JP2000182624A - Manufacture of lead-acid battery grating - Google Patents

Manufacture of lead-acid battery grating

Info

Publication number
JP2000182624A
JP2000182624A JP10357357A JP35735798A JP2000182624A JP 2000182624 A JP2000182624 A JP 2000182624A JP 10357357 A JP10357357 A JP 10357357A JP 35735798 A JP35735798 A JP 35735798A JP 2000182624 A JP2000182624 A JP 2000182624A
Authority
JP
Japan
Prior art keywords
calcium
lead
sec
rate
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10357357A
Other languages
Japanese (ja)
Inventor
Tetsuo Takama
徹郎 高間
Masaaki Sasaki
正明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP10357357A priority Critical patent/JP2000182624A/en
Publication of JP2000182624A publication Critical patent/JP2000182624A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the corrosion rate at a grating and to provide a lead-acid battery with excellent life properties by injecting a molten metal of a lead-tin- calcium alloy including calcium of a specific ratio into a mold, and by cooling at a specific rate to solidify the molten metal. SOLUTION: In this manufacturing method, it is preferable that a molten metal of a lead-tin-calcium alloy including calcium of 0.01 to 0.06 wt.% is injected into a mold and is cooled at a cooling rate of 27 deg/sec. or under for solidification. Grating-like engraving is applied to a pair of a molding material consisted of Meehanite cast iron buried with a cooling pipe, a lubricant is sprayed and a metal mold of a grating provided with a thermal barrier of 100 μm is attained. The temperature of the metal mold is maintained at 150 deg.C and the lead-tin-calcium alloy is injected and cooled. When calcium is 0.01 wt.%, the cooling rate is 23 deg/sec. and the grain boundary corrosion rate is 0.15 (mm/mm2); and when the cooling rate is 33 deg/sec., the grain boundary corrosion rate is 0.40 (mm/mm2). When calcium is 0.06 wt.%, the cooling rate is 23 deg/sec. and the grain boundary corrosion rate is 0.06 (mm/mm2); and when the cooling rate is 33 deg/sec. and the grain boundary corrosion rate is 0.28 (mm/mm2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池用格子体
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grid for a lead storage battery.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池は、補水を不要にする必
要があるので、負極板の水素ガス発生に伴う自己放電を
可及的に少なくしなければならない。このため、格子体
に鉛ーカルシウム系合金が広く使用されている。また、
最近、この合金の耐蝕性を増すために錫が添加された鉛
ー錫ーカルシウム合金が使用されている。
2. Description of the Related Art In a sealed lead-acid battery, it is necessary to eliminate the need for water refilling. Therefore, self-discharge due to the generation of hydrogen gas on the negative electrode plate must be reduced as much as possible. For this reason, lead-calcium alloys are widely used for lattices. Also,
Recently, lead-tin-calcium alloys with added tin have been used to increase the corrosion resistance of this alloy.

【0003】ところで、鉛蓄電池用格子体の製造方法に
は、鋳造方式があり、この方式は、通常、前記合金の溶
湯を金型内に注入し、金型に彫り込まれている水冷管に
水を流して冷却し、前記溶湯を凝固させ、金型から凝固
した格子体を取り出す方式である。
There is a casting method as a method of manufacturing a grid for a lead-acid battery. In this method, usually, a molten metal of the alloy is poured into a mold, and water is poured into a water cooling tube engraved in the mold. Is cooled to solidify the molten metal and take out the solidified lattice from the mold.

【0004】この方式で前記合金を用いて格子体を製造
すると、カルシウムの含有量によって結晶の大きさの異
なる格子体が得られ、該格子体を用いた鉛蓄電池の寿命
性能に影響を与えた。すなわち、カルシウムの含有量の
大きい合金を用いると、鋳造時に結晶が微細化され、腐
食量が増加した(図3参照)。また、カルシウムの量が
少ないと、鋳造時に結晶が大きくなり、電池の使用中に
腐食部分の格子体内への侵入割合(以下、腐食侵入度と
いう)が大きくなり(図2参照)、格子骨の破断が生じ
易くなった。従って、一般にカルシウムが0.06〜
0.1重量%程度含む鉛ー錫ーカルシウム合金が多用さ
れていた。
[0004] When a lattice body is manufactured using the above alloy by this method, a lattice body having a different crystal size depending on the content of calcium is obtained, which has affected the life performance of a lead-acid battery using the lattice body. . That is, when an alloy having a large calcium content was used, the crystals were refined during casting, and the amount of corrosion increased (see FIG. 3). On the other hand, when the amount of calcium is small, the crystal becomes large at the time of casting, and the penetration rate of the corroded portion into the lattice during use of the battery (hereinafter, referred to as corrosion penetration) increases (see FIG. 2). Breakage became easy to occur. Therefore, calcium is generally 0.06 to
Lead-tin-calcium alloys containing about 0.1% by weight have been frequently used.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記合金を用
いて従来の製造条件(溶湯合金の冷却速度を約33de
g/秒とする条件)で作製した格子体を正極板に用いた
電池を高温雰囲気中で使用すると、前記合金の粒界腐食
が直線的に内部に侵入し、格子体が膨張して破断した
り、格子体から活物質が脱落して早期寿命に至るという
問題点を有していた。このような問題点を解決するため
に、前記格子体をさらに長寿命にすることが望まれてい
た。
However, using the above alloy, the conventional manufacturing conditions (the cooling rate of the molten alloy is about 33
g / sec), when a battery using a grid prepared as a positive electrode plate in a high-temperature atmosphere is used in a high-temperature atmosphere, intergranular corrosion of the alloy linearly penetrates into the inside, and the grid expands and breaks. Or the active material falls off from the lattice, leading to an early life. In order to solve such a problem, it has been desired that the lattice body has a longer life.

【0006】本発明は上記問題点に鑑みてなされたもの
であって、格子体の腐食侵入度を抑制して寿命性能に優
れた鉛蓄電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a lead-acid battery having excellent life performance by suppressing the degree of corrosion penetration of the grid.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、0.01〜0.06重量%のカルシウム
を含む鉛ー錫ーカルシウム合金の溶湯を金型内に注入
し、27deg/秒以下の冷却速度で前記溶湯を凝固さ
せることを特徴とする。
In order to achieve the above object, the present invention provides a method for injecting a molten metal of a lead-tin-calcium alloy containing 0.01 to 0.06% by weight of calcium into a mold, and applying 27 deg. The molten metal is solidified at a cooling rate of / sec or less.

【0008】[0008]

【作用】本発明者らは、金型内の溶湯の冷却速度を遅く
することによりカルシウムの含有量が少ない状態で腐食
侵入度を少なくできることを見いだした。従って、従来
よりカルシウムの含有量が少ない合金を用いて、本発明
の方法で作製した格子体を鉛蓄電池に用いると、格子体
の腐食侵入度が少なくなり、鉛蓄電池の寿命性能が優れ
る。
The present inventors have found that by lowering the cooling rate of the molten metal in the mold, it is possible to reduce the degree of corrosion penetration with a small calcium content. Therefore, when a lattice body manufactured by the method of the present invention is used for a lead storage battery by using an alloy having a smaller calcium content than before, the degree of corrosion penetration of the lattice body is reduced, and the life performance of the lead storage battery is excellent.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0010】冷却パイプが埋設された幅400mm、高
さ240mm、厚さ40mmのミーハナイト鋳鉄よりな
る一対の型材に、幅140mm、高さ225mm、親骨
の厚さ3.9mm、親骨の断面積9.3mm2 、子骨の
厚さ2.0mm、子骨の断面積1.8mm2 の格子体形
状を彫刻し、コルクを主成分とする滑材を吹き付け、約
100μmの断熱層を設けた格子体の金型(鋳型)を準
備した。
[0010] A pair of mold members made of cast iron having a width of 400 mm, a height of 240 mm and a thickness of 40 mm, in which a cooling pipe is embedded, are formed of 140 mm wide, 225 mm high, 3.9 mm thick rib, and 3.9 mm thick rib cross-sectional area. A lattice body having a 3 mm 2 , 2.0 mm thickness of the rib bone, and a 1.8 mm 2 cross-sectional area of the rib bone, engraved with a grid material, sprayed with a sliding material mainly containing cork, and provided with a heat insulating layer of about 100 μm. Was prepared.

【0011】この金型を150℃に昇温し、この温度に
維持して、鉛ー0.06重量%カルシウムー1.5重量
%錫合金の溶湯を流し込み、表1に示した条件で種々の
冷却温度で凝固させた。
The temperature of the mold was raised to 150 ° C., and at this temperature, a molten metal of lead-0.06% by weight calcium-1.5% by weight tin alloy was poured, and various conditions were obtained under the conditions shown in Table 1. Solidified at the cooling temperature.

【0012】なお、冷却速度は、溶湯温度と凝固温度の
差を、金型に溶湯を注入した時から型崩れが起こらずに
凝固するまでの最短時間で除した値である。
The cooling rate is a value obtained by dividing the difference between the molten metal temperature and the solidification temperature in the shortest time from the time when the molten metal is poured into the mold to the time when the molten metal is solidified without collapse.

【0013】[0013]

【表1】 [Table 1]

【0014】上記条件で作製した格子体を比重1.28
d、温度60℃、電流密度0.02A/cm2 の条件下
で6日間連続通電し、格子体断面の金属顕微鏡観察を行
い、格子体内部に進行している粒界腐食の長さを累計
し、粒界腐食侵入度(mm/mm2 )を求めた。その結
果を図1に示す。なお、各冷却速度におけるデータ数
(n)は3である。
The lattice prepared under the above conditions was treated with a specific gravity of 1.28.
d. A current is continuously supplied for 6 days under the conditions of a temperature of 60 ° C. and a current density of 0.02 A / cm 2 , and the lattice section is observed with a metallographic microscope, and the length of grain boundary corrosion progressing inside the lattice is accumulated. Then, the intergranular corrosion penetration (mm / mm 2 ) was determined. The result is shown in FIG. The number of data (n) at each cooling rate is 3.

【0015】図1より冷却速度が27deg/sec、
好ましくは25deg/sec以下で粒界腐食侵入度が
低くなっていることが分かる。また、前記合金のカルシ
ウムの含有量を種々変化させ、表1の25℃水冷(1)
の条件で格子体を作製し、上記と同様な方法で腐食侵入
度と腐食量を調べた。その結果を図2と図3に示す。な
お、腐食量は、鉛ー0.1重量%カルシウムー1.5重
量%錫合金を用い冷却速度33deg/secで作製し
た格子体の腐食量を100とした腐食量相対値(%)で
表した。
FIG. 1 shows that the cooling rate is 27 deg / sec,
It can be seen that the intergranular corrosion penetration is preferably low at 25 deg / sec or less. Further, the content of calcium in the alloy was variously changed, and water cooling at 25 ° C. (1) in Table 1 was performed.
A lattice body was produced under the following conditions, and the degree of corrosion penetration and the amount of corrosion were examined in the same manner as described above. The results are shown in FIGS. In addition, the corrosion amount was represented by a corrosion amount relative value (%), where the corrosion amount of a lattice produced using a lead-0.1 wt% calcium-1.5 wt% tin alloy at a cooling rate of 33 deg / sec was 100. .

【0016】この結果より、0.01〜0.06重量%
のカルシウムを含む合金を用い、しかも冷却速度を従来
より遅くすれば、腐食侵入度が従来より少なく、腐食量
が従来よりやや少ない格子体が得られることがわかっ
た。
From these results, it was found that 0.01 to 0.06% by weight
It was found that when an alloy containing calcium was used and the cooling rate was slower than before, a lattice body with a lower corrosion penetration and a slightly smaller amount of corrosion than before was obtained.

【0017】従って、図1〜図3の結果より鉛ー0.0
6重量%以下カルシウムー錫合金を用いて、27deg
/sec以下の冷却速度で格子体を作製すれば、粒界腐
食侵入度が少ない格子体とすることができ、この格子体
を用いた鉛蓄電池は長寿命になる。
Accordingly, from the results shown in FIGS.
Using a calcium-tin alloy of 6% by weight or less, 27deg
If the grid is manufactured at a cooling rate of not more than / sec, the grid can be formed with a low degree of intergranular corrosion penetration, and the lead storage battery using this grid has a long life.

【0018】なお、カルシウムの量が0.01重量%以
下になると、格子体の機械的強度が弱くなり、変形し易
くなるので、実用的でなくなる。また、本発明は、重量
鋳造に限り、圧力鋳造のように低温の溶湯を加圧注入す
るものには適用されない。
When the amount of calcium is less than 0.01% by weight, the mechanical strength of the lattice body is weakened and the lattice is easily deformed, which is not practical. In addition, the present invention is not applied to pressure casting of a low-temperature molten metal such as pressure casting only in heavy casting.

【0019】[0019]

【発明の効果】上述したように、本発明によれば、従来
のものに比べ腐食侵入度が少なく、かつ腐食量が殆ど変
わらない格子体を得ることができるので、鉛蓄電池の寿
命を延ばすことができる。
As described above, according to the present invention, it is possible to obtain a grid body having a lower degree of corrosion penetration than the conventional one and having almost the same amount of corrosion, thereby extending the life of the lead storage battery. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金型の冷却速度と格子体の腐食侵入度の関係を
示すグラフである。
FIG. 1 is a graph showing a relationship between a cooling rate of a mold and a degree of corrosion penetration of a lattice body.

【図2】カルシウムの含有量と格子体の腐食侵入度の関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the calcium content and the degree of corrosion penetration of the lattice.

【図3】カルシウムの含有量と格子体の腐食量(相対
値)の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a calcium content and a corrosion amount (relative value) of a lattice body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 11/06 C22C 11/06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22C 11/06 C22C 11/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 0.01〜0.06重量%のカルシウム
を含む鉛ー錫ーカルシウム合金の溶湯を金型内に注入
し、27deg/秒以下の冷却速度で前記溶湯を凝固さ
せることを特徴とする鉛蓄電池用格子体の製造方法。
1. A molten metal of a lead-tin-calcium alloy containing 0.01 to 0.06% by weight of calcium is poured into a mold, and the molten metal is solidified at a cooling rate of 27 deg / sec or less. Of producing a grid body for a lead-acid battery.
JP10357357A 1998-12-16 1998-12-16 Manufacture of lead-acid battery grating Pending JP2000182624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10357357A JP2000182624A (en) 1998-12-16 1998-12-16 Manufacture of lead-acid battery grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10357357A JP2000182624A (en) 1998-12-16 1998-12-16 Manufacture of lead-acid battery grating

Publications (1)

Publication Number Publication Date
JP2000182624A true JP2000182624A (en) 2000-06-30

Family

ID=18453724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10357357A Pending JP2000182624A (en) 1998-12-16 1998-12-16 Manufacture of lead-acid battery grating

Country Status (1)

Country Link
JP (1) JP2000182624A (en)

Similar Documents

Publication Publication Date Title
CN106099086B (en) The porous copper-zinc-aluminum shape memory alloy composite material and preparation method of micro-nano and application
JP2013122838A (en) Positive electrode grid for lead acid battery
CN104953104B (en) Nano-porous and nano-porous flower shape copper-tin alloy and preparation method thereof
JPS5976846A (en) Low antimony lead base alloy and casting method
CN103526038A (en) Electroslag remelting production method of high-strength high-plasticity TWIP (Twinning Induced Plasticity) steel
JP5493025B2 (en) electrode
JP2000182624A (en) Manufacture of lead-acid battery grating
US6024159A (en) Pressure casting method with recoverable melt out core
JPS6141973B2 (en)
US1403036A (en) Making porous plates
JP2000021414A (en) Manufacture of grid for positive electrode for lead-acid battery, and manufacture of the positive electrode for the lead-acid battery
JP4579514B2 (en) Manufacturing method of grid substrate for lead acid battery
JPH0211955Y2 (en)
JP2904013B2 (en) Lead storage battery
KR20070069495A (en) Grid alloy for lead-acid battery
US3117864A (en) Process for producing a worked gold alloy
JP3185337B2 (en) Manufacturing method of lead storage battery
KR100692273B1 (en) Positive grid of Lead-acid battery and an alloy therefor
JP2002008624A (en) Strap for lead-acid battery
JPH06236761A (en) Manufacture of grating for lead-acid battery
Simon et al. The Role of Inverse Segregation and Redistribution of Solute Atoms in the Freezing of Hypoeutectic Lead‐Antimony Alloys
JP2006150391A (en) Apparatus for casting lattice substrate for lead storage battery
BE713713A (en)
JPS6127069A (en) Lead-acid battery
JPH09167611A (en) Lead-acid battery