JP2000182612A - Manufacture of hydrogen storage alloy powder and alkaline secondary battery - Google Patents

Manufacture of hydrogen storage alloy powder and alkaline secondary battery

Info

Publication number
JP2000182612A
JP2000182612A JP10356824A JP35682498A JP2000182612A JP 2000182612 A JP2000182612 A JP 2000182612A JP 10356824 A JP10356824 A JP 10356824A JP 35682498 A JP35682498 A JP 35682498A JP 2000182612 A JP2000182612 A JP 2000182612A
Authority
JP
Japan
Prior art keywords
alloy
alloy powder
inert atmosphere
powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10356824A
Other languages
Japanese (ja)
Inventor
Masaki Kasashima
匡樹 笠嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10356824A priority Critical patent/JP2000182612A/en
Publication of JP2000182612A publication Critical patent/JP2000182612A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of hydrogen storage alloy powder exhibiting higher initial activity, higher capacity, higher utilization factor and longer service life than the alloy powder made by a conventional method. SOLUTION: After a molten alloy is cooled at a speed not to cause component segregation in the alloy or a speed so that alloy is formed with polyphase dispersed as uniformly as possible even if the polyphase is easily deposited under an inert atmosphere to form the alloy, the alloy is heat-treated under a reduced pressure or in an inert atmosphere such as argon gas. Hydrogen is held by the alloy at a low temperature in a closed vessel. After alloy powder is provided by grinding the alloy by releasing the hydrogen from the alloy at high temperature or by a mechanical grinding method, the alloy powder is classified to a desired grading distribution under the inert atmosphere. An objective alloy powder can be provided by heat-treating the alloy powder individually or with fine particles of rare earth oxide or rare earth hydroxide addingly mixed into the alloy under reduced pressure or inert atmosphere such as argon gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金及び
それを負極活物質として用いたアルカリ二次電池に関
し、特に、アルカリ二次電池の負極材料として用いた場
合に、初期活性、容量、利用率が高く、かつ寿命の長い
合金粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and an alkaline secondary battery using the same as a negative electrode active material, and more particularly, to an initial activity, capacity and utilization when used as a negative electrode material of an alkaline secondary battery. It relates to an alloy powder having a high rate and a long life.

【0002】[0002]

【従来の技術】電子情報機器の小型軽量化、電動工具の
軽量化と高出力化、および電気自動車の軽量化などの高
性能化にかかる目的で、これらに用いられる二次電池に
は小型軽量高性能化が求められ、その結果、高い初期活
性、高容量、高利用率、長寿命を主とする性能改善が必
須となっている。しかしながら、それらに用いられてい
る二次電池、とりわけ広く用いられるようになってきた
アルカリ二次電池においては、構成部材の負極活物質で
ある水素吸蔵合金の特質から、初期活性、容量、利用率
と長寿命が相反する状況にあり、これらを両立させるた
めに合金組成や合金製法などについていろいろな試みが
行われているが、十分なものが得られていない。
2. Description of the Related Art The secondary batteries used in electronic information devices have been reduced in size and weight for the purpose of reducing the size and weight of electronic information equipment, reducing the weight and increasing the output of electric power tools, and increasing the performance of electric vehicles. Higher performance is required, and as a result, performance improvement mainly with high initial activity, high capacity, high utilization, and long life is essential. However, in the secondary batteries used therefor, particularly in the alkaline secondary batteries which have come to be widely used, the initial activity, capacity, and utilization factor depend on the characteristics of the hydrogen storage alloy which is the negative electrode active material of the constituent members. And long life are in conflict with each other, and various attempts have been made on alloy composition, alloy production methods, and the like in order to make these compatible, but no satisfactory one has been obtained.

【0003】たとえば、合金組成での改善においては、
高容量化や高い初期活性を求める場合、水素を吸蔵しや
すい元素、例えばAB5型水素吸蔵合金などでは希土類
元素の分量を増やす方向で検討が行われるのが一般的だ
が、水素を吸蔵しやすい元素が電池電解液に用いられる
アルカリ水溶液に腐食されやすいために、合金の寿命が
短くなり結果的に短寿命の電池となってしまう。また、
逆に、寿命を長くする場合では、水素を吸蔵しやすい元
素を減らすことで合金のアルカリ電解液による腐食を少
なくする方法が採られるが、これでは合金の水素吸蔵量
が少なくなることから結果的に電池容量が低下してしま
う。したがって、現段階において組成の検討では、全て
の要求を満足させることが困難で、どうしても性能を特
化させ、特定の要求のみを満足させるものになってい
る。加えて、製法上の都合もあり、極端に化学量論比か
らずれた組成や、合金化しにくい元素を添加した場合な
どでは、合金内に組成偏析を生じてしまうため本来目的
とする合金を得ることができず、合金化できる組成に制
約されてしまうという問題もあった。
For example, in improving the alloy composition,
Case of requiring a high capacity and high initial activity, hydrogen easily absorbing element, for example in such AB 5 -type hydrogen absorbing alloy but generally that considered in the direction of increasing the amount of rare earth elements is carried out, easily absorb hydrogen Since the elements are easily corroded by the alkaline aqueous solution used in the battery electrolyte, the life of the alloy is shortened, resulting in a short-life battery. Also,
Conversely, when extending the life, a method is adopted to reduce the corrosion of the alloy by the alkaline electrolyte by reducing the elements that easily absorb hydrogen, but this results in a reduction in the hydrogen storage capacity of the alloy. Battery capacity will be reduced. Therefore, it is difficult to satisfy all the requirements in the examination of the composition at the present stage, and it is necessary to specialize the performance and satisfy only the specific requirements. In addition, due to the manufacturing method, when the composition extremely deviates from the stoichiometric ratio, or when an element that is difficult to alloy is added, composition segregation occurs in the alloy, so that the originally intended alloy is obtained. And there is also a problem that the composition is restricted by the alloyable composition.

【0004】そのため、これら組成での改善限界、制約
を少なくするために合金製法での改善が行われ、合金内
部の組成偏析をできるだけ少なくし寿命を延ばすという
ものと、合金を機械的に粉砕して得られた合金粉末の表
面を改質することで初期活性やその他の特性を高める方
法が一般的に検討されており、相応の結果を示してはい
るが、まだ十分なものとは言えないでいた。というの
も、合金の組成偏析を少なくするために合金塊を熱処理
することが一般的に行われているが、これではマクロ的
な偏析を少なくすることはできるが、粒子径が数μmか
ら50μm位の微細領域の偏析を十分に改善することが
できないために、一般的に電池電極に用いられる粒子径
が数μmから200μmの範囲であることが起因し、これ
ら微粒子の寿命低下が全体の寿命低下に影響を与え、結
果として電池寿命の改善が図れず、充分な解決方法とは
言えなかった。
[0004] Therefore, in order to reduce the improvement limits and restrictions on these compositions, improvements have been made in the alloy manufacturing method. In order to reduce the composition segregation inside the alloy as much as possible and to extend the life, there is a need to mechanically pulverize the alloy. Methods for improving the initial activity and other properties by modifying the surface of the obtained alloy powder are generally studied, and although showing reasonable results, it is still not enough Was out. This is because heat treatment of the alloy ingot is generally performed to reduce the composition segregation of the alloy, but this can reduce the macroscopic segregation, but the particle diameter is several μm to 50 μm. In general, the particle diameter used for battery electrodes is in the range of several μm to 200 μm because the segregation of fine regions cannot be sufficiently improved. In this case, the battery life was not improved, and it was not a sufficient solution.

【0005】そのため、特公平6-93358号公報や特公平7
-63007号公報にあるように、それらミクロ偏析をも低減
させ寿命を延ばす方法として、合金溶湯を急冷する方法
とアルカリ水溶液による合金粉の表面処理も検討されて
いるが、それらは合金成分の一部を溶出させてしまうた
め、合金体積および重量あたりの容量低下を招き、合金
の利用率の向上に逆行する側面があった。また、これら
の表面処理では、各種の金属イオンを含んだ高濃度の処
理廃液が大量に生じるため、それら廃液処理のための処
理設備、費用が必要で、特に低コスト化が望まれる近年
にあっては、実用上非常に問題となっている。
For this reason, Japanese Patent Publication No. 6-93358 and Japanese Patent Publication
As disclosed in JP-63007, a method of rapidly cooling the molten alloy and a surface treatment of the alloy powder with an alkaline aqueous solution are also being studied as methods for reducing the microsegregation and extending the life, but they are one of the alloy components. Because of the elution of the part, the volume per alloy volume and weight per unit weight is reduced, and there is a side that goes against the improvement of the utilization rate of the alloy. In addition, in these surface treatments, a large amount of high-concentration wastewater containing various metal ions is generated. Therefore, processing equipment and cost for such wastewater treatment are required, and particularly in recent years, cost reduction is desired. In practice, it is very problematic.

【0006】[0006]

【発明が解決しようとする課題】そこで、従来方法で造
られた合金粉末よりも、高い初期活性、高容量、高利用
率、長寿命を示す合金粉末を、できるだけ合金組成に制
約されることなく得ることができ、かつ合金粉末製造時
に発生する廃棄物、たとえば表面処理廃液などが殆ど無
く、実用上極めて有益な水素吸蔵合金粉末を製造する方
法を提供する。
Therefore, an alloy powder exhibiting a higher initial activity, a higher capacity, a higher utilization factor and a longer life than the alloy powder produced by the conventional method can be obtained without being restricted by the alloy composition as much as possible. The present invention provides a method for producing a hydrogen storage alloy powder which can be obtained and hardly generates waste such as surface treatment waste liquid during production of the alloy powder, and is extremely useful in practical use.

【0007】[0007]

【問題を解決するための手段】本発明によれば、不活性
雰囲気下において合金内部に組成偏析を生じさせない速
度または多相が析出し易い場合でもこれらができるだけ
均等に分散した状態で合金となるような速度で合金溶湯
を冷却して合金を形成させたのち、減圧下またはアルゴ
ンガスなどの不活性雰囲気下で合金を熱処理し、ついで
密閉容器内で低温にて合金に水素を吸蔵保持させ、さら
に高温にて合金から水素を放出させることで合金を粉砕
する方法か、機械的な粉砕方法によって合金粉末を得た
のち、不活性雰囲気下において所望の粒度分布に分級
し、減圧下またはアルゴンガスなどの不活性雰囲気下で
合金粉単独または場合によって希土類酸化物又は希土類
水酸化物の微粒子を添加混合した状態で熱処理すること
によって、目的とする合金粉末を得る。
According to the present invention, an alloy is formed in a state in which these components are dispersed as uniformly as possible even when a speed that does not cause compositional segregation or a multiphase is likely to precipitate in an alloy under an inert atmosphere. After cooling the molten alloy at such a speed to form an alloy, heat-treat the alloy under reduced pressure or an inert atmosphere such as argon gas, and then store hydrogen in the alloy at a low temperature in a closed container, Further, alloy powder is obtained by a method of pulverizing the alloy by releasing hydrogen from the alloy at a high temperature or a mechanical pulverizing method, and then classified into a desired particle size distribution under an inert atmosphere, under reduced pressure or argon gas. Under an inert atmosphere such as that described above, heat treatment may be performed by adding and mixing alloy powder alone or, in some cases, fine particles of rare earth oxide or rare earth hydroxide. Obtain an alloy powder.

【0008】すなわち、合金溶湯を急冷することでミク
ロ的にも組成偏析が少なく、微細な結晶粒をもった合金
を形成させたり、また、極端に化学量論比から組成比を
ずらした合金組成や合金化しにくい元素を添加した場合
に生じる多相をできるだけ均等に分散させた合金を形成
させ、次いで熱処理して合金内部に多相が出現したとき
などに生じる歪みを開放させて結晶格子の形態を整える
ことと不可抗力的に析出してしまった組成偏析をさらに
少なくしたのち、これを水素の吸蔵放出によって結晶粒
界面に沿って合金を粉砕させ、さらに個々の結晶粒界
面、言い換えれば合金粒子表面を熱処理することによる
乾式での表面改質をともに行うことで、内部が水素原子
の拡散しやすい状態となった合金を、合金成分を溶出さ
せることなく、個々に特性が均質な合金粒子に加工する
ことで、高い初期活性、高容量、高利用率、長寿命が実
現できる。
That is, by quenching the molten alloy, alloy segregation is reduced microscopically, and an alloy having fine crystal grains is formed, or an alloy composition whose composition ratio is extremely shifted from the stoichiometric ratio is obtained. And the formation of an alloy in which the polyphases generated when elements that are difficult to alloy are added are dispersed as evenly as possible, followed by heat treatment to release the strain that occurs when the multiphases appear inside the alloy, thereby forming a crystal lattice. After further reducing the compositional segregation that has been forcedly precipitated, the alloy is pulverized along the crystal grain interface by absorbing and releasing hydrogen, and the individual crystal grain interface, in other words, the alloy particle surface The surface of the alloy, in which hydrogen atoms are easily diffused, can be separated without eluting alloy components by performing dry surface modification by heat treatment of the alloy. By characteristics are processed into a homogeneous alloy particles, high initial activity, high capacity, high utilization, long life can be realized.

【0009】さらに、合金粉に希土類酸化物又は希土類
水酸化物の微粒子を添加混合して合金粒子表面に希土類
酸化物又は希土類水酸化物を点在させることにより、こ
れら希土類酸化物又は希土類水酸化物がアルカリ電解液
に対して合金粒子成分の溶出を抑える働きをするため
に、より一層の長寿命が実現できる。
Further, rare earth oxides or rare earth hydroxides are added to and mixed with the alloy powder, and the rare earth oxides or the rare earth hydroxides are dispersed on the surface of the alloy particles. Since the substance acts to suppress the elution of the alloy particle component with respect to the alkaline electrolyte, an even longer life can be realized.

【0010】[0010]

【発明の実施の形態】本発明の工程毎での方法を説明す
ると、合金組成については特に限定しなく、ABn(n
は1〜6の数を表す。)の結晶構造を有する組成の水素
吸蔵合金を用いることができ、目的にあった合金組成に
なるように各元素を投入し、高周波溶解やアーク溶解等
の公知の溶解方法にて原料を溶解したのち該合金溶湯を
急冷して合金を製造すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for each step of the present invention will be described. The alloy composition is not particularly limited, and AB n (n
Represents a number of 1 to 6. A hydrogen storage alloy having a composition having a crystal structure of (a) can be used. Each element is introduced so as to have an alloy composition suitable for the purpose, and the raw material is melted by a known melting method such as high-frequency melting or arc melting. Thereafter, the alloy melt may be rapidly cooled to produce an alloy.

【0011】合金溶湯の急冷については、アルゴン等の
不活性ガス雰囲気下でアトマイズ法、ストリップキャス
ト法などを用いて合金溶湯を急冷凝固させることができ
るが、実用上の管理が容易な方法としてストリップキャ
スト法、なかでも回転する単ロールを用いた冷却方法が
好ましい。冷却条件については、合金組成によって異な
るが、合金溶湯が冷却ロール上に存在する間に、単一相
を形成するか、または多相を形成する場合でもこれら多
相が均等に析出するまで冷却できる溶湯温度、溶湯供給
量、ロール温度、ロール周速、雰囲気圧力を定めればよ
い。
With regard to the rapid cooling of the molten alloy, the molten alloy can be rapidly solidified by an atomizing method, a strip casting method or the like in an atmosphere of an inert gas such as argon. A casting method, in particular, a cooling method using a rotating single roll is preferable. The cooling conditions vary depending on the alloy composition, but while the molten alloy exists on the cooling roll, a single phase is formed, or even when forming a multi-phase, cooling can be performed until these multi-phases are uniformly precipitated. The melt temperature, melt supply amount, roll temperature, roll peripheral speed, and atmospheric pressure may be determined.

【0012】粉砕前の熱処理は、合金塊を熱処理する場
合と同様に800〜1100℃で4〜20時間行えばよ
いが、特に合金の形態が薄状または帯状であるため容器
の形状をこれに合わせることが必要であることと、熱処
理の効果が容易に現れる形状であることからアルゴン等
の不活性ガス雰囲気下で800〜1000℃で4〜10
時間の穏やかな条件に変更することも可能である。
The heat treatment before the pulverization may be carried out at 800 to 1100 ° C. for 4 to 20 hours in the same manner as in the heat treatment of the alloy ingot. Since it is necessary to match them and the shape is such that the effect of the heat treatment easily appears, 4 to 10 at 800 to 1000 ° C. in an inert gas atmosphere such as argon.
It is also possible to change to conditions with a mild time.

【0013】合金の粉砕は、粒子径が0.5〜200μ
m位の範囲になるように適時分級を併用して目的に合わ
せ、たとえばアルゴンまたは窒素などの不活性ガス雰囲
気下においてボールミルやピンミルなどの機械的粉砕方
法、もしくは水素を吸蔵放出させて粉砕する方法等で合
金を粉砕すればよい。なお、水素を用いた粉砕方法にお
いては、水素吸蔵合金が水素を吸蔵放出する過程で体積
変化を生じ、これに伴い発生する歪みの変化を利用して
合金を粉砕することから、合金に発生する歪みの変化率
を大きくすることで効率のよい粉砕が行えるため、水素
吸蔵合金がもつ低温ではより多くの水素を吸蔵し、高温
ではより多くの水素を放出しやすい一般的な性質を活か
した条件下で粉砕を行うことが望ましい。これらの条件
は合金の組成によって大きく異なるため、一概には言え
ないが、例えばアルカリ二次電池に用いられるAB5
水素吸蔵合金においては、0〜30℃特に約10℃前後
で水素を吸蔵させ、40〜70℃特に約60℃前後で放
出させる方法を採ることによって、量産スケールでのコ
スト面から見ても効率の良い粉砕が可能となる。
In the pulverization of the alloy, the particle diameter is 0.5 to 200 μm.
In order to meet the purpose, timely classification is performed so as to be in the range of about m, for example, a mechanical pulverization method such as a ball mill or a pin mill under an inert gas atmosphere such as argon or nitrogen, or a pulverization method by absorbing and releasing hydrogen. The alloy may be pulverized by the method described above. In the pulverization method using hydrogen, the hydrogen storage alloy causes a volume change in the process of storing and releasing hydrogen, and the alloy is pulverized by utilizing a change in strain generated with the hydrogen storage alloy. Efficient pulverization can be performed by increasing the rate of change in strain, so conditions that take advantage of the general properties of hydrogen-absorbing alloys that generally absorb more hydrogen at low temperatures and release more hydrogen at high temperatures It is desirable to perform the grinding underneath. Because these conditions vary greatly depending on the composition of the alloy, it can not be said sweepingly, for example, in the AB 5 type hydrogen storage alloy used in the alkaline secondary battery, to occlude hydrogen at about 0 to 30 ° C. in particular from about 10 ° C. , 40-70 ° C., especially about 60 ° C., it is possible to perform efficient pulverization from the viewpoint of cost on a mass production scale.

【0014】合金粉の分級においては、大気中で行うこ
とも可能であるが、分級中に合金粒子の酸化が生じて各
種特性が劣化することと、火災予防の観点から、不活性
雰囲気下で行うことが好ましい。
[0014] Classification of the alloy powder can be performed in the air, but from the viewpoints of oxidation of the alloy particles during classification and deterioration of various characteristics and prevention of fire, and under an inert atmosphere, the alloy powder is classified. It is preferred to do so.

【0015】さらに粉砕された合金粉末の熱処理では、
これまでの合金塊を熱処理する場合と異なり、合金粉の
熱伝導性が合金塊よりも低いことから熱処理斑が生じや
すいため、これを予防する方法が必要である。たとえ
ば、合金粉を容器に蓄え、これを回転しながら加熱する
ことができるロータリーキルンなどや、合金粉をパッド
状の容器に薄く広げて収納し処理炉に順次送り込んで加
熱する方法など、合金粉をまんべんなく減圧下またはア
ルゴンガスなどの不活性雰囲気下にてバッチまたは連続
で熱処理できる方法を用いればよい。処理条件について
は、合金の組成にあわせて特性がもっとも高くなる温度
と時間を選択すればよいが、たとえばAB5型水素吸蔵
合金については、100〜1000℃(好ましくは25
0〜950℃)の温度で、0.5〜4時間程度保持すれ
ばよい。
Further, in the heat treatment of the pulverized alloy powder,
Unlike the conventional case of heat-treating an alloy lump, since the heat conductivity of the alloy powder is lower than that of the alloy lump, heat treatment spots are likely to occur. Therefore, a method for preventing this is necessary. For example, a rotary kiln that stores alloy powder in a container and heats it while rotating it, or a method in which alloy powder is spread thinly in a pad-shaped container and stored and sent to a processing furnace in sequence to heat it, A method capable of uniformly or batchwise heat-treating under reduced pressure or an inert atmosphere such as argon gas may be used. The processing conditions may be selected temperature and time characteristics in accordance with the composition of the alloy is highest, for example AB 5 type hydrogen storage alloy, 100 to 1000 ° C. (preferably 25
(0 to 950 ° C.) for about 0.5 to 4 hours.

【0016】また、合金粉に希土類酸化物又は希土類水
酸化物を添加混合する場合には、合金粉表面にできるだ
け均等に希土類酸化物又は希土類水酸化物を点在させる
ことができるように、合金粉と希土類酸化物又は希土類
水酸化物の粒度比と混合割合を調整し、これも熱処理の
場合と同様に合金粒子特性の劣化防止と火災予防の観点
から、不活性雰囲気下で混合する。混合に用いる機器と
しては、不活性雰囲気下で混合できる機能を有したもの
ならば特に問わない。このように希土類酸化物又は希土
類水酸化物粉を添加混合したのち、上記熱処理を行う。
In addition, when a rare earth oxide or a rare earth hydroxide is added to and mixed with the alloy powder, the alloy should be dispersed so that the rare earth oxide or the rare earth hydroxide can be scattered as uniformly as possible on the surface of the alloy powder. The particle size ratio and mixing ratio between the powder and the rare earth oxide or the rare earth hydroxide are adjusted, and this is also mixed under an inert atmosphere from the viewpoint of preventing the deterioration of the alloy particle characteristics and preventing fire as in the case of the heat treatment. The device used for mixing is not particularly limited as long as it has a function of mixing under an inert atmosphere. After the rare earth oxide or rare earth hydroxide powder is added and mixed as described above, the above heat treatment is performed.

【0017】希土類酸化物又は希土類水酸化物に用いる
希土類としては、酸化物及び水酸化物が合金表面におい
て上記の保護作用を起こさせるものであれば特に限定し
ないがLa、Ce、Pr、Nd、Gd、Dy、Er、T
m、Yb、Lu、Yなどが挙げられ、中でもGd、D
y、Er、Yb等の希土類酸化物又は水酸化物が好まし
い。また、希土類酸化物又は希土類水酸化物または希土
類水酸化物の添加量としては、合金に対して、0.1〜
10重量%、好ましくは0.3〜2重量%がよく、それ
らは単独または複合して用いてもよい。
The rare earth used for the rare earth oxide or the rare earth hydroxide is not particularly limited as long as the oxide and hydroxide cause the above-mentioned protective action on the alloy surface, but La, Ce, Pr, Nd, Gd, Dy, Er, T
m, Yb, Lu, Y, etc., among which Gd, D
Rare earth oxides or hydroxides such as y, Er and Yb are preferred. The amount of the rare earth oxide or the rare earth hydroxide or the rare earth hydroxide is 0.1 to
10% by weight, preferably 0.3 to 2% by weight, may be used alone or in combination.

【0018】このように処理した合金粉末を、本発明で
は、ポリビニルアルコール、カルボキシメチルセルロー
ス、メチルセルロース、PTFE、ポリエチレンオキサ
イド等のバインダーを用いてペースト化し、ニッケル発
泡体、ニッケル繊維体等の三次元導電支持体、パンチン
グメタル等の二次元導電支持体に充填・塗布することに
より、容易に負電極を得ることができる。また、上記バ
インダーの使用量は、合金に対し0.1〜20重量部用
いるとよい。このようにして得られた負電極はニッケル
正極、アルカリ電解液、PP等のセパレータ等とともに
密閉容器に収納し電池として製造することができる。
In the present invention, the thus treated alloy powder is pasted using a binder such as polyvinyl alcohol, carboxymethylcellulose, methylcellulose, PTFE, or polyethylene oxide to form a three-dimensional conductive support such as a nickel foam or a nickel fiber. A negative electrode can be easily obtained by filling and coating a two-dimensional conductive support such as a body or a punched metal. The binder is preferably used in an amount of 0.1 to 20 parts by weight with respect to the alloy. The negative electrode thus obtained is housed in a closed container together with a nickel positive electrode, an alkaline electrolyte, a separator such as PP, and the like, and can be manufactured as a battery.

【0019】[0019]

【実施例】実施例1 合金組成が原子比でR1.0Ni4.4Co0.2Mn0.3Al
0.3の(Rは、80重量%のLaと20重量%のCeと
からなる。)となるように合金原料をアルゴン雰囲気中
で高周波溶解し、約1400℃となった合金溶湯を周速
9m/secで回転する水冷式銅ロール上に約150g/secで
供給して合金を形成させ、室温まで冷却して取り出した
(合金薄帯形成)後に、アルゴンガス中にて900℃で
6時間の熱処理を行い、ついで密閉容器内に納め容器内
を一旦減圧して空気、水分等を取り除いたのち、温度1
0℃、圧力0.9MPaにて水素を吸蔵させたのち、温
度60℃で、圧力200Paまで水素を放出させて合金
を粉砕し、ついで窒素ガス中で平均粒子径が23μmと
なるように分級、これをアルゴンガス中にて400℃で
1時間の熱処理を行い目的とする合金粉末を得た。
EXAMPLES Example 1 The alloy composition was R 1.0 Ni 4.4 Co 0.2 Mn 0.3 Al in atomic ratio.
The alloy material was subjected to high-frequency melting in an argon atmosphere so as to obtain 0.3 (R is composed of 80% by weight of La and 20% by weight of Ce). The alloy was formed by supplying it at about 150 g / sec on a water-cooled copper roll rotating at sec., cooled to room temperature and taken out (formation of an alloy ribbon), and then heat-treated at 900 ° C. for 6 hours in argon gas. And then put it in a closed container and once depressurize the container to remove air, moisture, etc.
After occlusion of hydrogen at 0 ° C. and a pressure of 0.9 MPa, the alloy was pulverized by releasing hydrogen up to a pressure of 200 Pa at a temperature of 60 ° C., and then classified in a nitrogen gas so as to have an average particle diameter of 23 μm. This at 400 ° C in argon gas
Heat treatment was performed for 1 hour to obtain the desired alloy powder.

【0020】得られた合金粉末0.5gに対して1.5
gのニッケル微粉末(インコ#255)を加え、十分に混
合したのち、集電リードを溶接したニッケルメッシュ
(#100)上に加圧成型してφ10mmのペレット電極
を作成し、ポリプロピレン製セパレータ、焼結式ニッケ
ル正極、8N-KOH電解液、Hg/HgO参照極と組み
合わせて開放型電池を構成した。ついで、温度25℃に
て充電を50mA/gで3.8時間、充電休止を30分、つ
いで50mA/gで参照極に対して−0.7Vの電位まで放
電させ、放電休止30分の1サイクルからなる試験を約
25サイクル行い、長いほうの放電時間の上位3つにつ
いて得られた放電容量の平均から合金の放電容量を計算
し、この放電容量に到達するまでのサイクル数で初期特
性を評価した。
For 0.5 g of the obtained alloy powder, 1.5 g
g of nickel fine powder (Inco # 255) was added and mixed well, and then pressure-molded on a nickel mesh (# 100) to which a current collecting lead was welded to form a φ10 mm pellet electrode, and a polypropylene separator, An open battery was constructed by combining with a sintered nickel positive electrode, an 8N-KOH electrolyte, and a Hg / HgO reference electrode. Then, at a temperature of 25 ° C., charging was performed at 50 mA / g for 3.8 hours, charging was suspended for 30 minutes, and then the battery was discharged at 50 mA / g to a potential of −0.7 V with respect to a reference electrode. Approximately 25 cycles of the test were performed, and the discharge capacity of the alloy was calculated from the average of the discharge capacities obtained for the top three discharge times of the longer discharge time. evaluated.

【0021】さらに、上記方法で得られた合金粉末1g
と3重量%PVA水溶液0.25gを加え混合し、集電
用のニッケルリードをスポット溶接した繊維ニッケル基
板に塗布したのち、減圧下で乾燥させ、さらに基板を繊
維ニッケルで挟み込んだのち、油圧プレス機を用いて約
560kgf/cm2の圧力で1分間加圧保持してペースト電極
(負極)を作成した。作成した電極(負極)をポリプロ
ピレン製セパレータで包み、その両側を焼結式ニッケル
正極で挟み込んで、Hg/HgO参照極とともにポリプ
ロピレン製の容器内に配置し、8N-KOH電解液を注ぎ
込んで開放型電池を組み立てた。このように作成した開
放型電池に、先に調べた放電容量を1Cとして、温度2
5℃にて充電を0.3Cで4時間、放電休止30分、つ
いで0.3Cで参照極に対して−0.7Vの電位まで放
電させ、放電休止30分の1サイクルからなる試験を繰
り返し、電極としての寿命を評価した(図1)。
Further, 1 g of the alloy powder obtained by the above method is used.
And 0.25 g of a 3% by weight aqueous PVA solution were added and mixed, and a nickel lead for current collection was applied to a spot-welded fiber nickel substrate, dried under reduced pressure, and the substrate was sandwiched with fiber nickel. A paste electrode (negative electrode) was prepared by using a press to maintain the pressure at about 560 kgf / cm 2 for 1 minute. The prepared electrode (negative electrode) is wrapped with a polypropylene separator, sandwiched on both sides by a sintered nickel positive electrode, placed in a polypropylene container together with a Hg / HgO reference electrode, and poured with 8N-KOH electrolyte to open the electrode. The battery was assembled. The open-type battery thus prepared was charged at a discharge capacity of 1 C and a temperature of 2C.
At 5 ° C, charge was performed at 0.3 C for 4 hours, discharge pause for 30 minutes, and then discharged at 0.3 C to a potential of -0.7 V with respect to the reference electrode. And the life as an electrode was evaluated (FIG. 1).

【0022】実施例2〜4 実施例1と同じ方法で合金薄帯を作成、熱処理したの
ち、密閉容器内に合金を納め容器内を一旦減圧して空
気、水分等を取り除いたのち、温度10℃、圧力0.9
MPaにて水素を吸蔵させたのち、温度60℃で、圧力
200Paまで水素を放出させて合金を粉砕した。つい
で窒素ガス中で平均粒子径が23μmとなるように分級
したのち、得られた合金粉に表1に示すような組合せ及
び重量%(合金に対する重量%)で希土類酸化物および
水酸化物の粉末を添加し、Wコーン型ブレンダーを用い
て窒素ガス中で10分間混合し、さらにこれをアルゴン
ガス中にて400℃で1時間の熱処理を行い目的とする
合金粉末を得た。次いで、実施例1と同様に電池を作成
し、容量、初期活性、寿命を測定した。
Examples 2 to 4 An alloy ribbon was prepared and heat-treated in the same manner as in Example 1. After the alloy was placed in a closed container, the inside of the container was once depressurized to remove air, moisture, etc. ° C, pressure 0.9
After absorbing hydrogen at MPa, the alloy was pulverized by releasing hydrogen at a temperature of 60 ° C. and a pressure of 200 Pa. Then, after classification in nitrogen gas so that the average particle diameter becomes 23 μm, the obtained alloy powder is mixed with the rare earth oxide and hydroxide powder in the combination and weight% (weight% with respect to the alloy) as shown in Table 1. Was added and mixed in a nitrogen gas for 10 minutes using a W cone-type blender, and further heat-treated at 400 ° C. for 1 hour in an argon gas to obtain a target alloy powder. Next, a battery was prepared in the same manner as in Example 1, and the capacity, initial activity, and life were measured.

【0023】実施例5 実施例1と同じ方法で合金薄帯を作成、熱処理したの
ち、窒素ガス下でピンミルを用いて合金を粉砕し、つい
で窒素ガス中で平均粒子径が23μmとなるように分級
し、これをアルゴンガス中にて400℃で1時間の熱処
理を行い目的とする合金粉末を得た。次いで、実施例1
と同様に電池を作成し、容量、初期活性、寿命を測定し
た。
Example 5 An alloy ribbon was prepared and heat-treated in the same manner as in Example 1, and the alloy was pulverized using a pin mill under nitrogen gas. Then, the average particle size was adjusted to 23 μm in nitrogen gas. This was classified and subjected to a heat treatment at 400 ° C. for 1 hour in an argon gas to obtain a target alloy powder. Then, Example 1
A battery was prepared in the same manner as described above, and the capacity, initial activity, and life were measured.

【0024】実施例6〜8 実施例3と同じ方法で合金粉を作成したのち、窒素ガス
中で平均粒子径が23μmとなるように分級した。得ら
れた合金粉に表1に示すような組合せ及び重量%(合金
に対する重量%)で希土類酸化物および水酸化物の粉末
を添加し、窒素ガス中で10分間コーン型ブレンダーを
用いて混合したのち、これをアルゴンガス中にて400
℃で1時間の熱処理を行い目的とする合金粉末を得た。
次いで、実施例1と同様に電池を作成し、容量、初期活
性、寿命を測定した。
Examples 6 to 8 Alloy powders were prepared in the same manner as in Example 3, and then classified in a nitrogen gas so that the average particle diameter became 23 μm. Rare earth oxide and hydroxide powders were added to the obtained alloy powder in combinations and weight% (weight% based on the alloy) as shown in Table 1 and mixed in a nitrogen gas for 10 minutes using a cone-type blender. After that, this is
Heat treatment was performed at 1 ° C. for 1 hour to obtain a target alloy powder.
Next, a battery was prepared in the same manner as in Example 1, and the capacity, initial activity, and life were measured.

【0025】比較例1 合金組成が原子比でR1.0Ni4.4Co0.2Mn0.3Al
0.3の(Rは、80重量%のLaと20重量%のCeと
からなる。)となるように合金原料をアルゴン雰囲気中
で高周波溶解し、約1400℃となった合金溶湯を水冷
式の鉄製鋳型に流し込んで合金を形成させ、室温まで冷
却して取り出した後に、合金塊を密閉容器内に納め、容
器内を一旦減圧して空気、水分等を取り除いたのち、ア
ルゴンガス雰囲気下で1050℃に昇温、そのまま10
時間加熱保持したのち室温まで冷却して熱処理し、次い
で窒素ガス下でピンミルを用いて合金を粉砕し、窒素ガ
ス中で32メッシュの篩を用いて粗粉を取り除き合金粉
末を得た。この合金粉末を合金粉末1kgに対して2リッ
トルの8N-KOH水溶液中に浸せき、80℃で60分撹拌
したのち加圧濾過し、ついで純水を用いて洗液のpHが
7〜8になるまで合金粉を洗浄する。洗浄した合金粉を
加圧濾過したのち、減圧下で乾燥し、窒素ガス中で平均
粒子径が23μmとなるように分級して目的とする比較
用合金粉を得た。次いで、実施例1と同様に電池を作成
し、容量、初期活性、寿命を測定した。
COMPARATIVE EXAMPLE 1 The alloy composition is represented by an atomic ratio of R 1.0 Ni 4.4 Co 0.2 Mn 0.3 Al
The alloy raw material was subjected to high frequency melting in an argon atmosphere so as to obtain 0.3 (R is composed of 80% by weight of La and 20% by weight of Ce). After pouring into a mold to form an alloy, cooling to room temperature and taking out, the alloy lump is placed in a closed container, and the inside of the container is once depressurized to remove air, moisture, etc., and then 1050 ° C. in an argon gas atmosphere. Temperature, 10 as it is
After heating and holding for a time, the alloy was pulverized using a pin mill under nitrogen gas using a pin mill under nitrogen gas, and coarse powder was removed using a 32-mesh sieve in nitrogen gas to obtain an alloy powder. This alloy powder was immersed in 2 liters of an 8N-KOH aqueous solution per 1 kg of the alloy powder, stirred at 80 ° C. for 60 minutes, filtered under pressure, and then the pH of the washing solution was adjusted using pure water.
Wash the alloy powder until it is 7-8. The washed alloy powder was filtered under pressure, dried under reduced pressure, and classified in a nitrogen gas so as to have an average particle size of 23 μm to obtain a target comparative alloy powder. Next, a battery was prepared in the same manner as in Example 1, and the capacity, initial activity, and life were measured.

【0026】合金粉単独並びに合金粉に希土類酸化物及
び水酸化物を添加した組合せとペレット電極での放電容
量と放電容量に到達するまでのサイクル数を表1に示
す。ペースト電極での初期特性/利用率と寿命を図1に
示す。
Table 1 shows the discharge capacity at the pellet electrode and the number of cycles until the discharge capacity is reached, alone and in combination of the alloy powder and the rare earth oxide and hydroxide added to the alloy powder. FIG. 1 shows the initial characteristics / utilization rate and life of the paste electrode.

【表1】 [Table 1]

【0027】以上の実施例および比較例での結果をまと
めた表1と図1を診ると、表1においてペレット電極で
の放電容量を比較すると実施例はいずれも比較例に対し
て高い容量を示し、利用率が向上しており、また最高放
電容量に到達するまでのサイクル数が比較例よりも短
く、初期活性も高いことを示している。さらに、図1に
おいてペースト電極での寿命を比較すると、実施例はい
ずれも長い寿命を示していることが分かる。なお、図1
においては、グラフを見やすくするために、実施例2〜
4においては実施例3を、実施例6〜8においては実施
例7を代表例として記載している。
Referring to Table 1 which summarizes the results of the above Examples and Comparative Examples and FIG. 1, when comparing the discharge capacities at the pellet electrodes in Table 1, each Example shows a higher capacity than the Comparative Example. This shows that the utilization rate is improved, the number of cycles required to reach the maximum discharge capacity is shorter than in the comparative example, and the initial activity is high. Further, comparing the lifetimes of the paste electrodes in FIG. 1, it can be seen that all of the examples have a long lifetime. FIG.
In Example 2 to make the graph easier to see,
In Example 4, Example 3 is described, and in Examples 6 to 8, Example 7 is described as a representative example.

【0028】[0028]

【発明の効果】急冷法で合金を形成して熱処理し、これ
を粉砕したのち、合金粉単独または希土類酸化物又は希
土類水酸化物を添加混合した状態で、減圧下または不活
性雰囲気下で熱処理することによって、アルカリ二次電
池の負極材料として用いた場合に、初期活性、容量、利
用率が高く、かつ寿命の長い合金粉末を得ることができ
る。この製法で得られる効果は、各種の合金組成に適応
できるため、これまでに開発されたが実用化に至ってい
ないもの、たとえば理論容量は高いのだが実際には望ん
だ容量が得られなかったラーベス組成や、極端に化学量
論比からずれた組成への応用によって二次電池の特性向
上に大きく寄与するものと思われる。
According to the present invention, an alloy is formed by a quenching method, heat-treated, and then pulverized, and then heat-treated under reduced pressure or an inert atmosphere in a state in which alloy powder alone or a rare earth oxide or a rare earth hydroxide is added and mixed. By doing so, when used as a negative electrode material of an alkaline secondary battery, an alloy powder having a high initial activity, a high capacity, a high utilization factor, and a long life can be obtained. The effects obtained by this method can be adapted to various alloy compositions, and so have been developed but have not been put to practical use.For example, Laves, whose theoretical capacity is high but the desired capacity was not actually obtained, was obtained. It is considered that application to a composition or a composition extremely deviating from the stoichiometric ratio greatly contributes to improvement of the characteristics of the secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ペースト電極での初期特性/利用率と寿命を示す
図である。
FIG. 1 is a view showing initial characteristics / utilization rate and life of a paste electrode.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金溶湯を不活性雰囲気下で急
冷して合金を形成する工程と、得られた合金を減圧下ま
たは不活性雰囲気下で熱処理する第1熱処理工程と、熱
処理した合金を粉砕して粉末を得る粉砕工程と、粉砕し
て得た合金粉末を減圧下または不活性雰囲気下で熱処理
する第2熱処理工程とによって合金粉末を得る水素吸蔵
合金粉末の製造方法。
1. A step of quenching a molten hydrogen storage alloy in an inert atmosphere to form an alloy, a first heat treatment step of heat-treating the obtained alloy under reduced pressure or an inert atmosphere, and A method for producing a hydrogen storage alloy powder, wherein an alloy powder is obtained by a pulverizing step of obtaining a powder by pulverizing, and a second heat treatment step of heat-treating the pulverized alloy powder under reduced pressure or an inert atmosphere.
【請求項2】 上記粉砕工程が、熱処理をした合金を、
水素を吸蔵および放出させることで粉砕して粉末を得る
工程である請求項1に記載の水素吸蔵合金粉末の製造方
法。
2. The method according to claim 1, wherein the pulverizing step comprises:
The method for producing a hydrogen storage alloy powder according to claim 1, wherein the method is a step of obtaining a powder by crushing by absorbing and releasing hydrogen.
【請求項3】 上記第2熱処理工程が、粉砕して得た合
金粉末をこれに希土類酸化物または希土類水酸化物を添
加混合した状態で減圧下または不活性雰囲気下で熱処理
する工程である請求項1又は2に記載の水素吸蔵合金粉
末の製造方法。
3. The second heat treatment step is a step of subjecting the alloy powder obtained by the pulverization to a heat treatment under reduced pressure or an inert atmosphere in a state where a rare earth oxide or a rare earth hydroxide is added thereto and mixed. Item 3. The method for producing a hydrogen storage alloy powder according to Item 1 or 2.
【請求項4】 上記請求項1〜3のいずれかによって得
られた合金粉末を負極活物質として用いたアルカリ二次
電池。
4. An alkaline secondary battery using the alloy powder obtained according to claim 1 as a negative electrode active material.
JP10356824A 1998-12-16 1998-12-16 Manufacture of hydrogen storage alloy powder and alkaline secondary battery Pending JP2000182612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10356824A JP2000182612A (en) 1998-12-16 1998-12-16 Manufacture of hydrogen storage alloy powder and alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10356824A JP2000182612A (en) 1998-12-16 1998-12-16 Manufacture of hydrogen storage alloy powder and alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2000182612A true JP2000182612A (en) 2000-06-30

Family

ID=18450961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10356824A Pending JP2000182612A (en) 1998-12-16 1998-12-16 Manufacture of hydrogen storage alloy powder and alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2000182612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034704A1 (en) * 2005-09-22 2007-03-29 The Japan Steel Works, Ltd. Process for producing hydrogen-storage alloy
WO2013161128A1 (en) * 2012-04-26 2013-10-31 プライムアースEvエナジー 株式会社 Negative electrode for alkali secondary cell, and alkali secondary cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034704A1 (en) * 2005-09-22 2007-03-29 The Japan Steel Works, Ltd. Process for producing hydrogen-storage alloy
JP2007084883A (en) * 2005-09-22 2007-04-05 Japan Steel Works Ltd:The Method for manufacturing hydrogen occlusion alloy
JP4689420B2 (en) * 2005-09-22 2011-05-25 株式会社日本製鋼所 Method for producing hydrogen storage alloy
WO2013161128A1 (en) * 2012-04-26 2013-10-31 プライムアースEvエナジー 株式会社 Negative electrode for alkali secondary cell, and alkali secondary cell

Similar Documents

Publication Publication Date Title
EP0645833B1 (en) Method for producing a hydrogen absorbing alloy electrode
JPH09209065A (en) Age precipitation type rare earth metal-nickel alloy, its production, and nickel-hydrogen secondary battery negative pole
JP2024023286A (en) Manufacturing method of hydrogen storage material
WO2012073418A1 (en) Hydrogen-storage alloy particles, alloy powder for electrode, and alkaline storage battery
JP5909600B2 (en) Hydrogen storage alloy
JP2003346793A (en) Negative electrode material for lithium ion secondary battery and its manufacturing method, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP3054477B2 (en) Hydrogen storage alloy electrode
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP2001348636A (en) Hydrogen storage alloy and its production method
JP2000182612A (en) Manufacture of hydrogen storage alloy powder and alkaline secondary battery
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JP2001294958A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method
JP2000182613A (en) Manufacture of hydrogen storage alloy powder and alkaline secondary battery
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH08180861A (en) Hydrogen storage alloy for battery, its manufacture and nickel-hydrogen secondary battery
JP2004192965A (en) Manufacturing method of hydrogen storage alloy electrode, electrode, and secondary battery
JPH08337805A (en) Production of hydrogen occlusion alloy powder