JP2000186323A - Concrete pile with base isolation device - Google Patents

Concrete pile with base isolation device

Info

Publication number
JP2000186323A
JP2000186323A JP10378285A JP37828598A JP2000186323A JP 2000186323 A JP2000186323 A JP 2000186323A JP 10378285 A JP10378285 A JP 10378285A JP 37828598 A JP37828598 A JP 37828598A JP 2000186323 A JP2000186323 A JP 2000186323A
Authority
JP
Japan
Prior art keywords
washer
pile
steel pipe
fixed
tension spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10378285A
Other languages
Japanese (ja)
Inventor
Yoshio Kinoshita
賀雄 木下
Kosei Kinoshita
耕成 木下
Shinya Kinoshita
晋哉 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10378285A priority Critical patent/JP2000186323A/en
Publication of JP2000186323A publication Critical patent/JP2000186323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Vibration Prevention Devices (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve earthquake resistance by combining a steel coil spring and a bellows-like steel pipe in a prescribed state. SOLUTION: A small coil spring 5 fixing the upper end on a washer 4 is inserted in a bellows-like steel pipe 1 providing a plurality of swellings 2 having a plurality of holes 3 and the washer 4 is fixed on the upper end of the steel pipe 1. Next, the lower end of a large coil spring 7 is fixed on the lower washer cylinder 14 of a lower washer 6, the steel pipe 1 is inserted in the spring 7, and the upper end of the spring 7 is fixed on the washer 4. Next, the washer 4 is fixed on the pile ring 9 of an upper pile 8, and the lower washer 6 is fixed on the pile ring 9 of a lower panel 15. Furthermore, the whole spring 7 is cylindrically covered by a steel plate, and the upper and lower ends are fixed on the washers 4, 6. During earthquake, the swelling 2 is crushed, and the springs 5, 7 are expanded and contracted to mitigate vertical fluctuation. Thereby earthquake resistance can be semipermanently secured to prevent the cracking and breakage of a pile, and structure can be made simple and firm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業の利用分野】この発明は、地中基礎であるコンク
リートパイル(杭)に免震装置を施したものである。従
来より各パイルメーカー及び公的機関が、パイルに免震
装置を設けることに研究を重ねてきたが、現在に至るま
で解決することができなかった。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concrete pile (pile), which is an underground foundation, provided with a seismic isolation device. Conventionally, pile manufacturers and public organizations have repeatedly studied to install seismic isolation devices in piles, but they have not been able to solve them up to the present.

【0002】[0002]

【従来の技術】コンクリートパイル(杭)は地中基礎と
して、打設又は中掘工法等で地中に貫入埋設するもので
あるが、既製杭、場所打ち杭と共に免震装置を備えた杭
は皆無であった。それが為、阪神大震災では数多くのビ
ルが倒壊し、橋梁等にも甚大な損害が発生したものであ
り、今後も全国各地で地震による大災害が予想され懸念
されるものである。
2. Description of the Related Art A concrete pile (pile) is used as an underground foundation, and is buried in the ground by a casting method or a digging method. There was none. As a result, the Great Hanshin Earthquake caused many buildings to collapse, causing significant damage to bridges and other parts of the country.

【0003】[0003]

【発明が解決しようとする課題】現今、既製杭、場所打
ち杭と共に、免震装置を全く施していないため、地震に
対しては、なすすべもなく、地中の杭周辺に強固剤等を
注入するしか方法がないのが現状で、この工法も信頼性
に乏しく免震としての機能は、ほど遠いものである。従
って、必要以上の大口径の杭を深礎として構築し、必要
以上の強固剤を投入して、心理的に安心するしか方法が
なかった。本発明はこれらの欠点を除くためになされた
ものである。
At present, no seismic isolation device is provided together with ready-made piles and cast-in-place piles. At present, there is no other way but to inject, and this method is also poor in reliability and its function as seismic isolation is far from far. Therefore, there was no other way but to build a pile with a diameter larger than necessary as a deep foundation, add more hardener than necessary, and provide psychological relief. The present invention has been made to eliminate these disadvantages.

【0004】[0004]

【課題を解決するための手段】本発明は、鋼コイルバネ
の特性と、いわゆる蛇腹の特性を応用したものである。
以下、本発明の構造と機能を詳細に説明する。丸鋼管
(1)に複数個のふくらみ(2)を設ける。(図1にあ
たっては5個)この各々のふくらみ(2)の外周面に、
外周長を8等分した個所に、だ円穴(3)を設ける。
(図1にあっては、ふくらみ(2)1個につき3個)。
このだ円穴(3)の機能は、鋼管(1)の上下から強い
力を加えた場合、まずだ円穴(3)の周辺から亀裂が入
り、更に力を加えると、全部のふくらみ(3)はつぶ
れ、鋼管(1)の長さは1/3程度に圧縮されて、あた
かも蛇腹が密着したごとくである。内陸型直下地震であ
った阪神大震災は、震央から鉛直に一挙に力が加わった
ものとされている。既設杭であるコンクリートパイル
は、高速回転させ遠心力を利用して製造するものである
が中空である。運搬上の問題から最大15m程度が限度
であって、これ以下の長さは自由に製造でき、長尺大深
度の杭は杭同士をつぎ足す。パイルは先端が尖っている
が、片方は鋼製のリング環となっており、両端がリング
環となっているものもある。コイルバネの弾力(バネ定
数)は、材料の直径、コイル平均径、まき数及び材質
(横弾性係数)によって決定される。圧縮鋼コイルバネ
(5)(7)(16)は力を加えると圧縮し、加える力
が喪失すると原形にもどる特性がある。本発明は、この
特性を応用したもので、下部座金(6)の中心に下部座
金筒(14)を設け、下部座金(6)に大コイルバネ
(7)の片方を固定し、この大コイルバネ(7)の中空
に、小コイルバネ(5)が内蔵されている異形鋼管
(1)を挿入し、下部座金筒(14)内に異形鋼管
(1)の端部をはめこみ、片方の大コイルバネ(7)を
座金(4)に固定する。鋼管(1)と小コイルバネ
(5)と大コイルバネは同等の長さであるから、三構造
は一体化したものとなる。座金(4)と下部座金(6)
の両方から、又は片方を固定して一方の片方から力を加
えた場合、バネの弾力で大コイルバネ(7)は圧縮され
はじめ、更に力が加わると、異形鋼管(1)のふくらみ
(2)のだ円穴(3)から亀裂が発生し最終的にはふく
らみ(2)はつぶれ、ふくらみ(2)全部が蛇腹が密着
したごときに圧縮される。この進行時に異形鋼管(1)
に内蔵された小コイルバネ(5)も同時に圧縮される。
圧縮力が喪失すると、大コイルバネ(7)と小コイルバ
ネ(5)は原形にもどる。原形に復元した姿勢は、小コ
イルバネ(5)の先端は下部座金筒(14)内であり、
大コイルバネ(7)も圧縮前の原形にもどる。圧縮され
て丁度蛇腹のごときになった異形鋼管(1)は座金
(4)に密着した状態であり、以後のコイルバネの運動
を阻害するものではない。だ円穴(3)を外周面にたて
形にしても同様である。次に再度、たてゆれが発生する
と、大コイルバネ(7)も小コイルバネ(5)も圧縮さ
れ、たてゆれ力が喪失すると、大コイルバネ(7)も小
コイルバネ(5)も原形に復元する。この伸縮の運動で
たてゆれを緩和するものである。コンクリートパイル
は、ハンマー又は中掘工法等で地中に貫入埋設するもの
で、ハンマーによる打設はかなりの衝撃力があるが、打
設力は自由に調節できる。大コイルバネ(7)と異形鋼
管(1)とで構成された免震装置を、パイル(8)と下
部パイル(15)の間に装置し一体化するもので、パイ
ルリング環(9)と座金(4)を固定し、パイルリング
環(9)と下部座金(6)を固定し連結とすればよい。
ハンマーによる打設はかなりの衝撃力があり、異形鋼管
(1)を設けなければ地中への貫入は不可能となり、大
コイルバネ(7)は損傷、破壊し、なによりも下部パネ
ル(15)全体に打設力が伝播しない。更に、この異形
鋼管(1)を設けないと、パイルをつり上げた場合、バ
ネを支点として曲り、たわむことになり、保管、運搬上
の問題が発生する。鋼管(1)を、ふくらみ(2)を有
する異形鋼管(1)とせず、直鋼管とした場合には、力
が加わったさい、大コイルバネ(7)と小コイルバネ
(5)は同時に圧縮しはじめるが、直鋼管にも同時に圧
縮力が加わる。更に力が加わると直鋼管は、大コイルバ
ネ(7)の中空内でくの字に曲り、大コイルバネ(7)
を損傷、若しくは折損し、同時に当然ながら、直鋼管に
内蔵された小コイルバネ(5)も破損し、圧縮鋼コイル
バネ本来の機能が失なわれる。従って、異形鋼管(1)
は本発明の機構と機能の要である。異形鋼管(1)と大
コイルバネ(7)とで構成された免震装置は、主に地震
のたてゆれを緩和するものであるが、よこゆれに対応す
る場合には引張バネ(12)を応用する。以下、詳細に
説明する。引張バネ(12)は360度全方位に柔軟に
曲り、直線立原形に復元する特性がある。引張バネ下部
座金(13)の中心に、支柱鋼管(11)より長い小引
張バネ(16)を固定して、これを、穴(17)の口径
より大きい口径を有する支柱鋼管(11)に挿入し、小
引張バネ(16)の端部を支柱鋼管(11)外に突出さ
せる。この突出した小引張バネ(16)の先端は、丸鋼
筒(18)内におさまることになる。次に、引張バネ
(12)の中空に、引張バネ下部座金(13)に小引張
バネ(16)を内蔵して直立している支柱鋼管(11)
を入れ、引張バネ(12)の端部を引張バネ下部座金
(13)に固定する。次に、支柱鋼管(11)と引張バ
ネ(12)は同等の長さであるから、小引張バネ(1
6)の先端は、引張バネ(12)より突出することにな
り、引張バネ座金(10)に設けた丸穴(17)を通
り、固定された丸鋼筒(18)内におさまる。次に、引
張バネ(12)を引張バネ座金(10)に固定して一体
化とする。この構造で最重要なことは、支柱鋼管(1
1)を、引張バネ座金(10)及び引張バネ下部座金
(13)に固定しないことである。この支柱鋼管(1
1)の両端部を上下部分に固定すると、引張バネ(1
2)の特性が半減、又は不能となる恐れがある。これ
は、よこゆれの場合、引張バネ(12)は特性で曲る
が、支柱鋼管(11)を固定すると機能が半減され、支
柱鋼管(11)内に内蔵された小引張バネ(16)も機
能が発揮できない。この支柱鋼管(11)の最大機能
は、下部パネル(15)全体への打設を有効に伝播さす
ためである。従って、地震のよこゆれの場合、引張バネ
(12)の特性で、よこゆれを緩和し、地中のパイル
の、ひび割れ、折損を防止するものである。よこゆれの
緩和及び防止を目的とする引張バネ(12)は、異形鋼
管(1)と大コイルバネ(7)とで構成された免震装置
と異なり、地中への打設貫入方法が若干異なる。以下、
詳細に説明する。異形鋼管(1)と大コイルバネ(7)
とで構成された免震装置は、下部座金(6)に設けた、
下部座金筒(14)内に異形鋼管(1)の端部が嵌合さ
れているから、パイル(8)と下部パイル(15)とを
連結一体化したものである。これがため、打設、保管、
運搬上の諸問題は発生しない。引張バネ(12)で構成
された免震装置は、支柱鋼管(11)をどこにも固定し
ていないので、引張バネ(12)は横ささえ強度が脆弱
であり、パイルへの一体化は困難である。従って、ハン
マーによる打設は、パイルを二分する。まず、先に下部
パイル(15)を打設、貫入し、パイルリング環(9)
が地表面にきたとき、あらかじめ現場等でパイル(8)
のパイルリング環(9)に引張バネ(12)の免震装置
を連結する。電気溶接で実施すれば短時間ですむ。これ
をつり上げて先に打設した下部パイル(15)のパイル
リング環(9)に連結、固定して打設を再開始する。引
張バネ(12)の中空内にある支柱鋼管(11)によっ
て、下部パイル(15)に打設力は確実に伝播する。パ
イルを二分することにより、保管、運搬上の問題は解決
する。引張バネ座金(10)に設けた丸鋼筒(18)
は、パイル(8)の中空内に入るので不都合な点はな
い。ハンマー等打設によらない中掘工法に、本発明を設
ける方法を説明する。中掘工法とは、コンクリートパイ
ルの中空に、アースオーガドリルを入れて掘削しながら
杭自重、圧入しながら杭を沈設させる工法である。この
工法に、異形鋼管(1)及び支柱鋼管(11)を設ける
ことは不可能であるからこれ等を除く。引張バネ(1
2)の場合は、支柱鋼管(11)を除き、引張バネ座金
(10)及び引張バネ下部座金(13)をリング環座金
とすれば、パイル全体が全中空となり、この中空にアー
スオーガドリルを入れることに不都合はない。杭沈設完
了後、杭頭を加工して、大コイルバネ(7)及び異形鋼
管(1)とで構成された免震装置を設ければよい。この
方法により、地震のたてゆれと、よこゆれが緩和、防止
ができるものである。関東大震災は、臨海部特有のプレ
ート型の地震で、よこゆれが著しく顕著であったといわ
れている。本発明は、以上のような構成と機能を有する
免震装置つきコンクリートパイルである。
The present invention is an application of the characteristics of a steel coil spring and the characteristics of a bellows.
Hereinafter, the structure and function of the present invention will be described in detail. A round steel pipe (1) is provided with a plurality of bulges (2). (5 in FIG. 1) On the outer peripheral surface of each bulge (2),
An elliptical hole (3) is provided at a location where the outer circumference is divided into eight equal parts.
(In FIG. 1, three bulges per (2).)
The function of the elliptical hole (3) is that when a strong force is applied from above and below the steel pipe (1), cracks first enter around the elliptical hole (3). ) Collapses and the length of the steel pipe (1) is compressed to about 1/3, as if the bellows were in close contact. It is said that the Great Hanshin Earthquake, which was an inland-type earthquake just below the center, was a force that was applied vertically from the epicenter. The concrete pile, which is an existing pile, is manufactured by utilizing high-speed rotation and centrifugal force, but is hollow. Due to transportation problems, the maximum length is about 15 m, and any length less than this can be freely manufactured. Long and deep piles are added together. The pile has a pointed tip, but one is a steel ring ring and both ends are ring rings. The elasticity (spring constant) of the coil spring is determined by the material diameter, the average coil diameter, the number of turns, and the material (transverse elastic coefficient). The compression steel coil springs (5), (7), and (16) have the property of compressing when a force is applied, and returning to the original shape when the applied force is lost. The present invention utilizes this characteristic. A lower washer cylinder (14) is provided at the center of the lower washer (6), and one of the large coil springs (7) is fixed to the lower washer (6). A deformed steel pipe (1) containing a small coil spring (5) is inserted into the hollow of (7), the end of the deformed steel pipe (1) is fitted into the lower washer (14), and one large coil spring (7) is inserted. ) Is fixed to the washer (4). Since the steel pipe (1), the small coil spring (5) and the large coil spring have the same length, the three structures are integrated. Washer (4) and lower washer (6)
When a force is applied from both sides or one side is fixed and one side is applied, the large coil spring (7) starts to be compressed by the elasticity of the spring, and when further force is applied, the bulge (2) of the deformed steel pipe (1) A crack is generated from the elliptical hole (3), and eventually the bulge (2) is crushed, and the entire bulge (2) is compressed when the bellows is in close contact. During this process, deformed steel pipe (1)
Is also compressed at the same time.
When the compression force is lost, the large coil spring (7) and the small coil spring (5) return to their original shape. In the posture restored to the original shape, the tip of the small coil spring (5) is in the lower washer cylinder (14),
The large coil spring (7) also returns to its original shape before compression. The deformed steel pipe (1), which has just been compressed and becomes like a bellows, is in close contact with the washer (4) and does not hinder the subsequent movement of the coil spring. The same applies when the elliptical hole (3) is formed upright on the outer peripheral surface. Next, when the warp occurs again, both the large coil spring (7) and the small coil spring (5) are compressed. When the warp force is lost, both the large coil spring (7) and the small coil spring (5) are restored to their original shapes. . This expansion / contraction movement is used to reduce the sway. The concrete pile is buried in the ground by a hammer or a digging method or the like, and the driving with a hammer has a considerable impact force, but the driving force can be freely adjusted. A seismic isolation device consisting of a large coil spring (7) and a deformed steel pipe (1) is installed and integrated between a pile (8) and a lower pile (15). A pile ring ring (9) and a washer (4) may be fixed, and the pile ring ring (9) and the lower washer (6) may be fixed and connected.
Driving with a hammer has a considerable impact force, it is impossible to penetrate into the ground unless the deformed steel pipe (1) is provided, and the large coil spring (7) is damaged and broken, and above all, the lower panel (15) The driving force does not propagate throughout. Further, if the deformed steel pipe (1) is not provided, when the pile is lifted, the pile will bend and bend with the spring as a fulcrum, causing problems in storage and transportation. When the steel pipe (1) is not a deformed steel pipe (1) having a bulge (2) but a straight steel pipe, when a force is applied, the large coil spring (7) and the small coil spring (5) start compressing at the same time. However, a compression force is simultaneously applied to the straight steel pipe. When further force is applied, the straight steel pipe bends in a hollow shape inside the large coil spring (7), and the large coil spring (7)
Is damaged or broken, and at the same time, naturally, the small coil spring (5) built in the straight steel pipe is also damaged, and the original function of the compressed steel coil spring is lost. Therefore, deformed steel pipe (1)
Is the key to the mechanism and function of the present invention. The seismic isolation device composed of the deformed steel pipe (1) and the large coil spring (7) is mainly used to alleviate the sway of the earthquake. Apply. The details will be described below. The tension spring (12) has a characteristic of flexibly bending in all directions of 360 degrees and restoring to a straight original shape. At the center of the lower washer (13) of the tension spring, a small tension spring (16) longer than the post steel tube (11) is fixed, and this is inserted into the post steel tube (11) having a diameter larger than the diameter of the hole (17). Then, the end of the small tension spring (16) is projected out of the column steel pipe (11). The tip of this protruding small tension spring (16) fits inside the round steel cylinder (18). Next, in the hollow of the tension spring (12), a small tension spring (16) is built in the washer (13) under the tension spring, and the upright supporting steel pipe (11) is built up.
And fix the end of the tension spring (12) to the tension spring lower washer (13). Next, since the support steel pipe (11) and the tension spring (12) have the same length, a small tension spring (1) is used.
The tip of 6) protrudes from the tension spring (12), passes through the round hole (17) provided in the tension spring washer (10), and fits in the fixed round steel cylinder (18). Next, the tension spring (12) is fixed to the tension spring washer (10) to be integrated. The most important thing about this structure is the steel column (1
1) is not fixed to the tension spring washer (10) and the tension spring lower washer (13). This support steel pipe (1
When both ends of 1) are fixed to the upper and lower portions, the tension spring (1)
The characteristic of 2) may be reduced by half or may become impossible. This is because, in the case of swaying, the tension spring (12) bends in characteristics, but the function is reduced by half when the column steel pipe (11) is fixed, and the small tension spring (16) built in the column steel pipe (11) is also reduced. Function cannot be exhibited. The greatest function of the column steel pipe (11) is to effectively propagate the casting to the entire lower panel (15). Therefore, in the case of the sway of an earthquake, the sway is relieved by the characteristics of the tension spring (12), and the underground pile is prevented from cracking or breaking. The tension spring (12) for the purpose of alleviating and preventing the sway is different from the seismic isolation device composed of the deformed steel pipe (1) and the large coil spring (7), and is slightly different in the method of driving into the ground. . Less than,
This will be described in detail. Deformed steel pipe (1) and large coil spring (7)
The seismic isolation device consisting of the following was installed on the lower washer (6).
Since the end of the deformed steel pipe (1) is fitted in the lower washer cylinder (14), the pile (8) and the lower pile (15) are connected and integrated. Because of this, casting, storage,
There are no transportation problems. Since the seismic isolation device composed of the tension spring (12) does not fix the supporting steel pipe (11) anywhere, the tension spring (12) has weak strength even in the horizontal direction, and it is difficult to integrate it into the pile. is there. Thus, hammering halves the pile. First, the lower pile (15) is first set and penetrated, and the pile ring ring (9)
Piles (8) beforehand when they reach the ground surface
The seismic isolation device of the tension spring (12) is connected to the pile ring (9). It can be done in a short time if performed by electric welding. This is lifted, connected to and fixed to the pile ring ring (9) of the lower pile (15) previously driven, and the driving is restarted. The driving force is reliably transmitted to the lower pile (15) by the support steel pipe (11) in the hollow of the tension spring (12). By dividing the pile into two, storage and transportation problems are solved. Round steel cylinder (18) provided on tension spring washer (10)
Has no disadvantage because it enters the hollow of the pile (8). A method of providing the present invention in a digging method that does not rely on hammering or the like will be described. The inside digging method is a method in which an earth auger drill is inserted into the hollow of a concrete pile and the pile is weighed while drilling, and the pile is laid while being pressed. Since it is impossible to provide a deformed steel pipe (1) and a column steel pipe (11) in this method, these are excluded. Tension spring (1
In the case of 2), if the tension spring washer (10) and the tension spring lower washer (13) are ring ring washers except for the support steel pipe (11), the entire pile becomes entirely hollow, and an earth auger drill is inserted into this hollow. There is no inconvenience to enter. After the pile is settled, the pile head may be processed to provide a seismic isolation device including the large coil spring (7) and the deformed steel pipe (1). By this method, the quake and the quake can be reduced and prevented. The Great Kanto Earthquake is a plate-shaped earthquake peculiar to the coastal area, and it is said that the swaying was remarkably remarkable. The present invention is a concrete pile with a seismic isolation device having the above configuration and function.

【0005】[0005]

【作用】本発明は、鋼コイルバネの特性と蛇腹の特性を
応用したものである。地震のたてゆれの場合、異形鋼管
(1)がつぶれて、蛇腹が密着した状態になるのが特徴
である。よこゆれの場合は、引張バネ(12)の特性で
よこゆれを緩和し、地中のパイルのひび割れ、折損を防
止するものである。一般に震源が浅く、大きい地震ほど
表面波の振幅は大きくなるといわれている。大コイルバ
ネ(7)及び小コイルバネ(5)及び引張バネ(12)
は、半永久的に弾性を有するので、たてゆれ、よこゆれ
を著しく緩和できる。また腐食しにくいといわれるステ
ンレス鋼製のコイルバネとすれば耐用年数は更に伸び
る。コイルバネ(7)(12)の外周面に鋼板を被覆す
ることは、パイルの保管、運搬上の問題と共にバネを保
護し、地中への貫入を容易にするためである。地中貫入
後の被覆した(薄鋼板)は、バネの機能に対して何ら不
都合な点はない。これは、バネが圧縮した場合、被覆し
た(薄鋼板)も圧縮されて、地中内でバネの(外周外)
に、(カサ状)に破断されるから、大コイルバネ(7)
の中空内に入ることはない。仮に、中空内に入っても
(薄鋼板)なのであるから、(肉厚の異形鋼管(1))
と異なり、バネの機構と機能に重大な影響を与えること
はない。この作用は引張バネ(12)に被覆する(薄鋼
板)も同様である。
According to the present invention, the characteristics of the steel coil spring and the characteristics of the bellows are applied. In the case of an earthquake, the deformed steel pipe (1) is crushed and the bellows is in close contact. In the case of the sway, the sway is relieved by the characteristic of the tension spring (12), and the underground pile is prevented from being cracked or broken. It is generally said that the shallower the epicenter and the larger the earthquake, the greater the amplitude of the surface waves. Large coil spring (7) and small coil spring (5) and extension spring (12)
Is semi-permanently elastic, so that it is possible to remarkably relieve sway and sway. A stainless steel coil spring, which is said to be less likely to corrode, further extends its service life. The coating of the outer peripheral surfaces of the coil springs (7) and (12) with a steel plate is to protect the spring together with problems in storage and transportation of the pile, and to facilitate penetration into the ground. The coating (sheet steel) after penetration into the ground has no disadvantages to the function of the spring. This is because when the spring is compressed, the coated (thin steel plate) is also compressed, and the spring (outside the outer periphery)
The large coil spring (7)
Never get inside the hollow. Even if it enters the hollow, it is (thin steel plate), so (thick deformed steel pipe (1))
Unlike, it does not significantly affect the mechanism and function of the spring. The same applies to the case where the tension spring (12) is coated (a thin steel plate).

【0006】[0006]

【実施例】大コイルバネ(7)と異形鋼管(1)、また
引張バネ(12)と支柱鋼管(11)とで構成された免
震装置をパイルに設けるものであるが、大深度長尺のパ
イルには数個所設けるとよい。これは、パイルは長尺に
なればなるほど、よこゆれ運動により、ひび割れ、折損
が多発するといわれ、阪神大震災はじめ、全国各地の過
去の地震により、地中内のパイルのひび割れ、折損が深
刻に懸念されている。本発明は、中空のコンクリートパ
イルのみに有効ではなく、鋼杭、場所打ち杭にも応用で
き、建造物の基礎、鋼柱、橋脚と橋げたとの結合部等、
また地震、台風のさいには必ず傾斜、倒壊の被害が発生
する電柱に応用することができる。ケーソン等の大口径
杭には口径に応じて、本発明を複数個設けることによっ
て、たてゆれ、よこゆれを著しく緩和できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A seismic isolation device comprising a large coil spring (7) and a deformed steel pipe (1), and a tension spring (12) and a support steel pipe (11) is provided in a pile. It is advisable to provide several places in the pile. It is said that the longer the pile becomes, the more the cracks and breakage occur due to the swaying movement, and there is a serious concern about cracks and breakage of the piles underground due to past earthquakes throughout the country, including the Great Hanshin Earthquake. Have been. The present invention is not only effective for hollow concrete piles, but also applicable to steel piles, cast-in-place piles, foundations of buildings, steel columns, joints between piers and bridges, etc.
In addition, it can be applied to utility poles that are always inclined and collapsed during an earthquake or typhoon. By providing a plurality of the present invention on a large-diameter pile such as a caisson according to the diameter, it is possible to remarkably reduce vertical and horizontal sway.

【0007】[0007]

【発明の効果】本発明は、鋼コイルバネの特性と蛇腹の
特性を応用したものであり、構造は非常に簡単で強固で
あり、地震のたてゆれ、よこゆれの緩和を著しく半永久
的に持続でき、特に地中でのパイルのひび割れ、折損を
防止する効果は絶大で、臨海部埋立地及び軟弱地での効
果は抜群である。また地中のみでなく、地上構造物等広
く応用できるものである。
The present invention is an application of the characteristics of a steel coil spring and the characteristics of a bellows. The structure is extremely simple and strong, and the mitigation of earthquake sway and sway is remarkably semi-permanently sustained. The effect of preventing pile cracking and breakage in the ground is especially great, and the effect in seaside landfills and soft lands is outstanding. It can be widely applied not only underground but also on ground structures.

【図面の簡単な説明】[Brief description of the drawings]

〔図1〕は本発明の一部分の斜視図。 〔図2〕は本発明の一部分の斜視図。 〔図3〕は本発明の主要部分の切欠斜視図。 〔図4〕は本発明の一部分の斜視図。 〔図5〕は本発明の一部分の平面図。 〔図6〕は本発明の主要部分の平面図。 FIG. 1 is a perspective view of a part of the present invention. FIG. 2 is a perspective view of a part of the present invention. FIG. 3 is a cutaway perspective view of a main part of the present invention. FIG. 4 is a perspective view of a part of the present invention. FIG. 5 is a plan view of a part of the present invention. FIG. 6 is a plan view of a main part of the present invention.

【符号の説明】[Explanation of symbols]

1は 鋼管 11は 支柱鋼管 2は ふくらみ 12は 引張バネ 3は だ円穴 13は 引張バネ下
部座金 4は 座金 14は 下部座金筒 5は 小コイルバネ 15は 下部パネル 6は 下部座金 16は 小引張バネ 7は 大コイルバネ 17は 穴 8は パイル 18は 筒 9は パイルリング環 10は 引張バネ座金
1 is a steel pipe 11 is a support steel pipe 2 is a bulge 12 is a tension spring 3 is an elliptical hole 13 is a tension spring lower washer 4 is a washer 14 is a lower washer cylinder 5 is a small coil spring 15 is a lower panel 6 is a lower washer 16 is a small tension spring 7 is a large coil spring 17 is a hole 8 is a pile 18 is a cylinder 9 is a pile ring ring 10 is a tension spring washer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D041 AA01 AA02 BA00 CB06 DB02 DB03 2D046 DA12 DA43 3J048 BC03 BC09 EA38  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2D041 AA01 AA02 BA00 CB06 DB02 DB03 2D046 DA12 DA43 3J048 BC03 BC09 EA38

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(イ)鋼管(1)に、複数個のふくらみ
(2)を設けて異形鋼管とし、各々のふくらみ(2)に
複数個の穴(3)を設け、座金(4)に小コイルバネ
(5)を固定し、鋼管(1)の中空に挿入して、座金
(4)を鋼管(1)の端部に固定する。 (ロ)下部座金(6)に下部座金筒(14)を設け、大
コイルバネ(7)の片方を下部座金(6)に固定し、大
コイルバネ(7)の中空に、小コイルバネ(5)を内蔵
した鋼管(1)を挿入し、鋼管(1)の端部を下部座金
筒(14)内に挿入して、大コイルバネ(7)の片方を
座金(4)に固定する。 (ハ)座金(4)をパイル(8)のパイルリング環
(9)に固定し、下部座金(6)を下部パネル(15)
のパイルリング環(9)に固定し、パイル(8)と下部
パイル(15)を連結固定する。 (ニ)鋼板で大コイルバネ(7)全体を筒状に被覆し、
筒状の端部を座金(4)及び下部座金(6)に固定す
る。以上の如く構成された免震装置つきコンクリートパ
イル。
1. A steel pipe (1) is provided with a plurality of bulges (2) to form a deformed steel pipe, each bulge (2) is provided with a plurality of holes (3), and a washer (4) is provided. The small coil spring (5) is fixed, inserted into the hollow of the steel pipe (1), and the washer (4) is fixed to the end of the steel pipe (1). (B) The lower washer (6) is provided with the lower washer cylinder (14), one of the large coil springs (7) is fixed to the lower washer (6), and the small coil spring (5) is placed in the hollow of the large coil spring (7). The built-in steel pipe (1) is inserted, the end of the steel pipe (1) is inserted into the lower washer cylinder (14), and one of the large coil springs (7) is fixed to the washer (4). (C) Fix the washer (4) to the pile ring ring (9) of the pile (8), and attach the lower washer (6) to the lower panel (15).
The pile (8) and the lower pile (15) are connected and fixed. (D) The entire large coil spring (7) is covered with a steel plate in a cylindrical shape,
The cylindrical end is fixed to the washer (4) and the lower washer (6). Concrete pile with seismic isolation device configured as above.
【請求項2】(イ)引張バネ下部座金(13)の中心
に、支柱鋼管(11)より長い小引張バネ(16)を固
定し、これを、穴(17)の口径より大きい口径を有す
る支柱鋼管(11)に挿入して、小引張バネ(16)の
端部を支柱鋼管(11)外に突出させる。 (ロ)引張バネ(12)の中空に、直立した支柱鋼管
(11)を入れ、引張バネ(12)の端部を引張バネ下
部座金(13)に固定する。 (ハ)支柱鋼管(11)外に突出させた小引張バネ(1
6)の端部を、引張バネ座金(10)に設けた穴(1
7)の上部に固定された丸鋼筒(18)内にはめこみ、
引張バネ(12)を引張バネ座金(10)に固定する。 (ニ)引張バネ座金(10)をパイル(8)のパイルリ
ング環(9)に固定し、引張バネ下部座金(13)を下
部パイル(15)のパイルリング環(9)に固定し、パ
イル(8)と下部パイル(15)を連結固定する。 (ホ)鋼板で引張バネ(12)全体を筒状に被覆し、筒
状の端部を引張バネ下部座金(13)と引張バネ座金
(10)に固定する。以上の如く構成された請求項1の
免震装置つきコンクリートパイル。
2. A small tension spring (16), which is longer than the support steel pipe (11), is fixed to the center of the tension spring lower washer (13), and has a diameter larger than the diameter of the hole (17). The small tension spring (16) is inserted into the support steel pipe (11), and the end of the small tension spring (16) projects out of the support steel pipe (11). (B) An upright support steel pipe (11) is placed in the hollow of the tension spring (12), and the end of the tension spring (12) is fixed to the tension spring lower washer (13). (C) A small tension spring (1) protruding outside the support steel pipe (11)
Insert the end of (6) into the hole (1) provided in the tension spring washer (10).
7) fit into the round steel cylinder (18) fixed on the upper part,
The tension spring (12) is fixed to the tension spring washer (10). (D) The tension spring washer (10) is fixed to the pile ring ring (9) of the pile (8), and the tension spring lower washer (13) is fixed to the pile ring ring (9) of the lower pile (15). (8) and the lower pile (15) are connected and fixed. (E) The entire tension spring (12) is covered with a steel plate in a cylindrical shape, and the cylindrical end is fixed to the tension spring lower washer (13) and the tension spring washer (10). The concrete pile with a seismic isolation device according to claim 1 configured as described above.
JP10378285A 1998-12-21 1998-12-21 Concrete pile with base isolation device Pending JP2000186323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10378285A JP2000186323A (en) 1998-12-21 1998-12-21 Concrete pile with base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10378285A JP2000186323A (en) 1998-12-21 1998-12-21 Concrete pile with base isolation device

Publications (1)

Publication Number Publication Date
JP2000186323A true JP2000186323A (en) 2000-07-04

Family

ID=18509540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10378285A Pending JP2000186323A (en) 1998-12-21 1998-12-21 Concrete pile with base isolation device

Country Status (1)

Country Link
JP (1) JP2000186323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410177A (en) * 2013-07-26 2013-11-27 上海岩土工程勘察设计研究院有限公司 Forming method of underground shielding vibration-isolation structure
JP2018035621A (en) * 2016-09-01 2018-03-08 株式会社大林組 Construction method for base-isolated building
CN112281899A (en) * 2020-10-01 2021-01-29 单士营 Foundation pit prefabricated enclosure shock absorption pile and method for building foundation pit enclosure wall
KR102225143B1 (en) * 2020-04-28 2021-03-08 공학봉 Hybrid anchor
CN113174925A (en) * 2021-04-12 2021-07-27 三峡大学 Novel coral sand foundation pile using expanding agent and construction method
CN114197458A (en) * 2021-12-29 2022-03-18 成都采筑电子商务有限公司 Shock-absorbing building pile and construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410177A (en) * 2013-07-26 2013-11-27 上海岩土工程勘察设计研究院有限公司 Forming method of underground shielding vibration-isolation structure
JP2018035621A (en) * 2016-09-01 2018-03-08 株式会社大林組 Construction method for base-isolated building
KR102225143B1 (en) * 2020-04-28 2021-03-08 공학봉 Hybrid anchor
CN112281899A (en) * 2020-10-01 2021-01-29 单士营 Foundation pit prefabricated enclosure shock absorption pile and method for building foundation pit enclosure wall
CN113174925A (en) * 2021-04-12 2021-07-27 三峡大学 Novel coral sand foundation pile using expanding agent and construction method
CN114197458A (en) * 2021-12-29 2022-03-18 成都采筑电子商务有限公司 Shock-absorbing building pile and construction method

Similar Documents

Publication Publication Date Title
US7195426B2 (en) Structural pier and method for installing the same
US5228807A (en) Foundation support apparatus with sectional sleeve
WO2007091977A1 (en) Bollard system and method of installation
US5775038A (en) Fixed point seismic buffer system
JP2000186323A (en) Concrete pile with base isolation device
KR102156736B1 (en) Anchor structure system of transmission steel tower
JP3229629U (en) Integrated foundation bearing platform for rapid construction
JP2003232046A (en) Steel pipe damper and locking foundation structure using the same
JP3297413B2 (en) Damping frame with friction damping mechanism
US3803783A (en) Foundation earth anchor
JP2000120079A (en) Base isolation structure of pile
JP4273573B2 (en) Joint structure of pile and superstructure
JP3102548B2 (en) Seismic isolation structure of pile
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JP2002201816A (en) Base isolation foundation structure of building
JP2001020558A (en) Base isolation structure of building
RU2773487C1 (en) Kinematic pipe-concrete seismic isolation support on a monolithic reinforced concrete foundation
KR102503844B1 (en) Upper reinforcement support to increase horizontal force of foundation pile
JP3064887B2 (en) Seismic isolation structure of pile
SU1629416A1 (en) Screen for seismic protection of buildings and structures
CN216551996U (en) Swing type anti-seismic recoverable anchor rod suitable for complex slope support
RU2457292C2 (en) Earthquake-proof pile
JPS6290479A (en) Earthquake-proof and earthquake resistant structure of fuilding
JP3773134B2 (en) Seismic isolation method for structures using micropile
KR101858021B1 (en) Earthquake-proof type top-base pile, earthquake-proof type top-base foundation and construction method of the same