JP2000176613A - Method for dispersing fine gas bubble into molten metal, device therefor and fine gas bubble-containing metal - Google Patents

Method for dispersing fine gas bubble into molten metal, device therefor and fine gas bubble-containing metal

Info

Publication number
JP2000176613A
JP2000176613A JP10358552A JP35855298A JP2000176613A JP 2000176613 A JP2000176613 A JP 2000176613A JP 10358552 A JP10358552 A JP 10358552A JP 35855298 A JP35855298 A JP 35855298A JP 2000176613 A JP2000176613 A JP 2000176613A
Authority
JP
Japan
Prior art keywords
molten metal
fine bubbles
reaction vessel
dispersing
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10358552A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoya
真一郎 横谷
Shigeta Hara
茂太 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP10358552A priority Critical patent/JP2000176613A/en
Publication of JP2000176613A publication Critical patent/JP2000176613A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dispersing method of fine gas bubble into molten metal, with which the fine bubble controlled to an arbitrary fixed size of <=5 mm radius is introduced and dispersed into the molten metal, and a device thereof and a fine bubble-containing metal. SOLUTION: In the dispersing method of fine gas bubble into the molten metal, circulating movement is given to the molten metal 10 by impressing a rotary magnetic field with a magnet 16 to the molten metal 10 in a reaction vessel 11, and when the gas 14 is supplied from a fine hole 13 on a wall surface 12, the centrifugal force with sp.gr. difference is acted to the bubble 15 and the bubble 15 is moved toward the circular center.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属中へ、半
径5mm以下の任意の一定の大きさに制御された微細気
泡を、必要量導入分散する方法とその装置および微細気
泡の含有された金属に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for introducing and dispersing a required amount of microbubbles controlled to an arbitrary constant size having a radius of 5 mm or less into a molten metal, an apparatus therefor, and a method for containing the microbubbles. It is about metal.

【0002】[0002]

【従来の技術】溶融金属中へ微細気泡を導入すること
は、鉄鋼精錬・連鋳工程で気泡付着による微量介在非金
属の除去のため、さらには発泡金属の製造などへの応用
面などの点から必要なことである。
2. Description of the Related Art The introduction of fine air bubbles into a molten metal is necessary in order to remove trace intervening non-metals by adhering air bubbles in a steel refining and continuous casting process, and further to the application to the production of foamed metal. It is necessary from.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、溶融金
属中へ濡れない気体(濡れないとは接触角90°以上)
を、吹き込み分散させること、特にそれを微細気泡の状
態にすることは至難のことである。
However, a gas that does not wet into the molten metal (a contact angle of 90 ° or more means that it does not wet).
Is particularly difficult to disperse by blowing, especially to make it into the state of fine bubbles.

【0004】先に、本願発明者等は、水銀について、旋
回運動を与え遠心力を利用し、微細気泡が導入できるこ
とを見出したが〔CAMP−ISIJ Vol.10
(1997)−807『旋回流の付与による気泡の微細
化』〕、水銀、気泡の微細化のみならず、種々の溶融金
属について粒径など制御された微細気泡の導入法の技術
確立が望まれていた。
[0004] The inventors of the present invention have previously found that fine bubbles can be introduced into mercury by imparting a swirling motion and utilizing centrifugal force [CAMP-ISIJ Vol. 10
(1997) -807 "Fine air bubbles by applying a swirling flow"], it is desired to establish not only the mercury and air bubbles but also techniques for introducing fine air bubbles of various molten metals with controlled particle diameters. I was

【0005】本発明は、上記した状況に鑑みて、溶融金
属中へ、半径5mm以下の任意の一定の大きさに制御さ
れた微細気泡を、必要量導入分散する、溶融金属中への
微細気泡の分散方法、その装置および微細気泡含有金属
を提供することを目的とする。
In view of the above situation, the present invention provides a method for introducing and dispersing a required amount of fine bubbles having a radius of 5 mm or less into a molten metal in a required amount. It is an object of the present invention to provide a dispersing method, an apparatus and a metal containing fine bubbles.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕溶融金属中への微細気泡の分散方法において、反
応容器内の溶融金属に旋回運動を付与し、前記反応容器
の壁面に形成される細孔からガスを導入し、微細気泡を
発生させ、比重差による遠心力を前記微細気泡に作用さ
せ、この微細気泡を前記反応容器の旋回中心に向かって
運動させるようにしたものである。
In order to achieve the above object, the present invention provides: (1) a method for dispersing fine bubbles in a molten metal, wherein the molten metal in the reaction vessel is provided with a swirling motion; A gas is introduced from pores formed on the wall surface of the reaction vessel to generate fine bubbles, and a centrifugal force due to a difference in specific gravity is applied to the fine bubbles to move the fine bubbles toward the center of rotation of the reaction vessel. It is like that.

【0007】〔2〕上記〔1〕記載の溶融金属中への微
細気泡の分散方法において、前記微細気泡の半径bが、
b=(2RT/ρ)1/2 /W、ここで、Rは反応容器の
旋回中心より壁面迄の距離、Tは溶融金属の表面張力、
ρは溶融金属の密度、Wは壁面での溶融金属の旋回速度
であるようにしたものである。
[2] The method for dispersing fine bubbles in molten metal according to the above [1], wherein the radius b of the fine bubbles is
b = (2RT / ρ) 1/2 / W, where R is the distance from the center of rotation of the reaction vessel to the wall, T is the surface tension of the molten metal,
ρ is the density of the molten metal, and W is the swirling speed of the molten metal on the wall surface.

【0008】〔3〕溶融金属中への微細気泡の分散装置
において、反応容器の壁面に形成される細孔から微細気
泡を導入する第1の手段と、前記反応容器内に収納され
る溶融金属に旋回運動を付与する第2の手段とを具備す
るようにしたものである。
[3] In a device for dispersing fine bubbles in a molten metal, a first means for introducing fine bubbles from pores formed in a wall surface of a reaction vessel, and a molten metal contained in the reaction vessel And a second means for imparting a turning motion to the vehicle.

【0009】〔4〕上記〔3〕記載の溶融金属中への微
細気泡の分散装置において、前記反応容器は漏斗状をし
た容器である。
[4] In the apparatus for dispersing fine bubbles in molten metal according to the above [3], the reaction vessel is a funnel-shaped vessel.

【0010】〔5〕上記〔3〕記載の溶融金属中への微
細気泡の分散装置において、前記反応容器を機械的に回
転させるようにしたものである。
[5] The apparatus for dispersing fine bubbles in molten metal according to [3], wherein the reaction vessel is mechanically rotated.

【0011】〔6〕上記〔3〕記載の溶融金属中への微
細気泡の分散装置において、前記反応容器を電磁的に回
転させるようにしたものである。
[6] The apparatus for dispersing fine bubbles in molten metal according to [3], wherein the reaction vessel is electromagnetically rotated.

【0012】〔7〕反応容器内の溶融金属に旋回運動を
付与し、前記反応容器の壁面に形成される細孔から微細
気泡を導入し、比重差による遠心力を微細気泡に作用さ
せ、微細気泡を前記反応容器の旋回中心に向かって運動
させ、微細気泡を導入後、冷却して得られる微細気泡含
有金属を得るようにしたものである。
[7] A swirling motion is applied to the molten metal in the reaction vessel, fine bubbles are introduced from pores formed on the wall surface of the reaction vessel, and centrifugal force due to a difference in specific gravity acts on the fine bubbles. The bubbles are moved toward the center of rotation of the reaction vessel, and after introducing the fine bubbles, a metal containing fine bubbles is obtained by cooling.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0014】本発明は、溶融金属について、半径5mm
以下の任意の一定の大きさに制御された微細気泡を、次
式に従って諸条件を設定することで、導入分散するよう
にしたものである。
According to the present invention, the molten metal has a radius of 5 mm.
The following fine bubbles controlled to an arbitrary constant size are introduced and dispersed by setting various conditions according to the following equation.

【0015】b=(2RT/ρ)1/2 /W ここで、b;生成される気泡の半径、R;容器の旋回中
心より壁迄の距離、T;溶融金属の表面張力、ρ;溶融
金属の密度、W;旋回速度ここで、気泡の数は、気泡径
が設定されるから、気体吹き込み量で決めることができ
る。
B = (2RT / ρ) 1/2 / W where, b: radius of generated bubble, R: distance from center of rotation of container to wall, T: surface tension of molten metal, ρ: melting Metal density, W; swirling speed Here, the number of bubbles can be determined by the gas blowing amount because the bubble diameter is set.

【0016】以下、この微細気泡の分散装置の一例につ
いて説明する。
Hereinafter, an example of the fine bubble dispersing apparatus will be described.

【0017】図1は本発明の第1実施例を示す溶融金属
中への微細気泡の分散装置の反応容器の下部斜視図、図
2はその微細気泡の分散装置のk=5の断面図、図3は
その微細気泡の分散装置のk=21の断面図、図4はそ
の微細気泡の分散の説明図、図5はその微細気泡の半径
と接線方向の速度との特性図である。
FIG. 1 is a lower perspective view of a reaction vessel of a device for dispersing fine bubbles in molten metal showing a first embodiment of the present invention, FIG. 2 is a cross-sectional view of the device for dispersing fine bubbles in k = 5, FIG. 3 is a sectional view of the fine bubble dispersing device at k = 21, FIG. 4 is an explanatory diagram of the fine bubble dispersion, and FIG. 5 is a characteristic diagram of the radius of the fine bubbles and the tangential velocity.

【0018】反応容器1内の液体に旋回運動を付与し、
反応容器の壁面2の細孔3よりガス4を供給すると比重
差による遠心力が気泡5に作用し、気泡5は旋回中心
(ノズル軸)6に向かって運動する。このとき生成され
る気泡5の半径bは釣合いの式から b=(2RT/ρ)1/2 /W で与えられる。ここで、Rは反応容器の旋回中心(ノズ
ル軸)6より壁面2迄の距離、Tは液体の表面張力、ρ
は液体の密度、Wは壁面2での液体の旋回速度である。
この式を水銀/空気系に適用すると、1m/s程度の旋
回速度で半径2.5mmの気泡が生成し、計算と良く一
致する。
A swirling motion is given to the liquid in the reaction vessel 1,
When the gas 4 is supplied from the pores 3 of the wall surface 2 of the reaction vessel, a centrifugal force due to a difference in specific gravity acts on the bubbles 5, and the bubbles 5 move toward the center of rotation (nozzle axis) 6. The radius b of the bubble 5 generated at this time is given by b = (2RT / ρ) 1/2 / W from the equation of balance. Here, R is the distance from the center of rotation (nozzle axis) 6 of the reaction vessel to the wall surface 2, T is the surface tension of the liquid, ρ
Is the density of the liquid, and W is the swirling speed of the liquid on the wall surface 2.
When this equation is applied to a mercury / air system, a bubble with a radius of 2.5 mm is generated at a swirling speed of about 1 m / s, which agrees well with the calculation.

【0019】また、溶鋼の場合、その物性値より水銀の
2.5倍となる。従って、旋回速度1m/sで半径6.
3mmの気泡、2m/sでは半分の3.1mmの気泡の
発生が期待される。
In the case of molten steel, the physical property value is 2.5 times that of mercury. Therefore, at a turning speed of 1 m / s, a radius of 6.
It is expected that a bubble of 3 mm and a bubble of 3.1 mm, which is half at 2 m / s, will be generated.

【0020】このような旋回速度を作り出すことは、比
較的容易である。
It is relatively easy to produce such a turning speed.

【0021】溶鋼の落下のエネルギーを接線方向の運動
に変え、図1及び図2に示すような漏斗状の反応容器1
に流し込むと、その反応容器1の絞られた部分では接線
方向の速度は加速される。このような反応容器1の設計
は可能である。その絞り部分にガス4を供給すると容易
に溶鋼中に取り込まれることから、反応面積の大きい気
液系が作り出せる。このようなプロセスとしては脱炭プ
ロセスへの適用が考えられる。
The energy of the falling of the molten steel is converted into tangential motion, and the funnel-shaped reaction vessel 1 shown in FIGS.
, The speed in the tangential direction is accelerated in the narrowed portion of the reaction vessel 1. Such a design of the reaction vessel 1 is possible. When the gas 4 is supplied to the constricted portion, it is easily taken into the molten steel, so that a gas-liquid system having a large reaction area can be created. As such a process, application to a decarburization process can be considered.

【0022】図6は本発明の第2実施例を示す溶融金属
中への微細気泡の分散装置の断面模式図、図7はその微
細気泡の分散装置の平面模式図である。
FIG. 6 is a schematic sectional view of an apparatus for dispersing fine bubbles in molten metal according to a second embodiment of the present invention, and FIG. 7 is a schematic plan view of the apparatus for dispersing fine bubbles in molten metal.

【0023】この図において、10は溶融金属、11は
反応容器、12は反応容器の壁面、13はその壁面に接
続される細孔、14はガス、15は気泡、16は回転磁
場を印加するための磁石である。
In this figure, 10 is a molten metal, 11 is a reaction vessel, 12 is a wall of the reaction vessel, 13 is a pore connected to the wall, 14 is a gas, 15 is a bubble, and 16 is a rotating magnetic field. For the magnet.

【0024】この実施例では、反応容器11内の溶融金
属10に磁石16による回転磁場を印加し、その結果生
じる誘導電流とその回転磁場との相互作用による駆動力
(ローレンツ力)により、溶融金属10を回転させるよ
うにしている。
In this embodiment, a rotating magnetic field by the magnet 16 is applied to the molten metal 10 in the reaction vessel 11, and a driving force (Lorentz force) due to an interaction between the resulting induced current and the rotating magnetic field causes the molten metal to rotate. 10 is rotated.

【0025】気泡の分散方法は、第1実施例と同様であ
る。
The method of dispersing bubbles is the same as in the first embodiment.

【0026】すなわち、反応容器11内の溶融金属10
に磁石16による回転磁場を印加することにより、溶融
金属10に旋回運動を付与し、壁面12の細孔13より
ガス14を供給すると、比重差による遠心力が気泡15
に作用し、気泡15は旋回中心に向かって運動する。こ
のとき生成される気泡の半径bは釣合いの式から、 b=(2RT/ρ)1/2 /W で与えられる。
That is, the molten metal 10 in the reaction vessel 11
When a rotating magnetic field is applied to the molten metal 10 by applying a rotating magnetic field to the molten metal 10 and gas 14 is supplied from the pores 13 of the wall surface 12, centrifugal force due to the difference in specific gravity causes bubbles 15.
And the bubble 15 moves toward the center of rotation. The radius b of the bubble generated at this time is given by b = (2RT / ρ) 1/2 / W from the equation of balance.

【0027】なお、鉄鋼精錬において、溶融金属中に介
在する微量非金属を気泡付着により効率よく除去する為
には、溶融金属中へ導入する気泡がより細かく定量的で
ある必要があるが、本発明はそのような分野に好適であ
る。
In steel refining, in order to efficiently remove trace nonmetals present in the molten metal by adhering bubbles, it is necessary that bubbles introduced into the molten metal be finer and more quantitative. The invention is suitable for such a field.

【0028】特に、近年、微量な介在非金属の除去が、
より厳しく要求されていることからしても、本発明の適
用のもたらす効果は著大である。
In particular, in recent years, the removal of trace intervening nonmetals has
The effects brought by the application of the present invention are remarkable even from the stricter requirements.

【0029】また、ポーラス金属の製造方法は、化学的
発泡手法を使うとか、金属微粉からつくるとかの方法が
採用されているようであるが、本発明は、そのようなポ
ーラス金属の製造にも適用することができる。
Further, as a method for producing a porous metal, it seems that a method of using a chemical foaming method or a method of producing from a metal fine powder is employed, but the present invention is also applicable to the production of such a porous metal. Can be applied.

【0030】また、溶融される金属は、特に限定される
ものではなく、何でもよいという利点がある。
Further, the metal to be melted is not particularly limited, and has an advantage that any metal may be used.

【0031】更に、導入する気体は、常温気体状のもの
が一般的であるが、操作時に、気体状に変化するものも
あっても良い。
Further, the gas to be introduced is generally in a gaseous state at room temperature, but may be changed into a gaseous state during operation.

【0032】また、本発明によった溶融金属中への微細
気泡の分散方法による、気泡導入後、冷却して得られる
微細気泡含有金属(発泡状態のもの、また微量介在非金
属の除去、減少したもの)も、本発明の権利範囲にあ
る。
In addition, according to the method for dispersing fine bubbles in a molten metal according to the present invention, a fine bubble-containing metal (in a foamed state, and a small amount of nonmetals removed and reduced) obtained by cooling after introducing the bubbles. Are also within the scope of the present invention.

【0033】また、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above-described embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0034】[0034]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0035】(A)微細気泡を溶融金属中へ、その大き
さ、数をコントロールして、導入することができる。
(A) Fine bubbles can be introduced into the molten metal by controlling the size and number thereof.

【0036】(B)溶融金属中へ、半径5mm以下の任
意の一定の大きさに制御された微細気泡を、必要量導入
分散することができる。
(B) A required amount of fine bubbles having a radius of 5 mm or less and controlled to an arbitrary constant size can be introduced and dispersed in the molten metal.

【0037】(C)鉄鋼精錬・連鋳工程で気泡付着によ
る微量介在非金属の除去のために有効である。
(C) It is effective for removing minute amounts of non-metals interposed by bubbles in the steel refining and continuous casting process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す溶融金属中への微細
気泡の分散装置の反応容器の下部斜視図である。
FIG. 1 is a perspective view of a lower part of a reaction vessel of an apparatus for dispersing fine bubbles in molten metal according to a first embodiment of the present invention.

【図2】本発明の第1実施例を示す溶融金属中への微細
気泡の分散装置のk=5の断面図である。
FIG. 2 is a cross-sectional view at k = 5 of the apparatus for dispersing fine bubbles in molten metal according to the first embodiment of the present invention.

【図3】本発明の第1実施例を示す溶融金属中への微細
気泡の分散装置のk=21の断面図である。
FIG. 3 is a cross-sectional view at k = 21 of the apparatus for dispersing fine bubbles in molten metal according to the first embodiment of the present invention.

【図4】本発明の第1実施例を示す溶融金属中への微細
気泡の分散の説明図である。
FIG. 4 is a diagram illustrating dispersion of fine bubbles in molten metal according to the first embodiment of the present invention.

【図5】本発明の第1実施例を示す溶融金属中への微細
気泡の半径と接線方向の速度との特性図である。
FIG. 5 is a characteristic diagram showing a radius of fine bubbles and a velocity in a tangential direction in a molten metal according to the first embodiment of the present invention.

【図6】本発明の第2実施例を示す溶融金属中への微細
気泡の分散装置の断面模式図である。
FIG. 6 is a schematic cross-sectional view of an apparatus for dispersing fine bubbles in molten metal according to a second embodiment of the present invention.

【図7】本発明の第2実施例を示す溶融金属中への微細
気泡の分散装置の平面模式図である。
FIG. 7 is a schematic plan view of an apparatus for dispersing fine bubbles in molten metal according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11 反応容器 2,12 壁面 3,13 細孔 4,14 ガス 5,15 気泡 6 旋回中心(ノズル軸) 10 溶融金属 16 磁石 1,11 Reaction vessel 2,12 Wall surface 3,13 Pores 4,14 Gas 5,15 Bubble 6 Center of rotation (nozzle axis) 10 Molten metal 16 Magnet

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属中への微細気泡の分散方法にお
いて、 反応容器内の溶融金属に旋回運動を付与し、前記反応容
器の壁面に形成される細孔からガスを導入し、微細気泡
を発生させ、比重差による遠心力を前記微細気泡に作用
させ、該微細気泡を前記反応容器の旋回中心に向かって
運動させることを特徴とする溶融金属中への微細気泡の
分散方法。
In a method of dispersing fine bubbles in a molten metal, a swirling motion is applied to the molten metal in a reaction vessel, and a gas is introduced from pores formed on a wall surface of the reaction vessel to form fine bubbles. A method for dispersing fine bubbles in a molten metal, wherein the fine bubbles are generated and a centrifugal force due to a difference in specific gravity is applied to the fine bubbles so as to move the fine bubbles toward the center of rotation of the reaction vessel.
【請求項2】 請求項1記載の溶融金属中への微細気泡
の分散方法において、前記微細気泡の半径bは、b=
(2RT/ρ)1/2 /W、ここで、Rは反応容器の旋回
中心より壁面迄の距離、Tは溶融金属の表面張力、ρは
溶融金属の密度、Wは壁面での溶融金属の旋回速度であ
ることを特徴とする溶融金属中への微細気泡の分散方
法。
2. The method for dispersing fine bubbles in molten metal according to claim 1, wherein the radius b of the fine bubbles is b =
(2RT / ρ) 1/2 / W, where R is the distance from the center of rotation of the reaction vessel to the wall, T is the surface tension of the molten metal, ρ is the density of the molten metal, and W is the density of the molten metal on the wall. A method for dispersing fine air bubbles in molten metal, which is a swirling speed.
【請求項3】 溶融金属中への微細気泡の分散装置にお
いて、(a)反応容器の壁面に形成される細孔から微細
気泡を導入する第1の手段と、(b)前記反応容器内に
収納される溶融金属に旋回運動を付与する第2の手段と
を具備することを特徴とする溶融金属中への微細気泡の
分散装置。
3. An apparatus for dispersing fine bubbles in molten metal, comprising: (a) first means for introducing fine bubbles from pores formed on the wall surface of the reaction vessel; and (b) And a second means for imparting a swirling motion to the stored molten metal. A device for dispersing fine air bubbles in the molten metal.
【請求項4】 請求項3記載の溶融金属中への微細気泡
の分散装置において、前記反応容器は漏斗状をした容器
であることを特徴とする溶融金属中への微細気泡の分散
装置。
4. The apparatus for dispersing fine bubbles in molten metal according to claim 3, wherein said reaction vessel is a funnel-shaped vessel.
【請求項5】 請求項3記載の溶融金属中への微細気泡
の分散装置において、前記反応容器を機械的に回転させ
ることを特徴とする溶融金属中への微細気泡の分散装
置。
5. The apparatus for dispersing fine bubbles in molten metal according to claim 3, wherein the reaction vessel is mechanically rotated.
【請求項6】 請求項3記載の溶融金属中への微細気泡
の分散装置において、前記反応容器を電磁的に回転させ
ることを特徴とする溶融金属中への微細気泡の分散装
置。
6. The apparatus for dispersing fine bubbles in molten metal according to claim 3, wherein the reaction vessel is electromagnetically rotated.
【請求項7】 反応容器内の溶融金属に旋回運動を付与
し、前記反応容器の壁面に形成される細孔から微細気泡
を導入し、比重差による遠心力を微細気泡に作用させ、
微細気泡を前記反応容器の旋回中心に向かって運動さ
せ、微細気泡を導入後、冷却して得られる微細気泡含有
金属。
7. A swirling motion is applied to the molten metal in the reaction vessel to introduce fine bubbles from pores formed on the wall of the reaction vessel, and a centrifugal force due to a difference in specific gravity acts on the fine bubbles.
A fine-bubble-containing metal obtained by moving fine bubbles toward the center of rotation of the reaction vessel, introducing the fine bubbles, and then cooling.
JP10358552A 1998-12-17 1998-12-17 Method for dispersing fine gas bubble into molten metal, device therefor and fine gas bubble-containing metal Pending JP2000176613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358552A JP2000176613A (en) 1998-12-17 1998-12-17 Method for dispersing fine gas bubble into molten metal, device therefor and fine gas bubble-containing metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358552A JP2000176613A (en) 1998-12-17 1998-12-17 Method for dispersing fine gas bubble into molten metal, device therefor and fine gas bubble-containing metal

Publications (1)

Publication Number Publication Date
JP2000176613A true JP2000176613A (en) 2000-06-27

Family

ID=18459914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358552A Pending JP2000176613A (en) 1998-12-17 1998-12-17 Method for dispersing fine gas bubble into molten metal, device therefor and fine gas bubble-containing metal

Country Status (1)

Country Link
JP (1) JP2000176613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112253A (en) * 2001-06-15 2003-04-15 Huette Klein-Reichenbach Gmbh Apparatus and method of manufacturing foamy metal
EP3124249A1 (en) * 2015-07-28 2017-02-01 OCE-Technologies B.V. Jetting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112253A (en) * 2001-06-15 2003-04-15 Huette Klein-Reichenbach Gmbh Apparatus and method of manufacturing foamy metal
EP3124249A1 (en) * 2015-07-28 2017-02-01 OCE-Technologies B.V. Jetting device
US10052689B2 (en) 2015-07-28 2018-08-21 Océ-Technologies B.V. Jetting device

Similar Documents

Publication Publication Date Title
Anagbo et al. Plume characteristics and liquid circulation in gas injection through a porous plug
CA2604779A1 (en) Solid particles, method and device for the production thereof
JPS6140737B2 (en)
US7131597B2 (en) Atomization technique for producing fine particles
JP2005131492A (en) Gas-liquid separation method and gas-liquid separator
JPS62167807A (en) Apparatus for producing quenched metal particle
WO2005023431B1 (en) Atomization technique for producing fine particles
JP2000176613A (en) Method for dispersing fine gas bubble into molten metal, device therefor and fine gas bubble-containing metal
JP4174576B2 (en) A mixing device that mixes two or more liquids or a fluid composed of liquid and gas into a solution
JPS63503468A (en) Molten material granulation equipment
US4011290A (en) Method and device for dispersing a melt with a fluid jet
JPS5871306A (en) Production of powder
RU2271264C2 (en) Radioactive metals or alloys particle forming method
JP2006225226A (en) Spherical silica and its manufacturing method
JP2009511240A (en) Extended fluidized bed separation reactor
Goda et al. Empirical equations for bubble formation frequency from downward-facing nozzle with and without rotating flow effects
JPH0214402B2 (en)
JP2003112253A (en) Apparatus and method of manufacturing foamy metal
Widlund et al. Studies on decarburisation and desiliconisation of levitated Fe–C–Si alloy droplets
JPH06228674A (en) Production of metallic beryllium pebble
JP2000160361A (en) Surface treatment by discharge and surface treating device by discharge
JP2007144501A (en) Method for removing inclusion in molten metal and inclusion removing device for molten metal
CN109881025B (en) Supersonic degassing device and method for aluminum melt
JPH0741836A (en) Method for melting low nitrogen steel by low vacuum refining
JPH0330456B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221