JP2000178522A - Method of evaluating curing degree in anisotropic conductive adhesive and connection structure - Google Patents

Method of evaluating curing degree in anisotropic conductive adhesive and connection structure

Info

Publication number
JP2000178522A
JP2000178522A JP35850498A JP35850498A JP2000178522A JP 2000178522 A JP2000178522 A JP 2000178522A JP 35850498 A JP35850498 A JP 35850498A JP 35850498 A JP35850498 A JP 35850498A JP 2000178522 A JP2000178522 A JP 2000178522A
Authority
JP
Japan
Prior art keywords
degree
conductive adhesive
anisotropic conductive
curing
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35850498A
Other languages
Japanese (ja)
Inventor
Kazuo Yamaguchi
一夫 山口
Masahiro Nomoto
雅弘 野本
Isao Tsukagoshi
功 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP35850498A priority Critical patent/JP2000178522A/en
Publication of JP2000178522A publication Critical patent/JP2000178522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Combinations Of Printed Boards (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the quantitative determination in the evaluation method for the curing degree in an anisotropic conductive adhesive and to enable the evaluation of fluctuation of the curing degree in the connected sites and to provide a connection structure with reduced fluctuation of the curing degree. SOLUTION: In this evaluation method for the curing degree of an epoxy resin which uses a Raman spectrum, by utilizing a peak of the epoxy group (a Raman shift value of 2,990 cm-1 to 3,025 cm-1) which is good in the separation from other peaks, the curing degree of an anisotropic conductive adhesive is evaluated with improved quantitative determination. Further, the curing degree of fine sites of 1-100 μm are evaluated by effecting the Raman spectrum measurement under a microscope.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば液晶パネル
等において2つの回路基板同士の電極間に形成し、加熱
加圧して2つの回路基板を接着するとともにその両電極
間を電気的に導通させる異方導電性接着剤における接着
後の硬化度の評価方法及び接続構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a liquid crystal panel or the like which is formed between electrodes of two circuit boards and is heated and pressed to bond the two circuit boards and to electrically connect the two electrodes. The present invention relates to a method for evaluating the degree of curing after bonding in an anisotropic conductive adhesive and a connection structure.

【0002】[0002]

【従来の技術】エポキシ樹脂、硬化剤、導電粒子を含有
する異方導電性接着剤の硬化度の評価方法としては、エ
ポキシ樹脂の硬化度を分析する各種分析法の適用が考え
られる。これらの分析法として、DSC(示差走査熱量
計)を用いて測定した発熱量から評価するDSC法(神戸
博太郎編、熱分析、P260−P262、講談社)、核
磁気共鳴スペクトルを用いる方法(新保正樹編、エポキ
シ樹脂ハンドブック、P248−P249、日刊工業新
聞社)、赤外吸収スペクトル等を利用する分析法(新保正
樹編、エポキシ樹脂ハンドブック、P251−P25
3、日刊工業新聞社や尾崎幸洋編、新しい工業用分光計
測技術、P265−267、アイピーシー出版)等を挙
げることができる。さらに、ラマンスペクトルを用いた
エポキシ樹脂の硬化度の分析法としては、1260cm-1のエ
ポキシ基のピーク強度の減少を利用する方法(ぶんせ
き、1996、618(1996)等)が知られてい
る。
2. Description of the Related Art As a method of evaluating the degree of curing of an anisotropic conductive adhesive containing an epoxy resin, a curing agent, and conductive particles, various analytical methods for analyzing the degree of curing of an epoxy resin can be considered. As these analytical methods, a DSC method (thermal analysis, edited by Kotaro Kotaro, P260-P262, Kodansha) which evaluates from a calorific value measured using a DSC (differential scanning calorimeter), a method using a nuclear magnetic resonance spectrum (Shinbo) Masaki Edition, Epoxy Resin Handbook, P248-P249, Nikkan Kogyo Shimbun), Analytical Method Using Infrared Absorption Spectra, etc. (Shinbo Masaki Edition, Epoxy Resin Handbook, P251-P25)
3, Nikkan Kogyo Shimbun and Yukihiro Ozaki, New Industrial Spectroscopic Measurement Technology, P265-267, IPC Publishing). Furthermore, as a method for analyzing the degree of curing of an epoxy resin using Raman spectrum, a method utilizing the decrease in the peak intensity of the epoxy group at 1260 cm- 1 (Bunseki, 1996, 618 (1996), etc.) is known. .

【0003】ところが、前記DSC法を用いて、接着後
の異方導電性接着剤の硬化度を評価する際には、接着し
た回路基板の電極間から試料を採取する必要があり、採
取量も通常10mg以上要することから、実用的な硬化
度評価方法としては不十分であった。さらに、DSC法
では、微小部の測定ができないため、接続部における硬
化度のバラツキを評価できないといった問題があった。
また、核磁気共鳴スペクトルを利用しようとした場合に
は、接着後の異方導電性接着剤は不溶不融となり溶液化
できないために適用できない。赤外吸収スペクトルを利
用する方法は、試料厚みを調整する必要があり、また、
接着した電極間または接着後に剥がした電極上の異方導
電性接着剤は、電極等が赤外光を透過または反射しない
ため適用できない。さらには、定量性が低いといった問
題があった。一方、ラマンスペクトルを用いる分析法
は、散乱光を測定するため、電極上の異方導電接着剤で
も測定可能であるが、1260cm-1のエポキシ基のピーク強
度の減少を利用する方法は、定量性が低く実用的な硬化
度評価方法としては不十分であった。
However, when evaluating the degree of curing of the anisotropic conductive adhesive after bonding using the DSC method, it is necessary to collect a sample from between the electrodes of the bonded circuit board, and the amount of the sample must be reduced. Since it usually requires 10 mg or more, it is insufficient as a practical method for evaluating the degree of curing. Furthermore, in the DSC method, there is a problem that it is not possible to evaluate a variation in the degree of curing at the connection part because a minute part cannot be measured.
Further, when an attempt is made to utilize a nuclear magnetic resonance spectrum, the anisotropic conductive adhesive after bonding is insoluble and infusible and cannot be formed into a solution, so that it cannot be applied. In the method using the infrared absorption spectrum, it is necessary to adjust the sample thickness,
An anisotropic conductive adhesive between bonded electrodes or on an electrode peeled off after bonding is not applicable because the electrodes and the like do not transmit or reflect infrared light. Furthermore, there is a problem that the quantitativeness is low. On the other hand, the analysis method using Raman spectrum measures scattered light, so it can be measured even with an anisotropic conductive adhesive on the electrode.However, the method using the decrease in the peak intensity of the epoxy group at 1260 cm- 1 is quantitative. It was insufficient as a practical method for evaluating the degree of hardening due to low properties.

【0003】[0003]

【発明が解決しようとする課題】異方導電性接着剤を用
いて、2つの回路基板同士の電極間を接着するとともに
その両電極間を電気的に導通させる場合、接着後の異方
導電性接着剤の硬化度は、接着強度や接続信頼性等に対
し極めて重要な因子である。しかしながら、前述のよう
に、従来の技術による接着後の異方導電性接着剤の硬化
度の評価方法では、実用上不十分であり、電極上におけ
る接着後の異方導電接着剤の硬化度の実用的な評価方法
が求められている。さらには、回路基板の接続部におけ
る硬化度のバラツキを評価できる異方導電性接着剤にお
ける硬化度の実用的な評価方法が必要とされている。ま
た、従来の硬化度の評価方法では、前記接続体の接続部
中央部と接続部端部がともに十分に硬化したことを確認
した異方導電性接着剤による接続構造体を提供すること
は困難であった。本発明は、以上の状況に鑑みなされた
もので、異方導電性接着剤における硬化度の実用的な評
価方法及び接続構造体を提供するものである。
In the case where the electrodes of the two circuit boards are bonded and the two electrodes are electrically connected by using an anisotropic conductive adhesive, the anisotropic conductive adhesive after bonding is used. The curing degree of the adhesive is a very important factor for the adhesive strength, connection reliability, and the like. However, as described above, the method for evaluating the degree of curing of the anisotropic conductive adhesive after bonding according to the conventional technique is not practically sufficient, and the degree of curing of the anisotropic conductive adhesive after bonding on the electrode is not sufficient. Practical evaluation methods are required. Furthermore, there is a need for a practical method for evaluating the degree of cure of an anisotropic conductive adhesive that can evaluate the variation in degree of cure at the connection portion of the circuit board. In addition, with the conventional method of evaluating the degree of curing, it is difficult to provide a connection structure using an anisotropic conductive adhesive, which has been confirmed that both the connection center and the connection end of the connection have been sufficiently cured. Met. The present invention has been made in view of the above circumstances, and provides a practical method for evaluating the degree of curing of an anisotropic conductive adhesive and a connection structure.

【0004】[0004]

【課題を解決するための手段】本発明は、エポキシ樹脂
における硬化度の分析法について鋭意検討した結果、ラ
マンスペクトルにおいて、従来法とは異なるエポキシ基
のピーク強度を利用することによって、硬化度の定量性
を実用的なレベルに向上でき、上記目的を達成できるこ
とを見出し、この知見に基づいて本発明を完成するに至
った。
Means for Solving the Problems According to the present invention, as a result of intensive studies on a method of analyzing the degree of curing of an epoxy resin, the peak intensity of the epoxy group, which is different from that of the conventional method, is used in the Raman spectrum to obtain the degree of curing. It has been found that the quantitativeness can be improved to a practical level and the above object can be achieved, and based on this finding, the present invention has been completed.

【0005】すなわち、本発明はエポキシ樹脂、硬化剤
及び導電性粒子を含有する異方導電性接着剤において、
そのラマンスペクトルにおけるラマンシフト値2990cm-1
以上3025cm-1以下の範囲内にあるエポキシ基のピーク強
度を利用して、硬化度を評価することを特徴とする前記
異方導電性接着剤における硬化度の評価方法及び接続構
造体に関する。
That is, the present invention relates to an anisotropic conductive adhesive containing an epoxy resin, a curing agent and conductive particles.
Raman shift value 2990cm- 1 in the Raman spectrum
The present invention relates to a method for evaluating the degree of curing of the anisotropic conductive adhesive and a connection structure, wherein the degree of curing is evaluated by using the peak intensity of the epoxy group within the range of 3025 cm- 1 or less.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で用いる異方導電性接着剤のラマンスペクトル
は、可視レーザ励起のラマン分光計や近赤外レーザ励起
のラマン分光計等で測定したラマンスペクトルを用いれ
ばよく特に限定はされない。しかし、近赤外レーザ励起
のラマン分光計を用いた方が、蛍光によるラマンスペク
トルへの妨害を減少できることからより好ましい。本発
明において、硬化度を評価するのに、前記ラマンスペク
トルにおけるラマンシフト値2990cm-1以上3025cm-1以下
の範囲内にあるエポキシ基のピーク強度を利用する。こ
のとき利用するピーク強度は、ラマンシフト値2990cm-1
以上3025cm-1以下の範囲内の極大値であっても、ラマン
シフト値2990cm-1以上3025cm-1以下の範囲内の波数領域
に対するピーク面積強度であってもよい。前記のラマン
シフト値2990cm-1以上3025cm-1以下の範囲内の波数領域
とは、ラマンシフト値2990cm-1以上3025cm-1以下の範囲
に固定されるものではなく、波数領域の幅は任意にとる
ことができる。ただし、前記ピーク面積強度を利用する
場合には、任意の波数領域はラマンシフト値2990cm-1
上3025cm-1以下の範囲内に入ることが不可欠である。ラ
マンシフト値2990cm-1未満及び/又は3025cm-1を超える
領域のピーク強度を用いた場合には、エポキシ基以外の
ピークの影響のため、硬化度の定量性が低下し実用上不
十分となる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The Raman spectrum of the anisotropic conductive adhesive used in the present invention is not particularly limited as long as it uses a Raman spectrum measured by a Raman spectrometer excited by visible laser, a Raman spectrometer excited by near-infrared laser, or the like. However, it is more preferable to use a Raman spectrometer excited by near-infrared laser because interference with the Raman spectrum due to fluorescence can be reduced. In the present invention, a peak intensity of an epoxy group having a Raman shift value in the range of 2990 cm- 1 or more and 3025 cm- 1 or less in the Raman spectrum is used to evaluate the degree of curing. The peak intensity used at this time is a Raman shift value of 2990 cm- 1.
More 3025Cm- 1 be the maximum value within the range, it may be a peak area intensity for the wave number region in the Raman shift value 2990Cm- 1 or 3025Cm- 1 or less. The Raman shift value 2990Cm- 1 or 3025Cm- 1 and the following wave number region in the range, but the present invention is fixed to the Raman shift value 2990Cm- 1 or 3025Cm- 1 the range, the width of the frequency domain may optionally Can be taken. However, when utilizing the peak area intensity, it is indispensable that an arbitrary wave number region falls within a range of a Raman shift value of 2990 cm- 1 or more and 3025 cm- 1 or less. When the peak intensity in the region where the Raman shift value is less than 2990 cm- 1 and / or exceeds 3025 cm- 1 is used, the quantitativeness of the degree of curing is reduced due to the influence of peaks other than epoxy groups, which is practically insufficient. .

【0007】前記ラマンスペクトルにおけるラマンシフ
ト値2990cm-1以上3025cm-1以下の範囲内にあるエポキシ
基のピークを利用して、硬化度を評価する方法の中で、
ラマンシフト値2990cm-1以上3025cm-1以下の範囲内にあ
るエポキシ基のピーク(A)とラマンシフト値3025cm-1
上3150cm-1以下の範囲内にある芳香環のピーク(B)との
ラマン強度比(IA/IB)から硬化度を評価する方法
は、参照ピークである芳香環のピーク(B)がエポキシ基
のピーク(A)の近傍の波数領域に存在することから、ラ
マンスペクトルにおけるベースラインの変動等の影響が
少ないため、定量性が良く、また、ラマン強度比(IA
/IB)を容易に求めることができることから実用上特
に好ましい。
[0007] Among the methods for evaluating the degree of cure by using the peak of the epoxy group within the Raman shift value of 2990 cm- 1 or more and 3025 cm- 1 or less in the Raman spectrum,
Raman Raman shift value 2990Cm- 1 or 3025Cm- 1 or less epoxy groups within the scope of the peak (A) and the Raman shift value 3025Cm- 1 or 3150cm- aromatic ring peak at 1 within the range (B) The method of evaluating the degree of cure from the intensity ratio (IA / IB) is based on the fact that the peak (B) of the aromatic ring, which is the reference peak, exists in the wavenumber region near the peak (A) of the epoxy group, Since the influence of line fluctuation is small, the quantitative property is good and the Raman intensity ratio (IA
/ IB) is particularly preferable in practical use because it can be easily obtained.

【0009】また、本発明で用いる異方導電性接着剤の
ラマンスペクトルの測定を顕微鏡下で行い(すなわち、
顕微ラマン分光法で測定を行う)、測定径を1μm以上
100μm以下の微小部とすることによって、接着した
回路基板における接続部の特定位置の微小部での評価が
できるようになり、より詳細で実用的な異方導電性接着
剤の硬化度の評価方法となることからさらに好ましい。
The Raman spectrum of the anisotropic conductive adhesive used in the present invention is measured under a microscope (ie,
The measurement is performed by microscopic Raman spectroscopy), and the measurement diameter is set to a minute portion of 1 μm or more and 100 μm or less, so that it is possible to evaluate the minute portion at a specific position of the connection portion on the bonded circuit board, and to perform more detailed It is further preferable because it is a practical method for evaluating the degree of curing of the anisotropic conductive adhesive.

【0010】エポキシ樹脂、硬化剤及び導電性粒子を含
有する異方導電性接着剤による接続構造体において、前
記顕微ラマン分光法で測定したラマンスペクトルを用い
た硬化度の評価方法を使用して評価した接続構造体のう
ち、該接続構造体の中央部から半径100μm以内の位
置で測定した硬化度(X)と該接続構造体の端部から半径
100μm以内の位置で測定した硬化度(Y)との比(Y
/X)が0.8以上1.2以下であり、かつ、前記硬化
度(X)及び前記硬化度(Y)がともに70%以上である接
続構造体は、接着強度が高く接続信頼性も良好であっ
た。接続構造体の端部とは、接続構造体の外周から内側
に200μm未満の領域に存在する任意の部分を指すも
のである。また、接続構造体の中央部とは、 接続構造
体の外周から200μm以上内側に存在する任意の部分
を指すものである。一方、前記硬化度の比(Y/X)が
0.8未満あるいは1.2を超える場合には、部分的な
剥離が生じ、また、硬化度(Y)が70%未満の場合に
は、接着力が不足する。
In a connection structure made of an anisotropic conductive adhesive containing an epoxy resin, a curing agent and conductive particles, the connection structure is evaluated by the method for evaluating the degree of curing using the Raman spectrum measured by the microscopic Raman spectroscopy. Among the connection structures, the degree of cure (X) measured at a position within a radius of 100 μm from the center of the connection structure and the degree of cure (Y) measured at a position within a radius of 100 μm from the end of the connection structure And the ratio (Y
/ X) is not less than 0.8 and not more than 1.2, and the connection structure having both the curing degree (X) and the curing degree (Y) of 70% or more has a high adhesive strength and a high connection reliability. It was good. The end of the connection structure refers to an arbitrary portion existing in a region of less than 200 μm inside the outer periphery of the connection structure. Further, the central portion of the connection structure refers to an arbitrary portion existing 200 μm or more inside the outer periphery of the connection structure. On the other hand, when the ratio (Y / X) of the degree of cure is less than 0.8 or exceeds 1.2, partial peeling occurs, and when the degree of cure (Y) is less than 70%, Insufficient adhesion.

【0011】本発明の適用対象である異方導電性接着剤
は、エポキシ樹脂、硬化剤及び導電性粒子が含有される
ことを必須とするが、これらの成分以外にも、例えば粘
着付与剤や可塑剤等の粘着性調整剤、界面活性剤、フィ
ルム形成材、アクリル樹脂、シリカ等の充填剤、イソシ
アネートやメラミン等の架橋剤、溶剤、重合禁止剤、金
属不活性化剤及びカップリング剤等を必要に応じて含有
できる。また、前記異方導電性接着剤の形態は、例え
ば、フィルム状、シート状及びペースト状等でもよく、
特に限定されるものではない。該当する異方導電性接着
剤の例としては、例えば、アニソルムAC-7201、AC-2052
(ともに日立化成工業製商品名)等を挙げることができる
が、特にこれらに限定されるものではない。
The anisotropic conductive adhesive to which the present invention is applied essentially contains an epoxy resin, a curing agent and conductive particles. In addition to these components, for example, a tackifier or Adhesive modifiers such as plasticizers, surfactants, film-forming materials, acrylic resins, fillers such as silica, crosslinking agents such as isocyanate and melamine, solvents, polymerization inhibitors, metal deactivators, coupling agents, etc. Can be contained as needed. The form of the anisotropic conductive adhesive may be, for example, a film, a sheet, a paste, or the like,
There is no particular limitation. Examples of applicable anisotropic conductive adhesives include, for example, Anisorm AC-7201, AC-2052
(Both trade names of Hitachi Chemical Co., Ltd.) and the like, but are not particularly limited thereto.

【0008】前記異方導電性接着剤に含有されるエポキ
シ樹脂としては、例えば、エピクロルヒドリンとビスフ
ェノールAやビスフェノールF等から誘導されるビスフ
ェノール型エポキシ樹脂、エピクロルヒドリンとフェノ
ールノボラックやクレゾールノボラックから誘導される
エポキシノボラック樹脂が代表的であり、その他グリシ
ジルエーテル、グリシジルアミン、グリシジルエステ
ル、脂環式、複素環式等の1分子内に2個以上のオキシ
ラン基を有する各種のエポキシ樹脂が適用できる。これ
らは単独若しくは2種以上の混合体としても使用でき
る。
The epoxy resin contained in the anisotropic conductive adhesive is, for example, a bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A or bisphenol F, or an epoxy resin derived from epichlorohydrin and phenol novolak or cresol novolak. A novolak resin is typical, and various epoxy resins having two or more oxirane groups in one molecule such as glycidyl ether, glycidylamine, glycidyl ester, alicyclic and heterocyclic can be applied. These can be used alone or as a mixture of two or more.

【0009】前記異方導電性接着剤に含有される硬化剤
としては、例えば、脂肪族アミン、芳香族アミン、カル
ボン酸無水物、チオール、アルコール、フェノール、イ
ソシアネート、第三級アミン、ホウ素錯塩、無機酸、ヒ
ドラジド及びイミダゾール等の各系及びこれらの変成物
が適用できる。また、これらは単独若しくは2種以上の
混合体としても使用できる。
Examples of the curing agent contained in the anisotropic conductive adhesive include aliphatic amines, aromatic amines, carboxylic anhydrides, thiols, alcohols, phenols, isocyanates, tertiary amines, boron complex salts, and the like. Various systems such as inorganic acids, hydrazides and imidazoles and modified products thereof can be applied. These can be used alone or as a mixture of two or more.

【0014】前記異方導電性接着剤に含有される導電性
粒子としては、金属粒子、例えば、Ni、Cr、Co、
Al、Sb、Mo、Pb、Cu、Ag、Pt、Au、S
n、Ta等が挙げられ、また、導電性を示さない、例え
ばガラス、セラミックス及びプラスチックス粒子等にこ
れらの金属を被覆したものでもよい。これらは単体、合
金、複合物及び混合物として使用できる。
The conductive particles contained in the anisotropic conductive adhesive include metal particles such as Ni, Cr, Co, and the like.
Al, Sb, Mo, Pb, Cu, Ag, Pt, Au, S
n, Ta and the like, and non-conductive materials such as glass, ceramics and plastics particles coated with these metals may be used. These can be used as simple substances, alloys, composites and mixtures.

【0010】本発明の異方導電性接着剤における硬化度
の評価方法は、ラマンスペクトルにおけるラマンシフト
値2990cm-1以上3025cm-1以下の範囲内にあるエポキシ基
のピーク強度を利用することによって、従来法のラマン
シフト値1260cm-1のエポキシ基のピークを利用する方法
よりも定量性を向上でき、実用的な異方導電性接着剤に
おける硬化度の評価方法である。従来の1260cm-1のエポ
キシ基のピークを利用する方法に比べて、定量性を向上
できたのは、2990cm-1以上3025cm-1以下の範囲内にある
エポキシ基のピークは他の官能基等のピークとの分離が
良好なので、他の官能基等のピークの妨害を極力減少さ
せることができたためと考えられる。これによって、ラ
マンスペクトルを用いたエポキシ樹脂の硬化度の評価方
法の定量性を初めて実用的なレベルとすることができた
ために、異方導電性接着剤の硬化度の実用的な評価が可
能となったものである。また、前記異方導電性接着剤の
硬化度の評価方法に顕微ラマン分光法を合わせて用いる
ことによって、これまで困難であった微小部での硬化度
の評価が可能になったことから、異方導電性接着剤によ
る接続構造体において、中央部と端部が十分に硬化した
接続構造体を提供できるようになったものである。
[0010] Evaluation method of the curing level of the anisotropic conductive adhesive of the present invention, by utilizing a peak intensity of epoxy groups in the Raman shift value 2990Cm- 1 or 3025Cm- 1 within the following ranges in the Raman spectrum, This is a method for evaluating the degree of curing of a practical anisotropic conductive adhesive, which can improve quantitativeness compared to the conventional method using the peak of an epoxy group having a Raman shift value of 1260 cm- 1 . Compared to the conventional method using the peak of the epoxy group at 1260 cm- 1 , the quantitative property was improved because the peak of the epoxy group within the range of 2990 cm- 1 or more and 3025 cm- 1 or less It is probable that the interference from the peaks of other functional groups and the like could be reduced as much as possible because of good separation from the peak. As a result, the quantitativeness of the method for evaluating the degree of cure of epoxy resin using Raman spectrum was able to be set to a practical level for the first time, and the practical evaluation of the degree of cure of anisotropic conductive adhesive became possible. It has become. In addition, by using micro Raman spectroscopy in combination with the method of evaluating the degree of curing of the anisotropic conductive adhesive, it has become possible to evaluate the degree of curing in minute parts, which has been difficult so far. In a connection structure made of a one-sided conductive adhesive, a connection structure in which a central portion and an end portion are sufficiently cured can be provided.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明はこれに限定されるものではない。 (実施例1) (1)異方導電性接着剤 異方導電性接着剤には、市販の異方導電製フィルム ア
ニソルムAC−2052(日立化成工業株式会社製商品
名、厚み35μm、フィルム幅3.0mm)を用い、こ
れを表1に示す条件で加熱硬化させて、各種硬化度の異
方導電性接着剤を作製した(表1 供試試料No.1〜5)。
また、アニソルムAC−2052(日立化成工業株式会
社製商品名、厚み35μm、フィルム幅3.0mm)
を、ライン幅100μm、ピッチ200μm、厚み35
μmの銅回路を有するフレキシブル回路板(FPC)と
全面に酸化インジウム(ITO)の薄層を有する厚み1.
1mmのガラス板とをヘッド幅2mmの加熱加圧ヘッド
を用いて、接続条件170℃−2MPa−20秒の加熱
加圧により接着した。この際あらかじめFPC上に異方
導電製接着剤の接着面を貼付け後、80℃−1MPa−
5秒の仮接続を行い、その後セパレータ(4フッ化エチ
レンフィルム)を剥離してITOとの接着を行った。こ
れによって、接着後の異方導電性接着剤を得た。この接
着したFPCを剥がし、ITOの薄層を有するガラス板
上にある異方導電性接着剤(供試試料No.6)を測定に供
した。 (2)ラマンスペクトルの測定 以上のようにして作製した供試試料No.1〜5及び前記
FPCとITOの薄層を有するガラス板との回路接続品
中の異方導電性接着剤のラマンスペクトルを近赤外励起
FT−ラマン分光計(日本ブルカー製RFS−100型)
を用いて、励起レーザ出力50mW、分解能2cm-1、散
乱角180°の条件で測定した。 (3)硬化度の評価用検量線の作成 以上のようにして測定した各種硬化度の異方導電性接着
剤のラマンスペクトルにおいて、エポキシ基のピーク
(A)として、ラマンシフト値3005cm-1以上3020cm-1以下
の波数領域のピーク面積強度と参照ピークである芳香環
のピーク(B)として、ラマンシフト値3035cm-1以上3135
cm-1以下の波数領域のピーク面積強度とからラマン強度
比(IA/IB)を算出した結果を表2に示す。また、前
記各種硬化度の異方導電性接着剤(供試試料No.1〜5)
の硬化度を表す指標としてDSC反応率を、示差走査熱
量計を用いて測定した結果を表2に合わせて示す。示差
走査熱量計には、デュポン製912型を用い、試料量1
0mgで室温から250℃まで昇温加熱(昇温速度5℃
/分)したときの発熱量を測定した。ここで、用いるD
SC反応率(%)は、(1)式で算出された値のことであ
る。 DSC反応率(%)=(1− Qc/Qnc )×100 (1) Qc;接着後の異方導電性接着剤をDSCで測定したと
きに得られる1g当たりの発熱量 Qnc;接着前(非加熱状態)の異方導電性接着剤をDS
Cで測定したときに得られる1g 当たりの発熱量
The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. (Example 1) (1) Anisotropic conductive adhesive Anisotropic conductive adhesive includes a commercially available anisotropic conductive film Anisormu AC-2052 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 35 μm, film width 3). .0 mm) and heat-cured under the conditions shown in Table 1 to produce anisotropic conductive adhesives having various degrees of curing (Table 1 Samples Nos. 1 to 5).
In addition, Anisorm AC-2052 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 35 μm, film width 3.0 mm)
With a line width of 100 μm, a pitch of 200 μm, and a thickness of 35
Flexible circuit board (FPC) having a copper circuit of μm and a thin layer of indium oxide (ITO) on the entire surface.
A 1 mm glass plate was bonded by using a heating / pressing head having a head width of 2 mm by heating / pressing at 170 ° C.-2 MPa for 20 seconds under connection conditions. At this time, after bonding the adhesive surface of the anisotropic conductive adhesive on the FPC in advance, the temperature is 80 ° C.-1 MPa-
Temporary connection was performed for 5 seconds, and then the separator (tetrafluoroethylene film) was peeled off and bonded to ITO. Thereby, an anisotropic conductive adhesive after bonding was obtained. The bonded FPC was peeled off, and an anisotropic conductive adhesive (test sample No. 6) on a glass plate having a thin layer of ITO was subjected to measurement. (2) Measurement of Raman spectrum Raman spectrum of anisotropic conductive adhesive in circuit connection product of test sample Nos. 1 to 5 and FPC and glass plate having thin layer of ITO prepared as described above FT-Raman spectrometer (Nippon Bruker RFS-100)
Was measured under the conditions of an excitation laser output of 50 mW, a resolution of 2 cm- 1 , and a scattering angle of 180 °. (3) Preparation of calibration curve for evaluation of degree of cure In the Raman spectrum of the anisotropic conductive adhesive having various degrees of cure measured as described above, the peak of epoxy group
As (A), the peak area intensity in the wavenumber region of Raman shift value of 3005 cm- 1 or more and 3020 cm- 1 or less and the peak of the aromatic ring as a reference peak (B), the Raman shift value of 3035 cm- 1 or more and 3135
Table 2 shows the results of calculating the Raman intensity ratio (IA / IB) from the peak area intensity in the wavenumber region of cm- 1 or less. In addition, anisotropic conductive adhesives of various curing degrees (test sample Nos. 1 to 5)
Table 2 shows the results obtained by measuring the DSC reaction rate using a differential scanning calorimeter as an index representing the degree of cure of the polymer. For the differential scanning calorimeter, DuPont Model 912 was used.
0mg and heating from room temperature to 250 ℃ (heating rate 5 ℃
/ Min) was measured. Where D
The SC reaction rate (%) is a value calculated by the equation (1). DSC reaction rate (%) = (1−Qc / Qnc) × 100 (1) Qc; calorific value per 1 g obtained when the anisotropic conductive adhesive after bonding is measured by DSC Qnc; Heated) anisotropic conductive adhesive
Calorific value per g obtained when measured in C

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】上記のようにして得た供試試料No.1〜5
のDSC反応率とラマン強度比(IA/IB)との相関図
から硬化度の評価用検量線を図1のように作成した。本
実施例1の方法で得た検量線は、直線性が良く定量性が
高かった。 (4)接着後の異方導電性接着剤の硬化度の評価接着後
の異方導電性接着剤の硬化度を供試試料No.6のラマン
スペクトルを用いて評価した。供試試料No.6のラマン
スペクトルにおけるエポキシ基のピーク(A)と参照ピー
クである芳香環のピーク(B)とのラマン強度比(IA/
IB)の算出方法は、検量線作成時のラマン強度比算出
方法と同一とした。以上の方法で得た供試試料No.6の
ラマン強度比は、0.0075であり、図1の検量線を
利用することによって、供試試料No.6の硬化度を90
%と評価することができた。
Test samples Nos. 1 to 5 obtained as described above
A calibration curve for evaluating the degree of cure was prepared as shown in FIG. 1 from a correlation diagram between the DSC reaction rate and the Raman intensity ratio (IA / IB). The calibration curve obtained by the method of Example 1 had good linearity and high quantitativeness. (4) Evaluation of Degree of Curing of Anisotropic Conductive Adhesive After Bonding The degree of curing of the anisotropic conductive adhesive after bonding was evaluated using the Raman spectrum of Test Sample No. 6. The Raman intensity ratio of the epoxy group peak (A) and the reference peak of the aromatic ring (B) in the Raman spectrum of the test sample No. 6 (IA /
The calculation method of IB) was the same as the Raman intensity ratio calculation method at the time of preparing the calibration curve. The Raman intensity ratio of the test sample No. 6 obtained by the above method is 0.0075, and by using the calibration curve of FIG.
% Could be evaluated.

【0015】(実施例2)実施例1の供試試料6のラマ
ンスペクトルの測定を顕微ラマン分光法で行い、ラマン
スペクトルの測定径を5μmφとしたこと以外は、実施
例1と同一の方法で行った。顕微ラマン分光法による測
定には、顕微近赤外FT−ラマン分光計(日本ブルカー
製RFS−100型に専用顕微鏡を光ファイバで接続し
た装置) を用い、励起レーザ出力50mW、分解能2cm
-1、対物レンズ100倍(この場合の測定径は5μmφ
となる)で行った。図2に示すように、供試試料6にお
けるラマンスペクトル測定部位は接着してある異方導電
性接着剤のうち、前記加熱加圧ヘッドで圧着される中央
部(供試試料6−a)と前記加熱加圧ヘッドで圧着されな
い端部の未圧着部 (供試試料6−b)とした。供試試料
6−aと供試試料6−bのラマンスペクトルにおけるラ
マン強度比は、それぞれ0.075と0.111であっ
た。これらのラマン強度比の値から図1の検量線を利用
して、供試試料6−aと供試試料6−bの硬化度は、そ
れぞれ90%と51%と評価できた。加熱加圧ヘッドで
圧着される中央部(供試試料6−a)の硬化度に比べ、加
熱加圧ヘッドで圧着されない端部の未圧着部 (供試試料
6−b) の硬化度は低いことを評価することができた。
(Example 2) The Raman spectrum of the test sample 6 of Example 1 was measured by the microscopic Raman spectroscopy, and the measurement method of the Raman spectrum was changed to 5 μmφ in the same manner as in Example 1. went. For the measurement by microscopic Raman spectroscopy, using a microscopic near-infrared FT-Raman spectrometer (a device in which a dedicated microscope is connected to an RFS-100 manufactured by Bruker Japan with an optical fiber), the excitation laser output is 50 mW, and the resolution is 2 cm.
-1, 100 times objective lens (measurement diameter in this case is 5μmφ
). As shown in FIG. 2, the Raman spectrum measurement site in the test sample 6 is formed by bonding the anisotropic conductive adhesive to the central portion (test sample 6-a) pressed by the heating and pressing head. The non-pressed portion (test sample 6-b) at the end that was not pressed by the heating / pressing head. The Raman intensity ratios in the Raman spectra of the test sample 6-a and the test sample 6-b were 0.075 and 0.111, respectively. From the values of these Raman intensity ratios, the degree of cure of the test sample 6-a and the test sample 6-b could be evaluated as 90% and 51%, respectively, using the calibration curve of FIG. The degree of curing of the uncompressed portion (test sample 6-b) at the end that is not pressed by the heating / pressing head is lower than the degree of curing of the central portion (test sample 6-a) pressed by the heating / pressing head. I was able to evaluate that.

【0016】(実施例3) (1)異方導電性接着剤による接続構造体 アニソルムAC−2052(日立化成工業株式会社製商
品名、厚み35μm、フィルム幅2.0mm)を、ライ
ン幅100μm、ピッチ200μm、厚み35μmの銅
回路を有するフレキシブル回路板(FPC)と全面に酸
化インジウム(ITO)の薄層を有する厚み1.1mmの
ガラス板とをヘッド幅2mmの加熱加圧ヘッドを用い
て、接続条件170℃−2MPa−20秒の加熱加圧に
より接着した。この際あらかじめFPC上に異方導電製
接着剤の接着面を貼付け後、80℃−1MPa−5秒の
仮接続を行い、その後セパレータ(4フッ化エチレンフ
ィルム)を剥離してITOとの接着を行った。これによ
って、接着後の異方導電性接着剤を得た。この接着した
FPCを剥がし、ITOの薄層を有するガラス板上にあ
る異方導電性接着剤よる接続構造体(供試試料No.7)を
測定に供した。 (2)接続構造体の中央部と端部から50μmの位置に
おける硬化度の評価 異方導電性接着剤による接続構造体(供試試料7)に対し
て、ラマンスペクトルの測定部を接続構造体の中央部
(供試試料7−a)と端部から50μmの位置(供試試料
7−b)とした以外は、実施例2と同一の方法で硬化度
の評価を行った。測定部位の模式図を図3に示す。供試
試料7−aと供試試料7−bのラマンスペクトルにおけ
るラマン強度比は、それぞれ0.075と、0.80で
あった。これらのラマン強度比の値から図2の検量線を
利用して、供試試料7−aの硬化度(X)は90%、供試
試料7−bの硬化度(Y)は85%となり、硬化度の比
(Y/X)は0.94であった。 (3)接着強度の評価 接着力は、該接続構造体作製時にFPCを剥離した際に
測定した剥離接着力で評価した。接着力の測定は、JIS
Z-0237に準拠した90度剥離法にて、20℃−65%R
Hで行った。供試材料7に対する評価結果を表3に示
す。硬化度の比(Y/X)が0.94である供試材料7
の接着力は高かった。
Example 3 (1) Connection Structure Using Anisotropic Conductive Adhesive Anisorm AC-2052 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 35 μm, film width 2.0 mm) was replaced with a line width 100 μm. A flexible circuit board (FPC) having a copper circuit having a pitch of 200 μm and a thickness of 35 μm and a glass plate having a thickness of 1.1 mm having a thin layer of indium oxide (ITO) on the entire surface were heated and pressed using a heating and pressing head having a head width of 2 mm. Bonding was performed by heating and pressing at 170 ° C.-2 MPa for 20 seconds. At this time, after the adhesive surface of the anisotropic conductive adhesive is pasted on the FPC in advance, a temporary connection is performed at 80 ° C.-1 MPa for 5 seconds, and then the separator (ethylene tetrafluoride film) is peeled off to adhere to the ITO. went. Thereby, an anisotropic conductive adhesive after bonding was obtained. The bonded FPC was peeled off, and a connection structure (test sample No. 7) made of an anisotropic conductive adhesive on a glass plate having a thin layer of ITO was provided. (2) Evaluation of the degree of curing at 50 μm from the center and the end of the connection structure The Raman spectrum measurement part was connected to the connection structure (test sample 7) using an anisotropic conductive adhesive. Central part of
Except for (test sample 7-a) and a position 50 μm from the end (test sample 7-b), the degree of curing was evaluated in the same manner as in Example 2. FIG. 3 shows a schematic diagram of the measurement site. The Raman intensity ratios in the Raman spectra of the test sample 7-a and the test sample 7-b were 0.075 and 0.80, respectively. From the values of these Raman intensity ratios, the degree of cure (X) of the test sample 7-a was 90% and the degree of cure (Y) of the test sample 7-b was 85% using the calibration curve of FIG. And the degree of cure (Y / X) was 0.94. (3) Evaluation of adhesive strength The adhesive strength was evaluated based on the peel adhesive strength measured when the FPC was peeled off at the time of producing the connection structure. Measurement of adhesive strength is JIS
20 ° C-65% R by 90 degree peeling method based on Z-0237
H. Table 3 shows the evaluation results for the test material 7. Test material 7 having a degree of cure ratio (Y / X) of 0.94
Had high adhesion.

【0017】[0017]

【表3】 [Table 3]

【0018】(比較例1)比較例1は実施例1に対する
比較例である。実施例1の供試試料No.1〜5について、
エポキシ基のピーク(C)として、ラマンシフト値1250cm
-1以上1280cm-1以下の波数領域のピーク面積強度と参照
ピークである芳香環のピーク(B)として、ラマンシフト
値3035cm-1以上3135cm-1以下の波数領域のピーク面積強
度とのラマン強度比(IC/IB)に変えた以外は、実施
例1の方法と同一の方法で、ラマン強度比(IC/IB)
を求めた(測定結果を表4に示す)。上記のようにして得
た供試試料No.1〜5のDSC反応率とラマン強度比(I
C/IB)との相関図から硬化度の評価用検量線を図4
のように作成した。本比較例の方法で得た検量線は、直
線の相関性が極めて悪く、定量性が低いため、硬化度の
評価用検量線として不十分であった。
Comparative Example 1 Comparative Example 1 is a comparative example to Example 1. For the test samples Nos. 1 to 5 of Example 1,
As a peak (C) of an epoxy group, a Raman shift value of 1250 cm
- as one or more 1280Cm- 1 or less aromatic ring peak is a reference peak and peak area intensity of wavenumber region (B), the Raman intensity of the Raman shift value 3035Cm- 1 or 3135Cm- 1 peak area intensity of the following wavenumber regions A Raman intensity ratio (IC / IB) was obtained in the same manner as in Example 1 except that the ratio was changed to (IC / IB).
(Measurement results are shown in Table 4). The DSC reaction rates and Raman intensity ratios (I
FIG. 4 shows a calibration curve for evaluating the degree of curing from the correlation diagram with C / IB).
Created as follows. The calibration curve obtained by the method of this comparative example had extremely poor linear correlation and low quantitativeness, and was therefore insufficient as a calibration curve for evaluating the degree of cure.

【0019】[0019]

【表4】 [Table 4]

【0020】(比較例2)比較例2は、実施例3に対す
る比較例である。アニソルムAC−2052(日立化成
工業株式会社製商品名、厚み35μm、フィルム幅2.
0mm)を、ライン幅100μm、ピッチ200μm、
厚み35μmの銅回路を有するフレキシブル回路板(F
PC)と全面に酸化インジウム(ITO)の薄層を有する
厚み1.1mmのガラス板とをヘッド幅2mmの加熱加
圧ヘッドを用いて、接続条件150℃−2MPa−15
秒の加熱加圧により接着した。この際あらかじめFPC
上に異方導電製接着剤の接着面を貼付け後、80℃−1
MPa−5秒の仮接続を行い、その後セパレータ(4フ
ッ化エチレンフィルム)を剥離してITOとの接着を行
った。これによって、接着後の異方導電性接着剤を得
た。この接着したFPCを剥がし、ITOの薄層を有す
るガラス板上にある異方導電性接着剤よる接続構造体
(供試試料No.8)を測定に供した。以上のように、供試
試料No.8は実施例3の供試試料No.7とは、加熱加
圧による接続条件を変えたものである。異方導電性接着
剤による接続構造体を前記供試材料8に変えた以外は、
実施例3と同一の方法で接続構造体の中央部(供試試料
8−a)と端部から50μmの位置(供試試料8−b)に
おける硬化度の評価を行った。供試試料8−aと供試試
料8−bのラマンスペクトルにおけるラマン強度比は、
それぞれ0.080と0.098と求められた。これら
のラマン強度比の値から図2の検量線を利用して、供試
試料8−aの硬化度(X)は85%、供試試料8−bの硬
化度(Y)は65%となり、硬化度の比(Y/X)は0.
76であった。表3に示すように、実施例3と同一の評
価方法で評価したこの供試材料8の接着力は低かった。
Comparative Example 2 Comparative Example 2 is a comparative example of Example 3. Anisorum AC-2052 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 35 μm, film width 2.
0 mm), a line width of 100 μm, a pitch of 200 μm,
Flexible circuit board having a copper circuit with a thickness of 35 μm (F
PC) and a 1.1 mm thick glass plate having a thin layer of indium oxide (ITO) on the entire surface using a heating and pressing head having a head width of 2 mm and connection conditions of 150 ° C.-2 MPa-15.
Bonding was performed by heating and pressing for 2 seconds. At this time, FPC
After adhering the adhesive surface of the anisotropic conductive adhesive on top,
Temporary connection was performed for 5 seconds at MPa, and then the separator (ethylene tetrafluoride film) was peeled off to bond with ITO. Thereby, an anisotropic conductive adhesive after bonding was obtained. The bonded FPC is peeled off, and a connection structure is formed using an anisotropic conductive adhesive on a glass plate having a thin layer of ITO.
(Test sample No. 8) was used for measurement. As described above, the test sample No. 8 was the test sample No. of Example 3. Reference numeral 7 indicates that the connection conditions by heating and pressing were changed. Except that the connection structure using an anisotropic conductive adhesive was changed to the test material 8,
In the same manner as in Example 3, the degree of cure was evaluated at the center (test sample 8-a) and at a position 50 μm from the end (test sample 8-b) of the connection structure. The Raman intensity ratio in the Raman spectrum of the test sample 8-a and the test sample 8-b is
The values were 0.080 and 0.098, respectively. From these Raman intensity ratio values, using the calibration curve of FIG. 2, the degree of cure (X) of the test sample 8-a was 85%, and the degree of cure (Y) of the test sample 8-b was 65%. , The degree of cure (Y / X) is 0.1.
76. As shown in Table 3, the test material 8 evaluated by the same evaluation method as in Example 3 had a low adhesive strength.

【0021】[0021]

【発明の効果】以上詳述したように、本発明になる異方
導電性接着剤における硬化度の評価方法を用いることに
よって、接着後の異方導電性接着剤の硬化度を回路基板
等の被着体上で容易に評価できる。また、1μm以上1
00μm以下の微小部での評価ができるため、被着体上
の各部位での異方導電性接着剤の硬化度の違い等につい
ても評価できる。さらには、本発明になる異方導電性接
着剤における硬化度の評価方法を用いることで、異方導
電性接着剤による接続構造体における硬化度を評価でき
たことによって、接続構造体の各部分が十分に硬化する
接続条件を見出すことができ、これによって、各部分が
十分に硬化したことを確認した異方導電性接着剤による
接続構造体を提供することが可能になった。以上のよう
に、異方導電性接着剤において、重要な特性の一つであ
る硬化度を実際の接続条件で接着された異方導電性接着
剤について、より詳細に評価できることから、本発明に
なる異方導電性接着剤における硬化度の評価方法及び接
続構造体は、産業上極めて有益である。
As described in detail above, by using the method for evaluating the degree of curing of the anisotropic conductive adhesive according to the present invention, the degree of curing of the anisotropic conductive adhesive after bonding can be measured on a circuit board or the like. It can be easily evaluated on the adherend. In addition, 1 μm or more
Since the evaluation can be performed at a minute portion of 00 μm or less, it is also possible to evaluate the difference in the degree of curing of the anisotropic conductive adhesive at each site on the adherend. Furthermore, by using the method for evaluating the degree of cure in the anisotropic conductive adhesive according to the present invention, the degree of cure in the connection structure by the anisotropic conductive adhesive was evaluated, and each part of the connection structure was evaluated. It was possible to find a connection condition under which the resin was sufficiently cured, thereby making it possible to provide a connection structure using an anisotropic conductive adhesive, which was confirmed to have sufficiently cured each part. As described above, in the anisotropic conductive adhesive, the degree of curing, which is one of the important properties, can be evaluated in more detail for the anisotropic conductive adhesive bonded under actual connection conditions. The method for evaluating the degree of curing and the connection structure in the anisotropic conductive adhesive are extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1の方法で作成した硬化度を
求めるための検量線すなわちDSC反応率とラマン強度
比との相関を表すグラフ。
FIG. 1 is a calibration curve prepared by the method of Example 1 of the present invention for obtaining a degree of cure, that is, a graph showing a correlation between a DSC reaction rate and a Raman intensity ratio.

【図2】 本発明の実施例2における供試試料6のラマ
ンスペクトルの測定位置(供試試料6−aと6−b)を表
した模式図。
FIG. 2 is a schematic diagram showing the measurement positions of the Raman spectrum of test sample 6 (test samples 6-a and 6-b) in Example 2 of the present invention.

【図3】 本発明の実施例3における供試試料7のラマ
ンスペクトルの測定位置(供試試料7−aと7−b)を表
した模式図。
FIG. 3 is a schematic diagram showing the measurement positions of the Raman spectrum of the test sample 7 (test samples 7-a and 7-b) in Example 3 of the present invention.

【図4】 従来技術の方法(比較例1)で作成した硬化度
を求めるための検量線すなわちDSC反応率とラマン強
度比との相関を表すグラフ。
FIG. 4 is a calibration curve for obtaining a degree of cure prepared by a method of the related art (Comparative Example 1), that is, a graph showing a correlation between a DSC reaction rate and a Raman intensity ratio.

【図5】 本発明の比較例2における供試試料8のラマ
ンスペクトルの測定位置(供試試料8−aと8−b)を表
した模式図。
FIG. 5 is a schematic diagram showing the measurement positions of the Raman spectrum of the test sample 8 (test samples 8-a and 8-b) in Comparative Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 ITOの薄層を有するガラス板 2 異方導電性接着剤 3 加熱加圧ヘッドで圧着されない端部 4 加熱加圧ヘッドで圧着された中央部 5 ラマンスペクトルの測定部(供試試料6−b) 6 ラマンスペクトルの測定部(供試試料6−a) 7 ラマンスペクトルの測定部(供試試料7−a) 8 ラマンスペクトルの測定部(供試試料7−b) 9 ラマンスペクトルの測定部(供試試料8−a) 10 測定部(供試試料8−b) 11 ITOの薄層 12 ガラス板 13 接続構造体 DESCRIPTION OF SYMBOLS 1 Glass plate which has a thin layer of ITO 2 Anisotropic conductive adhesive 3 End part which is not pressed by a heating and pressing head 4 Center part which is pressed by a heating and pressing head 5 Measurement part of Raman spectrum (test sample 6-b 6) Raman spectrum measuring section (test sample 6-a) 7 Raman spectrum measuring section (test sample 7-a) 8 Raman spectrum measuring section (test sample 7-b) 9 Raman spectrum measuring section ( Test sample 8-a) 10 Measurement section (Test sample 8-b) 11 Thin layer of ITO 12 Glass plate 13 Connection structure

フロントページの続き (72)発明者 塚越 功 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 Fターム(参考) 4J040 EC021 EC061 EC071 EC091 EC161 HA066 KA16 KA32 LA06 LA09 NA19 5E344 CD04 DD06 EE30 5G307 HA02 HB03 HC01 Continued on the front page (72) Inventor Isao Tsukakoshi 1150 Goshomiya, Shimodate, Ibaraki Pref. EE30 5G307 HA02 HB03 HC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂、硬化剤及び導電性粒子を
含有する異方導電性接着剤において、そのラマンスペク
トルにおけるラマンシフト値2990cm-1以上3025cm-1以下
の範囲内にあるエポキシ基のピーク強度を利用して、硬
化度を評価することを特徴とする異方導電性接着剤にお
ける硬化度の評価方法。
1. An anisotropic conductive adhesive containing an epoxy resin, a curing agent and conductive particles, the peak intensity of an epoxy group having a Raman shift value in the Raman spectrum within the range of 2990 cm- 1 to 3025 cm- 1. A method for evaluating the degree of curing of an anisotropic conductive adhesive, wherein the method comprises evaluating the degree of curing using the method.
【請求項2】 ラマンスペクトルにおけるラマンシフト
値2990cm-1以上3025cm-1以下の範囲内にあるエポキシ基
のピーク(A)とラマンシフト値3025cm-1以上3150cm-1以
下の範囲内にある芳香環のピーク(B)とのラマン強度比
(IA/IB)を用いて、硬化度を評価することを特徴と
する請求項1記載の異方導電性接着剤における硬化度の
評価方法。
Wherein the aromatic ring in the Raman shift value 2990Cm- 1 or 3025Cm- 1 or less in the range peak (A) and 3150 cm-1 or less of the Raman shift value 3025cm-1 or more epoxy groups in the range of the Raman spectrum Raman intensity ratio with peak (B)
The method for evaluating the degree of cure of an anisotropic conductive adhesive according to claim 1, wherein the degree of cure is evaluated using (IA / IB).
【請求項3】 ラマンスペクトルの測定径が1μm以上
100μm以下の微小部である請求項1又は2記載の異
方導電性接着剤における硬化度の評価方法。
3. The method for evaluating the degree of cure of an anisotropic conductive adhesive according to claim 1, wherein the measured diameter of the Raman spectrum is a minute portion of 1 μm or more and 100 μm or less.
【請求項4】 請求項3記載の異方導電性接着剤におけ
る硬化度の評価方法を用いて評価した異方導電性接着剤
の硬化度が以下の2つの条件を満たすことを特徴とする
異方導電性接着剤による接続構造体。 (1) 該接続体の中央部から半径100μm以内の位
置で測定した硬化度(X)と該接続体の端部から半径10
0μm以内の位置で測定した硬化度(Y)との比(Y/X)
が0.8以上1.2以下であること。 (2) 前記硬化度(X)及び前記硬化度(Y)が、ともに
70%以上であること。
4. The anisotropic conductive adhesive according to claim 3, wherein the degree of curing of the anisotropic conductive adhesive evaluated using the method for evaluating the degree of curing satisfies the following two conditions. Connection structure using one side conductive adhesive. (1) Curing degree (X) measured at a position within a radius of 100 μm from the center of the connector and a radius of 10 from the end of the connector.
Ratio (Y / X) to the degree of cure (Y) measured at a position within 0 μm
Is 0.8 or more and 1.2 or less. (2) The degree of cure (X) and the degree of cure (Y) are both 70% or more.
JP35850498A 1998-12-17 1998-12-17 Method of evaluating curing degree in anisotropic conductive adhesive and connection structure Pending JP2000178522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35850498A JP2000178522A (en) 1998-12-17 1998-12-17 Method of evaluating curing degree in anisotropic conductive adhesive and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35850498A JP2000178522A (en) 1998-12-17 1998-12-17 Method of evaluating curing degree in anisotropic conductive adhesive and connection structure

Publications (1)

Publication Number Publication Date
JP2000178522A true JP2000178522A (en) 2000-06-27

Family

ID=18459663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35850498A Pending JP2000178522A (en) 1998-12-17 1998-12-17 Method of evaluating curing degree in anisotropic conductive adhesive and connection structure

Country Status (1)

Country Link
JP (1) JP2000178522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406873C (en) * 2002-02-25 2008-07-30 索尼化学&信息部件株式会社 Non-destructive detecting method for solidification level of solidified article of solidified adhesive composition and method for producing electronic device
JP2011116897A (en) * 2009-12-04 2011-06-16 Nitto Denko Corp Thermosetting die bond film, dicing die bond film, and semiconductor device
JP2016024095A (en) * 2014-07-22 2016-02-08 富士通株式会社 Curing monitoring device and curing monitoring method
CN107576643A (en) * 2017-01-12 2018-01-12 广西民族大学 A kind of micro- calorimeter and Raman spectrum on-line coupled system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406873C (en) * 2002-02-25 2008-07-30 索尼化学&信息部件株式会社 Non-destructive detecting method for solidification level of solidified article of solidified adhesive composition and method for producing electronic device
JP2011116897A (en) * 2009-12-04 2011-06-16 Nitto Denko Corp Thermosetting die bond film, dicing die bond film, and semiconductor device
JP2016024095A (en) * 2014-07-22 2016-02-08 富士通株式会社 Curing monitoring device and curing monitoring method
CN107576643A (en) * 2017-01-12 2018-01-12 广西民族大学 A kind of micro- calorimeter and Raman spectrum on-line coupled system

Similar Documents

Publication Publication Date Title
De Lange et al. Characterization and micromechanical testing of the interphase of aramid-reinforced epoxy composites
CN101835342A (en) The structure and the method and adhesive that connect printed substrate with anisotropic conductivity
JP2000178522A (en) Method of evaluating curing degree in anisotropic conductive adhesive and connection structure
Wu et al. Effect of ultrasonic vibration on adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent
JP4081839B2 (en) Electrode connecting adhesive and connection structure of fine electrode using the same
Zhang et al. The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition
KR20180039608A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP5052050B2 (en) Electrode connecting adhesive and connection structure of fine electrode using the same
JP2603630B2 (en) Curable composition
Park et al. The effect of curing temperature on thermal, physical and mechanical characteristics of two types of adhesives for aerospace structures
JP2003238937A (en) Two-component adhesive
TW201251553A (en) Method for fabricating connection structure
Stübling et al. THz properties of adhesives
JP2011069653A (en) Method for evaluating degree of cure of material containing epoxy resin
JP2629490B2 (en) Anisotropic conductive adhesive
JP6560197B2 (en) Methods and devices for producing test elements
CN105940299B (en) The reactivity assay method and acrylic adhesive of acrylic adhesive
JP5066126B2 (en) Pattern electrode bonding structure using ultraviolet curing agent containing ultraviolet and natural curing agent and bonding method thereof
WO2024024424A1 (en) Connected body of metal materials and method for connecting metal materials
JP2006281458A (en) Double-sided metal sheet
WO2023127667A1 (en) Method for manufacturing joined body
TW202413085A (en) Connector of metal materials and connection method of metal materials
CN108865043A (en) Two-component Strong Adhesive and the preparation method and application thereof
Beck Adhesion of Coatings vs. Strength of Composite Materials–A Review of Applications Evaluated by Centrifugal Adhesion Testing (CAT)
WO2023127668A1 (en) Method for manufacturing joined body