の終了後に停止する。
Since the user stops the air conditioning, the indoor unit 20
When the operation is stopped by the on / off switch of 0,
The absorption refrigeration apparatus 100 requires a dilution operation to prevent crystallization of the absorption liquid for a certain period of time even after the operation of the indoor unit 200 is stopped. Therefore, after stopping the combustion of the gas burner B, the absorption liquid pumps P1 and The cooling water pump P2 stops after the end of the dilution operation.

【0037】上記の構成からなる冷凍機本体101にお
いて、蒸発器4の蒸発コイル41で冷却又は加熱された
冷温水を、室内機200へ供給、循環させる冷温水ポン
プP3は、吸収サイクルにおいて吸収液を循環させる吸
収液ポンプP1とともに、同一のモータによって駆動さ
れるタンデムポンプとして構成されており、吸収液ポン
プP1と冷温水ポンプP3とは常に同一回転数で回転す
る。
In the refrigerator main body 101 having the above-described configuration, the cold / hot water pump P3 for supplying and circulating the cold / hot water cooled or heated by the evaporating coil 41 of the evaporator 4 to the indoor unit 200 is provided with an absorbing liquid in the absorption cycle. Is configured as a tandem pump driven by the same motor together with the absorbent pump P1 that circulates water, and the absorbent pump P1 and the cold / hot water pump P3 always rotate at the same rotational speed.

【0038】次に、上記吸収式冷凍装置100を制御す
る制御装置300について説明する。以下では、冷房運
転のみについて説明し、暖房運転は省略する。室内機2
00に併設されたリモコン(図示なし)で冷房運転の指
示が行われると、暖房用電磁弁Vが閉じられ、タンデム
ポンプの駆動を開始し、吸収液ポンプP1及び冷温水ポ
ンプP3が駆動される。その後、ガスバーナBの点火動
作を行った後、リモコンの設定状態に応じて、燃焼ファ
ン及びガス比例弁が制御されて、ガスバーナBの燃焼量
制御が行われる。
Next, a control device 300 for controlling the absorption refrigeration system 100 will be described. Hereinafter, only the cooling operation will be described, and the heating operation will be omitted. Indoor unit 2
When a cooling operation is instructed by a remote controller (not shown) provided alongside 00, the heating electromagnetic valve V is closed, the tandem pump starts to be driven, and the absorbent pump P1 and the cold / hot water pump P3 are driven. . Then, after performing the ignition operation of the gas burner B, the combustion fan and the gas proportional valve are controlled according to the setting state of the remote controller, and the combustion amount of the gas burner B is controlled.

【0039】ガスバーナBの燃焼量制御では、室内機2
00の空調熱交換器44に送られる冷温水温度が7℃に
なるように、1500kcal/h〜48000kca
l/hの間でガスバーナBのインプットを調節する。
In controlling the combustion amount of the gas burner B, the indoor unit 2
1500 kcal / h to 48000 kca so that the temperature of the cold and hot water sent to the air conditioning heat exchanger 44 of 00 becomes 7 ° C.
Adjust the input of gas burner B between 1 / h.

【0040】以上の構成からなる吸収式冷凍装置100
において、吸収液ポンプP1の作動によって吸収サイク
ル内を吸収液が循環する際、吸収器3から高温再生器1
内へ送り込まれた低濃度吸収液は、加熱タンク11で加
熱され、冷媒が蒸気となって吸収液から分離し、中濃度
吸収液となる。
The absorption refrigeration system 100 having the above configuration
In the above, when the absorbent circulates through the absorption cycle by the operation of the absorbent pump P1, the high temperature regenerator 1
The low-concentration absorbing liquid sent into the inside is heated in the heating tank 11, and the refrigerant is separated from the absorbing liquid as vapor to become a medium-concentration absorbing liquid.

【0041】高温再生器1には、ガスバーナBに加熱さ
れる加熱タンク11の上方に延長された中濃度吸収液分
離筒12が、弁機構16を備えた吸収液制限板15で封
鎖されていて、中濃度吸収液分離筒12内の吸収液の液
位が低い場合には、弁機構16の浮き弁体17が弁口1
6aを開放している。従って、吸収液から分離された冷
媒蒸気は、弁機構16を通過して冷媒回収タンク10内
へ移動する。また、冷媒が分離されて中濃度になった吸
収液は、中濃度吸収液分離筒12及び冷媒回収タンク1
0内の冷媒蒸気の圧力上昇により、中濃度吸収液流路L
1から低温再生器2へと送り込まれる。
In the high-temperature regenerator 1, a medium-concentration absorbent separating cylinder 12 extending above a heating tank 11 heated by a gas burner B is closed by an absorbent restricting plate 15 having a valve mechanism 16. On the other hand, when the liquid level of the absorbing liquid in the medium-concentration absorbing liquid separating cylinder 12 is low, the floating valve element 17 of the valve mechanism 16
6a is open. Therefore, the refrigerant vapor separated from the absorbing liquid passes through the valve mechanism 16 and moves into the refrigerant recovery tank 10. Further, the absorbing liquid having the medium concentration after the refrigerant is separated is supplied to the medium-concentration absorbing liquid separating cylinder 12 and the refrigerant recovery tank 1.
0, the medium concentration absorbent flow path L
1 is sent to the low-temperature regenerator 2.

【0042】中濃度吸収液分離筒12及び冷媒回収タン
ク10内の冷媒蒸気の圧力と、吸収液ポンプP1によっ
て高温再生器1内へ送り込まれる吸収液との相対関係に
よって、中濃度吸収液分離筒12内の吸収液の液位が上
昇し、浮き弁体17が弁機構16の弁口16aを閉鎖す
ると、中濃度吸収液分離筒12内で発生した冷媒蒸気
は、弁機構16の近傍の小開口18から僅かずつ冷媒回
収タンク10内へ移動する。このとき、発生した冷媒蒸
気の冷媒回収タンク10への移動量が小開口18で制限
を受けるため、中濃度吸収液分離筒12内の圧力は上昇
して高くなる。この圧力上昇によって、中濃度吸収液分
離筒12内の吸収液は、それまでより多くの量が中濃度
吸収液流路L1から低温再生器2へと送り込まれる。
The relative concentration of the refrigerant vapor in the medium-concentration absorption liquid separation cylinder 12 and the refrigerant recovery tank 10 and the absorption liquid sent into the high-temperature regenerator 1 by the absorption liquid pump P1 determine the medium-concentration absorption liquid separation cylinder. When the liquid level of the absorbing liquid in the cylinder 12 rises and the floating valve body 17 closes the valve port 16 a of the valve mechanism 16, the refrigerant vapor generated in the medium-concentration absorbing liquid separating cylinder 12 becomes small in the vicinity of the valve mechanism 16. It moves into the refrigerant recovery tank 10 little by little from the opening 18. At this time, the movement amount of the generated refrigerant vapor to the refrigerant recovery tank 10 is limited by the small opening 18, so that the pressure in the medium-concentration absorption liquid separation cylinder 12 increases and increases. Due to this pressure increase, a larger amount of the absorbing liquid in the medium-concentration absorbing liquid separation tube 12 is sent from the medium-concentration absorbing liquid flow path L1 to the low-temperature regenerator 2.

【0043】中濃度吸収液分離筒12内の吸収液の液位
は、上記、吸収器3から吸収液ポンプP1によって高温
再生器1内へ送り込まれ吸収液の量と、中濃度吸収液分
離筒12内の冷媒蒸気の圧力とが均衡しながら、吸収液
制限板15の液位を上限として変動する。
The liquid level of the absorbing liquid in the medium-concentration absorbing liquid separating cylinder 12 is determined by the amount of the absorbing liquid sent from the absorber 3 into the high-temperature regenerator 1 by the absorbing liquid pump P1, While the pressure of the refrigerant vapor in the balance 12 is in equilibrium, the pressure fluctuates with the liquid level of the absorbing liquid limiting plate 15 as an upper limit.

【0044】ここで、弁機構16から液位が下がったと
き、浮き弁体17に作用する弁口側への冷媒蒸気の押圧
力を小さくして、吸収液の液位が下がったときに、吸収
液からの浮力が無くなった時点で、速やかに、浮き弁体
17の自重で弁機構16の弁口を開放することができ、
速やかに、多量の冷媒蒸気を冷媒回収タンク10へ移動
させることができる。
Here, when the liquid level drops from the valve mechanism 16, the pressing force of the refrigerant vapor acting on the floating valve body 17 to the valve port side is reduced, and when the liquid level of the absorbing liquid drops, When the buoyancy from the absorbing liquid is lost, the valve port of the valve mechanism 16 can be quickly opened by the weight of the floating valve body 17,
A large amount of refrigerant vapor can be promptly moved to the refrigerant recovery tank 10.

【0045】従って、中濃度吸収液分離筒12内の冷媒
蒸気が、中濃度吸収液流路L1から低温再生器2へ漏れ
ることがなくなるとともに、中濃度吸収液分離筒12内
の吸収液が冷媒回収タンク10内へ溢れることもなくな
るため、能力低下をもたらすことがなくなり、安定した
冷凍能力を確保することができる。
Therefore, the refrigerant vapor in the middle-concentration absorbent separation tube 12 does not leak from the middle-concentration absorption liquid passage L1 to the low-temperature regenerator 2, and the absorption liquid in the middle-concentration absorption liquid separation tube 12 is cooled by the refrigerant. Since it does not overflow into the recovery tank 10, the performance does not decrease, and a stable refrigerating capacity can be secured.

【0046】また、上記吸収サイクル内の作動におい
て、吸収液ポンプP1の回転数は、室内機200の空調
熱交換器44の出口側の冷温水温度センサの検知温度
と、クーリングタワーCTで冷却された冷却水温度とに
基づいて決定されるため、過剰な量の吸収液が、吸収器
3から高温再生器1へ送り込まれることがなくなり、負
荷に応じて安定した作動を確保できる。この結果、中濃
度吸収液分離筒12内の吸収液の液位の変動に伴って冷
凍能力低下が生じることがなく、安定した冷凍能力を確
保することができる。
Further, in the operation in the absorption cycle, the rotation speed of the absorption liquid pump P1 was cooled by the temperature detected by the cold / hot water temperature sensor at the outlet side of the air conditioning heat exchanger 44 of the indoor unit 200 and the cooling tower CT. Since it is determined based on the cooling water temperature, an excessive amount of the absorbing liquid is not sent from the absorber 3 to the high-temperature regenerator 1, and a stable operation can be ensured according to the load. As a result, a stable refrigerating capacity can be ensured without a decrease in the refrigerating capacity due to a change in the liquid level of the absorbing liquid in the medium-concentration absorbing liquid separating cylinder 12.

【0047】なお、上記実施例では、加熱源としてガス
バーナBを用いたが、ガスバーナBの代わりに石油バー
ナ、電熱ヒータなど他の熱源が使用できる。
In the above embodiment, the gas burner B is used as a heating source, but other heat sources such as an oil burner and an electric heater can be used instead of the gas burner B.

【図面の簡単な説明】[Brief description of the drawings]

【図1】吸収式冷凍装置を用いた冷暖房装置の概念図で
ある。
FIG. 1 is a conceptual diagram of a cooling and heating device using an absorption refrigeration device.

【図2】吸収式冷凍装置における弁機構を示す部分断面
図である。
FIG. 2 is a partial sectional view showing a valve mechanism in the absorption refrigeration apparatus.

【符号の説明】[Explanation of symbols]

100 吸収式冷凍装置 1 高温再生器 10 冷媒回収タンク(冷媒回収部) 12 中濃度吸収液分離筒(延長容器部) 16 弁機構 17 浮き弁体 18 小開口 2 低温再生器 3 吸収器 31 冷却コイル 4 蒸発器 41 蒸発コイル 44 空調熱交換器 300 制御装置 B ガスバーナ(加熱手段) CT 冷却塔 P1 吸収液ポンプ L1 中濃度吸収液流路(吸収液流出管) REFERENCE SIGNS LIST 100 Absorption refrigeration apparatus 1 High temperature regenerator 10 Refrigerant recovery tank (refrigerant recovery unit) 12 Medium concentration absorption liquid separation cylinder (extended container part) 16 Valve mechanism 17 Floating valve element 18 Small opening 2 Low temperature regenerator 3 Absorber 31 Cooling coil Reference Signs List 4 evaporator 41 evaporator coil 44 air conditioning heat exchanger 300 controller B gas burner (heating means) CT cooling tower P1 absorption liquid pump L1 medium concentration absorption liquid flow path (absorption liquid outflow pipe)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上殿 紀夫 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 3L093 AA05 BB11 BB21 BB22 BB29 BB33 BB42 CC00 DD08 EE25 GG04 HH03 JJ04 LL03 MM02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Norio Ueno, 4-1-2 Hiranocho, Chuo-ku, Osaka-shi F-term in Osaka Gas Co., Ltd. (Reference) 3L093 AA05 BB11 BB21 BB22 BB29 BB33 BB42 CC00 DD08 EE25 GG04 HH03 JJ04 LL03 MM02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段により加熱される再生器におい
て低濃度吸収液を高濃度吸収液と冷媒とに分離し、蒸発
器において、内部を空調用熱媒体としての冷温水が流れ
る蒸発コイル上に冷媒液を散布して蒸発させるとともに
前記冷温水を冷却し、吸収器において、冷却塔に連結さ
れるとともに内部を排熱用の冷却水が流れる冷却コイル
上に前記高濃度吸収液を散布して前記蒸発した冷媒を吸
収させ、冷媒を吸収して低濃度化した低濃度吸収液を低
濃度吸収液流路に設けた吸収液ポンプにより前記再生器
に戻す吸収式冷凍装置において、 前記加熱手段によって加熱される前記再生器の加熱部か
ら上方に向かって延長容器部を形成し該延長容器部の下
部に吸収液が流出する吸収液流出管の開口を配置すると
ともに、該再生器内の吸収液の液面で浮遊する浮き弁体
によって弁口を開閉させる弁機構を前記延長容器部の上
部に設け、該弁機構の上方側を冷媒回収部としたことを
特徴とする吸収式冷凍装置。
In a regenerator heated by heating means, a low-concentration absorbent is separated into a high-concentration absorbent and a refrigerant, and an evaporator is provided on an evaporator coil through which cold and hot water as a heat medium for air conditioning flows. The refrigerant liquid is sprayed and evaporated to cool the cold and hot water, and in the absorber, the high-concentration absorbing liquid is sprayed on a cooling coil connected to a cooling tower and through which cooling water for exhaust heat flows. In the absorption refrigeration apparatus, which absorbs the evaporated refrigerant and returns the low-concentration absorbent, which has absorbed and reduced the concentration of the refrigerant, to the regenerator by an absorbent pump provided in a low-concentration absorbent flow path, An extension container portion is formed upward from a heating portion of the regenerator to be heated, and an opening of an absorption liquid outflow pipe through which the absorption liquid flows out is arranged at a lower portion of the extension container portion. Floating on the liquid surface To the floating valve body provided with a valve mechanism for opening and closing the valve port to the top of the extension container portion, the absorption refrigerating apparatus is characterized in that the refrigerant recovery section of the upper side of the valve mechanism.
【請求項2】 前記延長容器部の上部に、前記弁機構の
弁口とは別に前記冷媒回収部と連通する小開口を形成し
たこと特徴とする請求項1記載の吸収式冷凍装置。
2. The absorption refrigeration apparatus according to claim 1, wherein a small opening communicating with the refrigerant recovery section is formed at an upper portion of the extension container section separately from a valve port of the valve mechanism.
JP10363865A 1998-12-22 1998-12-22 Absorption refrigeration apparatus Pending JP2000186866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10363865A JP2000186866A (en) 1998-12-22 1998-12-22 Absorption refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10363865A JP2000186866A (en) 1998-12-22 1998-12-22 Absorption refrigeration apparatus

Publications (1)

Publication Number Publication Date
JP2000186866A true JP2000186866A (en) 2000-07-04

Family

ID=18480387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10363865A Pending JP2000186866A (en) 1998-12-22 1998-12-22 Absorption refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP2000186866A (en)

Similar Documents

Publication Publication Date Title
JP2000186866A (en) Absorption refrigeration apparatus
JP3318505B2 (en) Control device for absorption air conditioner
JP3920978B2 (en) Absorption air conditioner
JP2846583B2 (en) Absorption air conditioner
JP3790360B2 (en) Absorption refrigeration system
JP3184072B2 (en) Air conditioner using absorption refrigeration system
JP2902305B2 (en) Absorption air conditioner
JP3660493B2 (en) Absorption refrigeration system controller
JP2846582B2 (en) Absorption air conditioner
JPS5818139Y2 (en) Double effect absorption chiller
JP3911335B2 (en) Absorption air conditioner
JP3920986B2 (en) Absorption air conditioner
JP3904726B2 (en) Absorption refrigeration system
JP3886641B2 (en) Double-effect absorption refrigeration system
JP2954514B2 (en) Absorption air conditioner
JPH11344270A (en) Absorption refrigerating device
JP2988616B2 (en) Absorption air conditioner
KR100306036B1 (en) Absorption refrigerating apparatus
JPH109707A (en) Absorption type refrigerating device
JP2003042588A (en) Absorption type cooling and heating machine
JPH0829000A (en) Absorption type air conditioner
JPH1019413A (en) Regenerator of absorption refrigerating equipment
JPH11218367A (en) Regenerator for absorption refrigerating machine
JPH0829006A (en) Absorptive air-conditioner
JP2002195596A (en) Air conditioner