JP2000181556A - Solarlight power generation system - Google Patents

Solarlight power generation system

Info

Publication number
JP2000181556A
JP2000181556A JP10355961A JP35596198A JP2000181556A JP 2000181556 A JP2000181556 A JP 2000181556A JP 10355961 A JP10355961 A JP 10355961A JP 35596198 A JP35596198 A JP 35596198A JP 2000181556 A JP2000181556 A JP 2000181556A
Authority
JP
Japan
Prior art keywords
power
storage battery
solar cell
terminal
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10355961A
Other languages
Japanese (ja)
Inventor
Chuichi Aoki
忠一 青木
Kenji Tawara
健児 俵
Masahiro Hashiwaki
正浩 橋脇
Yuji Kawagoe
祐司 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Power and Building Facilities Inc
Original Assignee
NTT Power and Building Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Power and Building Facilities Inc filed Critical NTT Power and Building Facilities Inc
Priority to JP10355961A priority Critical patent/JP2000181556A/en
Publication of JP2000181556A publication Critical patent/JP2000181556A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery power generation system that can stably supplying power corresponding to the operation of the load even when the quantity of solar radiation is decreased and that can improve the reliability by avoiding the unwanted operation stop of a load. SOLUTION: On the rear side of a solar battery 11 for transducing solar energy to power, a storage battery 14, bidirectional power converting circuit 16 and diode 17 are provided. The bidirectional power converting circuit 16 converts input power from the solar battery 11 and storage battery 14 to AC power and outputs it to the outside. Further, the circuit 16 converts the input power from the outside into DC power and outputs it toward the storage battery 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽光エネルギ
ーを電力に変換する太陽電池を備え、この太陽電池の出
力を交流電力に変換して商用交流電源や負荷に供給する
太陽光発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system provided with a solar cell for converting solar energy into electric power, converting the output of the solar cell into AC power, and supplying it to a commercial AC power supply or a load.

【0002】[0002]

【従来の技術】太陽光エネルギーを太陽電池で直流電力
に変換し、この直流電力をインバータにより交流電力に
変換して商用交流電源や負荷に供給する太陽光発電シス
テムいわゆるACモジュールがある。一例を図6に示
す。
2. Description of the Related Art There is a so-called AC module which converts solar energy into DC power by a solar cell, converts the DC power into AC power by an inverter, and supplies the AC power to a commercial AC power supply or a load. An example is shown in FIG.

【0003】図は太陽電池の裏面側(太陽光が当たらな
い側)の構成を示しており、その裏面に出力端子2が設
けられるとともにインバータ3が搭載され、出力端子2
からインバータ3にかけてダイオード4を介して通電路
が形成されている。インバータ3の出力端には、商用交
流電源や交流負荷が接続される。
FIG. 1 shows the structure of the back side of a solar cell (the side not exposed to sunlight), on which an output terminal 2 is provided, an inverter 3 is mounted, and an output terminal 2 is provided.
An electric path is formed from the power supply to the inverter 3 via the diode 4. A commercial AC power supply or an AC load is connected to an output terminal of the inverter 3.

【0004】このACモジュールの運転形態として、商
用交流電源への電力供給を行う連系運転と、交流負荷へ
の電力供給を行う自立運転とがある。
[0004] As an operation mode of the AC module, there are an interconnection operation for supplying electric power to a commercial AC power supply and an independent operation for supplying electric power to an AC load.

【0005】[0005]

【発明が解決しようとする課題】従来システムでは、自
立運転の場合、日射量が減少すると、太陽電池の発電電
力が交流負荷の消費電流より小さくなり、交流負荷の動
作が停止してしまことがある。
In the conventional system, in the case of self-sustaining operation, when the amount of solar radiation decreases, the power generated by the solar cell becomes smaller than the current consumption of the AC load, and the operation of the AC load stops. is there.

【0006】この発明は上記の事情を考慮したもので、
その目的とするところは、日射量が減少した場合でも負
荷の動作に見合う安定した電力供給を行うことができ、
負荷の不要な動作停止を回避して信頼性の向上が図れる
太陽電池発電システムを提供することにある。
[0006] The present invention has been made in view of the above circumstances,
The aim is to provide a stable power supply commensurate with the operation of the load even when the amount of solar radiation decreases,
An object of the present invention is to provide a solar cell power generation system capable of avoiding unnecessary operation stop of a load and improving reliability.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明の太
陽電池発電システムは、太陽光エネルギーを電力に変換
する太陽電池と、この太陽電池に接続された蓄電池と、
上記太陽電池および上記蓄電池に接続される第1端子を
有するとともに外部接続用の第2端子を有し、第1端子
への入力電力を交流電力に変換して第2端子から出力す
る機能、および第2端子への入力電力を直流電力に変換
して第1端子から出力する機能を持つ双方向電力変換手
段と、を備える。
According to a first aspect of the present invention, there is provided a solar cell power generation system comprising: a solar cell for converting sunlight energy into electric power; a storage battery connected to the solar cell;
A function of having a first terminal connected to the solar cell and the storage battery and having a second terminal for external connection, converting input power to the first terminal into AC power, and outputting the AC power from the second terminal; Bidirectional power conversion means having a function of converting input power to the second terminal into DC power and outputting from the first terminal.

【0008】請求項2に係る発明の太陽電池発電システ
ムは、請求項1に係る発明において、蓄電池および双方
向電力変換手段を断熱材を介して太陽電池の裏側に取付
ける。
According to a second aspect of the present invention, in the solar cell power generation system according to the first aspect of the present invention, the storage battery and the bidirectional power conversion means are attached to the back side of the solar cell via a heat insulating material.

【0009】請求項3に係る発明の太陽電池発電システ
ムは、太陽光エネルギーを電力に変換する太陽電池と、
この太陽電池に接続された蓄電池と、上記太陽電池およ
び上記蓄電池に接続される第1端子を有するとともに外
部接続用の第2端子を有し、第1端子への入力電力を交
流電力に変換して第2端子から出力する機能、および第
2端子への入力電力を直流電力に変換して第1端子から
出力する機能を持つ双方向電力変換手段と、上記蓄電池
の満充電時に蓄電池への通電を遮断する蓄電池監視手段
と、を備える。
According to a third aspect of the present invention, there is provided a solar cell power generation system, comprising: a solar cell that converts sunlight energy into electric power;
It has a storage battery connected to the solar cell, a first terminal connected to the solar cell and the storage battery, and a second terminal for external connection, and converts input power to the first terminal into AC power. Bi-directional power conversion means having a function of outputting the DC power from the second terminal and a function of converting the input power to the second terminal into DC power and outputting the DC power from the first terminal, and energizing the storage battery when the storage battery is fully charged. Storage battery monitoring means for shutting off the power supply.

【0010】請求項4に係る発明の太陽電池発電システ
ムは、請求項1に係る発明において、蓄電池、双方向電
力変換手段、および蓄電池監視手段を断熱材を介して太
陽電池の裏側に取付ける。
According to a fourth aspect of the present invention, in the solar cell power generation system according to the first aspect, the storage battery, the bidirectional power conversion means, and the storage battery monitoring means are attached to the back side of the solar cell via a heat insulating material.

【0011】[0011]

【発明の実施の形態】以下、この発明の一実施例につい
て図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1において、11は太陽電池で、太陽光
エネルギーを直流電力に変換する。図は太陽電池11の
裏面側(太陽光が当たらない側)の構成を示しており、
その裏面に出力端子12が導出されるとともに板状の断
熱材13が貼り付けられる。
In FIG. 1, reference numeral 11 denotes a solar cell which converts sunlight energy into DC power. The figure shows the configuration of the back side (the side not exposed to sunlight) of the solar cell 11,
The output terminal 12 is led out to the back surface, and a plate-like heat insulating material 13 is attached.

【0013】図1を側方から見たのが図2であり、断熱
材13上に、蓄電池14、蓄電池監視回路15、および
双方向電力変換回路16が取付けられる。なお、後述す
るダイオード17は、図示上は断熱材13から外れた状
態にあるが、実際には断熱材13上に取付けられる。
FIG. 2 is a side view of FIG. 1, and a storage battery 14, a storage battery monitoring circuit 15, and a bidirectional power conversion circuit 16 are mounted on a heat insulating material 13. Although a diode 17 to be described later is detached from the heat insulating material 13 in the drawing, it is actually mounted on the heat insulating material 13.

【0014】断熱材13は、蓄電池14、蓄電池監視回
路15、双方向電力変換回路16、およびダイオード1
7が太陽電池1の発生する熱で温度上昇するのを防止し
て、それぞれの部品の熱による劣化を防ぐ。
The heat insulating material 13 includes a storage battery 14, a storage battery monitoring circuit 15, a bidirectional power conversion circuit 16, and a diode 1.
7 is prevented from increasing in temperature due to the heat generated by the solar cell 1, and deterioration of each component due to heat is prevented.

【0015】蓄電池14は蓄電池監視回路15を介して
出力端子12に接続され、その蓄電池監視回路15と出
力端子12との接続間にダイオード17が挿接される。
ダイオード17は、蓄電池14や双方向電力変換回路1
6から太陽電池11側への電流の流れを阻止する。この
阻止により、太陽電池11の逆充電を防止し、太陽電池
11の劣化を防ぐようにしている。
The storage battery 14 is connected to the output terminal 12 via a storage battery monitoring circuit 15, and a diode 17 is inserted and connected between the connection between the storage battery monitoring circuit 15 and the output terminal 12.
The diode 17 is connected to the storage battery 14 or the bidirectional power conversion circuit 1.
The flow of current from 6 to the solar cell 11 is prevented. By this prevention, reverse charging of the solar cell 11 is prevented, and deterioration of the solar cell 11 is prevented.

【0016】蓄電池監視回路15は、蓄電池14への充
電状態を監視し、満充電時にその旨を付属の発光ダイオ
ード(LED)15aの点灯により報知するとともに蓄
電池14への通電を遮断する。発光ダイオード15a
は、蓄電池監視回路15の筐体の外周面に露出状態で取
付けられる。
The storage battery monitoring circuit 15 monitors the state of charge of the storage battery 14 and, when fully charged, notifies the user by lighting of the attached light emitting diode (LED) 15a and cuts off the power supply to the storage battery 14. Light emitting diode 15a
Is mounted on the outer peripheral surface of the housing of the storage battery monitoring circuit 15 in an exposed state.

【0017】双方向電力変換回路16は、出力端子12
(ダイオード17のアノード)および蓄電池14(蓄電
池監視回路15)に接続される第1端子16aを有する
とともに外部接続用の第2端子16bを有し、第1端子
16aへの入力電力を交流電力に変換して第2端子16
bから出力するインバータ動作の機能、および第2端子
16bへの入力電力を直流電力に変換して第1端子16
aから出力する充電動作(整流動作)の機能を持つ。こ
のうち、インバータ動作については、商用交流電源への
電力供給を行う場合の系統連系運転対応と、交流負荷へ
の電力供給を行う場合の自立運転対応とがある。
The bidirectional power conversion circuit 16 includes an output terminal 12
(Anode of the diode 17) and a first terminal 16a connected to the storage battery 14 (storage battery monitoring circuit 15) and a second terminal 16b for external connection. The input power to the first terminal 16a is converted into AC power. Convert to the second terminal 16
b) and the function of the inverter operation output from the first terminal 16b and the input power to the second terminal
It has a function of a charging operation (rectifying operation) output from a. Among them, the inverter operation includes a system interconnection operation when supplying power to a commercial AC power supply and an independent operation when supplying power to an AC load.

【0018】また、双方向電力変換回路16は、系統連
系運転対応のインバータ動作、自立運転対応のインバー
タ動作、充電動作(整流動作)のいずれかを選択的に設
定するための切換スイッチ16cを備える。
The bidirectional power conversion circuit 16 includes a changeover switch 16c for selectively setting any one of an inverter operation corresponding to a system interconnection operation, an inverter operation corresponding to an independent operation, and a charging operation (rectifying operation). Prepare.

【0019】双方向電力変換回路16の第2端子16b
には、商用交流電源または交流負荷が接続される。
The second terminal 16b of the bidirectional power conversion circuit 16
Is connected to a commercial AC power supply or an AC load.

【0020】つぎに、上記の構成の作用を説明する。Next, the operation of the above configuration will be described.

【0021】(1)図3に示すように、双方向電力変換
回路16の第2端子16bに商用交流電源20が接続さ
れる連系運転では、切換スイッチ16cの操作により系
統連系運転対応のインバータ動作が設定される。
(1) As shown in FIG. 3, in the interconnection operation in which the commercial AC power supply 20 is connected to the second terminal 16b of the bidirectional power conversion circuit 16, the changeover switch 16c is operated to enable the system interconnection operation. Inverter operation is set.

【0022】太陽電池11に太陽光が当たると、太陽電
池11から直流電力が発生する。この直流電力は、ダイ
オード7および蓄電池監視回路15を介して蓄電池14
に充電されるとともに、ダイオード7を介して双方向電
力変換回路16に入力される。
When the solar cell 11 is exposed to sunlight, DC power is generated from the solar cell 11. This DC power is supplied to the storage battery 14 via the diode 7 and the storage battery monitoring circuit 15.
And is input to the bidirectional power conversion circuit 16 via the diode 7.

【0023】双方向電力変換回路16では、入力された
直流電力がスイッチングによって交流電力に変換され、
出力される。この出力が商用交流電源20に供給され
る。
In the bidirectional power conversion circuit 16, the input DC power is converted into AC power by switching.
Is output. This output is supplied to the commercial AC power supply 20.

【0024】蓄電池14の充電状態が蓄電池監視回路1
5で監視されており、満充電になると、蓄電池監視回路
15の発光ダイオード15aが点灯するとともに、蓄電
池14への通電が遮断される。この点灯によって満充電
の旨が報知されるとともに、通電遮断によって過充電が
防止される。
The state of charge of the storage battery 14 is determined by the storage battery monitoring circuit 1.
When the battery is fully charged, the light emitting diode 15a of the storage battery monitoring circuit 15 is turned on and the power supply to the storage battery 14 is cut off. This lighting gives a notification that the battery is fully charged, and prevents overcharging by shutting off the power supply.

【0025】蓄電池14が満充電でなくなると、発光ダ
イオード15aが消灯するとともに、蓄電池14への通
電が再開される。
When the storage battery 14 is not fully charged, the light emitting diode 15a is turned off and the power supply to the storage battery 14 is restarted.

【0026】(2)図4に示すように、双方向電力変換
回路16の第2端子16bに交流負荷21が接続される
自立運転では、切換スイッチ16cの操作により自立運
転対応のインバータ動作が設定される。
(2) As shown in FIG. 4, in the independent operation in which the AC load 21 is connected to the second terminal 16b of the bidirectional power conversion circuit 16, the operation of the changeover switch 16c sets the inverter operation corresponding to the independent operation. Is done.

【0027】太陽電池11に太陽光が当たると、太陽電
池11から直流電力が発生する。この発生電力が交流負
荷21の消費電力と同じまたはそれより大きい状態にあ
れば、発生電力がダイオード7および蓄電池監視回路1
5を介して蓄電池14に充電されるとともに、ダイオー
ド7を介して双方向電力変換回路16に入力される。
When the solar cell 11 is exposed to sunlight, DC power is generated from the solar cell 11. If the generated power is equal to or larger than the power consumption of the AC load 21, the generated power is equal to the diode 7 and the storage battery monitoring circuit 1.
5, and is input to the bidirectional power conversion circuit 16 via the diode 7.

【0028】双方向電力変換回路16では、入力された
直流電力がスイッチングによって交流電力に変換され、
出力される。この出力が交流負荷21に供給される。
In the bidirectional power conversion circuit 16, the input DC power is converted into AC power by switching.
Is output. This output is supplied to the AC load 21.

【0029】蓄電池14の充電状態が蓄電池監視回路1
5で監視されており、満充電になると、蓄電池監視回路
15の発光ダイオード15aが点灯するとともに、蓄電
池14への通電が遮断される。この点灯によって満充電
の旨が報知されるとともに、通電遮断によって過充電が
防止される。
The state of charge of the storage battery 14 is determined by the storage battery monitoring circuit 1.
When the battery is fully charged, the light emitting diode 15a of the storage battery monitoring circuit 15 is turned on and the power supply to the storage battery 14 is cut off. This lighting gives a notification that the battery is fully charged, and prevents overcharging by shutting off the power supply.

【0030】蓄電池14が満充電でなくなると、発光ダ
イオード15aが消灯するとともに、蓄電池14への通
電が再開される。
When the storage battery 14 is not fully charged, the light emitting diode 15a is turned off, and the power supply to the storage battery 14 is restarted.

【0031】日射量の減少などで、太陽電池11の発生
電力が交流負荷21の消費電力より小さくなると(発生
電力“零”も含む)、その不足分を補うべく蓄電池14
が放電し、その放電電力が太陽電池11の発生電力と共
に双方向電力変換回路16に入力される。
When the power generated by the solar cell 11 becomes smaller than the power consumption of the AC load 21 (including the generated power "zero") due to a decrease in the amount of solar radiation, the storage battery 14 is used to compensate for the shortage.
Is discharged, and the discharged power is input to the bidirectional power conversion circuit 16 together with the generated power of the solar cell 11.

【0032】双方向電力変換回路16では、入力された
直流電力がスイッチングによって交流電力に変換され、
出力される。この出力が交流負荷21に供給される。
In the bidirectional power conversion circuit 16, the input DC power is converted into AC power by switching.
Is output. This output is supplied to the AC load 21.

【0033】こうして、日射量の減少などにかかわら
ず、交流負荷21の動作に必要な安定した電力が供給さ
れ、交流負荷21の不要な動作停止が防止される。
Thus, irrespective of the decrease in the amount of solar radiation, stable power required for the operation of the AC load 21 is supplied, and unnecessary stoppage of the operation of the AC load 21 is prevented.

【0034】(3)図5に示すように、双方向電力変換
回路16の第2端子16bに商用交流電源20を接続し
て蓄電池14に対する充電運転を行う場合、切換スイッ
チ16cの操作により充電動作が設定される。
(3) As shown in FIG. 5, when the commercial AC power supply 20 is connected to the second terminal 16b of the bidirectional power conversion circuit 16 to perform the charging operation on the storage battery 14, the charging operation is performed by operating the changeover switch 16c. Is set.

【0035】すなわち、双方向電力変換回路16では、
商用交流電源20から入力される交流電力が直流電力に
変換されて蓄電池14に向け出力される。この直流電力
が蓄電池14に充電される。
That is, in the bidirectional power conversion circuit 16,
AC power input from the commercial AC power supply 20 is converted to DC power and output to the storage battery 14. This DC power is charged in the storage battery 14.

【0036】蓄電池14の充電状態が蓄電池監視回路1
5で監視されており、満充電になると、蓄電池監視回路
15の発光ダイオード15aが点灯するとともに、蓄電
池14への通電が遮断される。この点灯によって満充電
の旨が報知されるとともに、通電遮断によって過充電が
防止される。
The state of charge of the storage battery 14 is determined by the storage battery monitoring circuit 1.
When the battery is fully charged, the light emitting diode 15a of the storage battery monitoring circuit 15 is turned on and the power supply to the storage battery 14 is cut off. This lighting gives a notification that the battery is fully charged, and prevents overcharging by shutting off the power supply.

【0037】蓄電池14が満充電でなくなると、発光ダ
イオード15aが消灯するとともに、蓄電池14への通
電が再開される。
When the storage battery 14 is no longer fully charged, the light emitting diode 15a is turned off and power supply to the storage battery 14 is resumed.

【0038】(4)以上のように、交流負荷21を接続
して行う自立運転では、日射量が減少した場合でも、蓄
電池14からの放電によって交流負荷21への安定した
電力供給を継続することができ、よって交流負荷21の
不要な動作停止を回避することができ、高い信頼性を確
保できる。
(4) As described above, in the self-sustained operation performed by connecting the AC load 21, even if the amount of solar radiation decreases, stable power supply to the AC load 21 is continued by discharging from the storage battery 14. Therefore, unnecessary operation stop of the AC load 21 can be avoided, and high reliability can be secured.

【0039】蓄電池14の充電については、太陽電池1
1からの充電だけでなく、双方向電力変換回路16を充
電動作させることで商用交流電源20からも充電するこ
とができる。したがって、日射量に左右されることな
く、常に十分な量の電力を蓄電池14に蓄えておくこと
ができる。すなわち、自立運転の場合には、交流負荷2
1に対し長時間にわたり信頼性の高い電力供給を続ける
ことが可能となる。
Regarding charging of the storage battery 14, the solar cell 1
In addition to charging from 1, the charging can be performed from the commercial AC power supply 20 by performing the charging operation of the bidirectional power conversion circuit 16. Therefore, a sufficient amount of power can always be stored in the storage battery 14 without being affected by the amount of solar radiation. That is, in the case of the self-sustaining operation, the AC load 2
1, it is possible to continuously supply highly reliable power for a long time.

【0040】蓄電池監視回路15によって蓄電池14へ
の過充電を防止できるので、蓄電池14の寿命を延ばす
ことができ、経済的である。
Since the storage battery monitoring circuit 15 can prevent the storage battery 14 from being overcharged, the life of the storage battery 14 can be extended, which is economical.

【0041】断熱材13により、蓄電池14、蓄電池監
視回路15、双方向電力変換回路16、およびダイオー
ド17が太陽電池1の発生する熱で温度上昇するのを防
止できるので、それぞれの部品の熱による劣化を防止で
き、装置寿命を延ばすことができる。
The heat insulating material 13 can prevent the temperature of the storage battery 14, the storage battery monitoring circuit 15, the bidirectional power conversion circuit 16, and the diode 17 from rising due to the heat generated by the solar cell 1, so that the heat generated by the respective components Deterioration can be prevented, and the life of the device can be extended.

【0042】なお、この発明は上記実施例に限定される
ものではなく、要旨を変えない範囲で種々変形実施可能
である。
The present invention is not limited to the above embodiment, but can be variously modified without changing the gist.

【0043】[0043]

【発明の効果】以上述べたようにこの発明によれば、太
陽光エネルギーを電力に変換する太陽電池と、この太陽
電池に接続された蓄電池と、太陽電池および蓄電池に接
続される第1端子を有するとともに外部接続用の第2端
子を有し、第1端子への入力電力を交流電力に変換して
第2端子から出力する機能、および第2端子への入力電
力を直流電力に変換して第1端子から出力する機能を持
つ双方向電力変換手段とを備えたので、日射量が減少し
た場合でも負荷の動作に見合う安定した電力供給を行う
ことができ、負荷の不要な動作停止を回避して信頼性の
向上が図れる太陽電池発電システムを提供できる。
As described above, according to the present invention, a solar cell for converting sunlight energy into electric power, a storage battery connected to the solar battery, and a first terminal connected to the solar battery and the storage battery are provided. Having a second terminal for external connection, converting input power to the first terminal into AC power and outputting from the second terminal, and converting input power to the second terminal into DC power. Since bidirectional power conversion means having a function of outputting from the first terminal is provided, even if the amount of solar radiation is reduced, stable power supply matching the operation of the load can be performed, and unnecessary stoppage of operation of the load is avoided. Thus, a solar cell power generation system capable of improving reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of an embodiment.

【図2】図1を側方から見た図。FIG. 2 is a side view of FIG. 1;

【図3】同実施例の連系運転時の電力の流れを示す図。FIG. 3 is a diagram showing a flow of electric power during the interconnection operation of the embodiment.

【図4】同実施例の自立運転時の電力の流れを示す図。FIG. 4 is a diagram showing a flow of electric power during the self-sustaining operation of the embodiment.

【図5】同実施例の充電動作時の電力の流れを示す図。FIG. 5 is a diagram showing a flow of power during a charging operation of the embodiment.

【図6】従来装置の構成を示す図。FIG. 6 is a diagram showing a configuration of a conventional device.

【符号の説明】[Explanation of symbols]

11…太陽電池 12…出力端子 13…断熱材 14…蓄電池 15…蓄電池監視回路 16…双方向電力変換回路 20…商用交流電源 21…交流負荷 DESCRIPTION OF SYMBOLS 11 ... Solar cell 12 ... Output terminal 13 ... Heat insulation material 14 ... Storage battery 15 ... Storage battery monitoring circuit 16 ... Bidirectional power conversion circuit 20 ... Commercial AC power supply 21 ... AC load

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋脇 正浩 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 川越 祐司 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 Fターム(参考) 5G003 AA06 BA01 CC01 DA06 FA01 GB06 5G066 HA30 HB06 HB09 JA01 JB03 5H420 BB03 BB14 CC03 CC06 DD03 EB39 LL10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Hashiwaki 3-4-1 Shibaura, Minato-ku, Tokyo Inside NTT Facilities, Inc. (72) Inventor Yuji Kawagoe 3-chome Shibaura, Minato-ku, Tokyo No. 1 F-term in NTT Facilities Co., Ltd. (reference) 5G003 AA06 BA01 CC01 DA06 FA01 GB06 5G066 HA30 HB06 HB09 JA01 JB03 5H420 BB03 BB14 CC03 CC06 DD03 EB39 LL10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 太陽光エネルギーを電力に変換する太陽
電池と、 この太陽電池に接続された蓄電池と、 前記太陽電池および前記蓄電池に接続される第1端子を
有するとともに外部接続用の第2端子を有し、第1端子
への入力電力を交流電力に変換して第2端子から出力す
る機能、および第2端子への入力電力を直流電力に変換
して第1端子から出力する機能を持つ双方向電力変換手
段と、 を具備したことを特徴とする太陽電池発電システム。
1. A solar cell for converting solar energy into electric power, a storage battery connected to the solar cell, and a second terminal for external connection having a first terminal connected to the solar cell and the storage battery And has a function of converting input power to the first terminal into AC power and outputting it from the second terminal, and a function of converting input power to the second terminal into DC power and outputting it from the first terminal. A solar cell power generation system, comprising: bidirectional power conversion means.
【請求項2】 請求項1に記載の太陽電池発電システム
において、 前記蓄電池および前記双方向電力変換手段を断熱材を介
して前記太陽電池の裏側に取付けたことを特徴とする太
陽電池発電システム。
2. The solar cell power generation system according to claim 1, wherein the storage battery and the bidirectional power converter are mounted on the back side of the solar cell via a heat insulating material.
【請求項3】 太陽光エネルギーを電力に変換する太陽
電池と、 この太陽電池に接続された蓄電池と、 前記太陽電池および前記蓄電池に接続される第1端子を
有するとともに外部接続用の第2端子を有し、第1端子
への入力電力を交流電力に変換して第2端子から出力す
る機能、および第2端子への入力電力を直流電力に変換
して第1端子から出力する機能を持つ双方向電力変換手
段と、 前記蓄電池の満充電時に蓄電池への通電を遮断する蓄電
池監視手段と、 を具備したことを特徴とする太陽電池発電システム。
3. A solar cell for converting solar energy into electric power, a storage battery connected to the solar cell, and a second terminal for external connection having a first terminal connected to the solar cell and the storage battery. And has a function of converting input power to the first terminal into AC power and outputting it from the second terminal, and a function of converting input power to the second terminal into DC power and outputting it from the first terminal. A solar cell power generation system comprising: a bidirectional power conversion unit; and a storage battery monitoring unit that shuts off power supply to the storage battery when the storage battery is fully charged.
【請求項4】 請求項3に記載の太陽電池発電システム
において、 前記蓄電池、前記双方向電力変換手段、および前記蓄電
池監視手段を断熱材を介して前記太陽電池の裏側に取付
けたことを特徴とする太陽電池発電システム。
4. The solar cell power generation system according to claim 3, wherein the storage battery, the bidirectional power conversion unit, and the storage battery monitoring unit are mounted on a back side of the solar cell via a heat insulating material. Solar power generation system.
JP10355961A 1998-12-15 1998-12-15 Solarlight power generation system Pending JP2000181556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10355961A JP2000181556A (en) 1998-12-15 1998-12-15 Solarlight power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10355961A JP2000181556A (en) 1998-12-15 1998-12-15 Solarlight power generation system

Publications (1)

Publication Number Publication Date
JP2000181556A true JP2000181556A (en) 2000-06-30

Family

ID=18446624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10355961A Pending JP2000181556A (en) 1998-12-15 1998-12-15 Solarlight power generation system

Country Status (1)

Country Link
JP (1) JP2000181556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109901A (en) * 2009-11-19 2011-06-02 Samsung Sdi Co Ltd Power control system and grid-connected energy storage system with the same
CN109687303A (en) * 2018-12-10 2019-04-26 三峡大学 A kind of JP cabinet with intelligent switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109901A (en) * 2009-11-19 2011-06-02 Samsung Sdi Co Ltd Power control system and grid-connected energy storage system with the same
US8552590B2 (en) 2009-11-19 2013-10-08 Samsung Sdi Co., Ltd. Energy management system and grid-connected energy storage system including the energy management system
CN109687303A (en) * 2018-12-10 2019-04-26 三峡大学 A kind of JP cabinet with intelligent switch

Similar Documents

Publication Publication Date Title
JP5583394B2 (en) Server uninterruptible power supply
JP4367251B2 (en) Power supply device and electronic device
US4725740A (en) DC-AC converting arrangement for photovoltaic system
KR101457925B1 (en) Solar powered apparatus
ES2322406T3 (en) HIGH EFFICIENCY LIGHTING SYSTEM.
JP2011125124A (en) Server and uninterruptible power supply housed in the server
US7307360B2 (en) Uninterruptible power supplies
JP2002354677A (en) Power conditioner for solar energy generation
JP2007299746A (en) Fuel cell equipped with power management
JP2011065259A (en) Apparatus control system
JPH11127546A (en) Photovoltaic power generating system
US20030099121A1 (en) Random input multistage voltage trickle storage system
JP3936092B2 (en) AC uninterruptible power supply system
KR101794837B1 (en) The charge and discharge of photovoltaic power generation the control unit system
JP2002218654A (en) Photovoltaic power generation system
JP4560833B2 (en) Power backup device
JPH10336916A (en) Power supply system for emergency
JP2001045677A (en) Power supplying device using solar cell
JP2000181556A (en) Solarlight power generation system
KR20190005078A (en) High Speed Photovoltaic Module with Improved Charging Efficiency
JP2000009021A (en) Wind power generation system
JP2003092831A (en) Power supply system and its operation method
JP4624717B2 (en) Power system
WO2012133186A1 (en) Switch circuit control unit, and charging and discharging system
JPH0993834A (en) Uninterruptible power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728