JP2000173625A - Electrode for fuel cell and its manufacture - Google Patents

Electrode for fuel cell and its manufacture

Info

Publication number
JP2000173625A
JP2000173625A JP11078889A JP7888999A JP2000173625A JP 2000173625 A JP2000173625 A JP 2000173625A JP 11078889 A JP11078889 A JP 11078889A JP 7888999 A JP7888999 A JP 7888999A JP 2000173625 A JP2000173625 A JP 2000173625A
Authority
JP
Japan
Prior art keywords
fuel cell
resin
electrode
catalyst layer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11078889A
Other languages
Japanese (ja)
Other versions
JP4320482B2 (en
JP2000173625A5 (en
Inventor
Shuji Hitomi
人見  周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP07888999A priority Critical patent/JP4320482B2/en
Priority to DE10004955A priority patent/DE10004955A1/en
Priority to US09/497,515 priority patent/US7147957B1/en
Publication of JP2000173625A publication Critical patent/JP2000173625A/en
Publication of JP2000173625A5 publication Critical patent/JP2000173625A5/ja
Application granted granted Critical
Publication of JP4320482B2 publication Critical patent/JP4320482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve water repellency of a fuel cell electrode for improving the performance of a fuel cell electrode. SOLUTION: In this fuel cell electrode, having a catalyst layer containing a solid polymer electrolyte 42 and catalyst particles 41, a surface and portions corresponding to micro-pores 43 of the catalyst layer have a porous resin. For example, after the solution of a resin in a solvent (a) is stored in the catalyst layer which contains the solid polymer electrolyte 42 and the catalyst particles 41, the catalyst layer is immersed in a solvent (b) which is insoluble in the resin but soluble in the solvent (a) to form the fuel cell electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用電極お
よびその製造方法に関するものである。
The present invention relates to a fuel cell electrode and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池はイオン交
換膜を電解質とし、このイオン交換膜の両面に、触媒層
と、導電性多孔質体を含むガス拡散層とを備えたアノー
ドとカソードの各電極を接合して構成され、アノードに
水素、カソードに酸素を供給して電気化学反応により発
電する装置である。各電極で生じる電気化学反応を下記
に示す。
2. Description of the Related Art A solid polymer electrolyte fuel cell uses an ion exchange membrane as an electrolyte, and has an anode and a cathode each having a catalyst layer and a gas diffusion layer containing a conductive porous material on both sides of the ion exchange membrane. This device is configured by joining electrodes and supplies hydrogen to the anode and oxygen to the cathode to generate power by an electrochemical reaction. The electrochemical reaction occurring at each electrode is shown below.

【0003】アノード:H2→2H++2e カソード:1/2O2+2H++2e→H2O 全反応: H2+1/2O2→H2O この反応式から明らかなように、各電極の反応は、活物
質であるガス(水素または酸素)、プロトン(H+)お
よび電子(e)の授受が同時におこなうことができる三
相界面でのみ進行する。
Anode: H 2 → 2H + + 2e Cathode: 1 / 2O 2 + 2H + + 2e → H 2 O Total reaction: H 2 + 1 / 2O 2 → H 2 O As is clear from this reaction formula, the reaction of each electrode is Proceeds only at the three-phase interface where the transfer of the gas (hydrogen or oxygen), proton (H + ), and electron (e) as the active material can be performed simultaneously.

【0004】燃料電池の電極は、図5に示されるよう
に、触媒粒子51と固体高分子電解質52とが混ざり合
ってこれらが三次元に分布するとともに、内部に複数の
細孔54が形成された多孔性の触媒層56と、導電性多
孔質体57を含むガス拡散層58よりなる。
As shown in FIG. 5, the electrode of the fuel cell has a catalyst particle 51 and a solid polymer electrolyte 52 which are mixed and distributed three-dimensionally and have a plurality of pores 54 formed therein. And a gas diffusion layer 58 containing a conductive porous body 57.

【0005】ガス拡散層58は、触媒層56の表層に一
定の空間を設けて、電池外部から供給される活物質であ
る酸素、水素を触媒層56の表層まで運ぶ流路の確保、
およびカソードの触媒層で生成された水を触媒層56の
表層から電池の系外に排出する流路を確保する役目を担
っている。
The gas diffusion layer 58 is provided with a certain space in the surface layer of the catalyst layer 56 to secure a flow path for transporting oxygen and hydrogen, which are active materials supplied from outside the battery, to the surface layer of the catalyst layer 56.
Also, it has a role of securing a flow path for discharging water generated in the catalyst layer of the cathode from the surface layer of the catalyst layer 56 to the outside of the battery system.

【0006】一方触媒層56は、触媒粒子51が電子伝
導チャンネルを形成し、固体電解質52がプロトン伝導
チャンネルを形成し、細孔54が触媒層56の表層まで
運ばれた酸素または水素を電極の深部にまで供給し、電
極(カソード)の深部で生成された水を電極の表層にま
で排出する供給排出チャンネルを形成している。そして
触媒層56内にこれら3つのチャンネルが三次元的に広
がり、ガス、プロトン(H+)および電子(e)の授受
を同時におこなうことのできる三相界面が無数に形成さ
れて、電極反応の場を提供している。
On the other hand, in the catalyst layer 56, the catalyst particles 51 form an electron conduction channel, the solid electrolyte 52 forms a proton conduction channel, and the pores 54 transfer oxygen or hydrogen carried to the surface of the catalyst layer 56 to the electrode. A supply / discharge channel is formed to supply water to a deep part and discharge water generated at a deep part of the electrode (cathode) to a surface layer of the electrode. Then, these three channels are three-dimensionally spread in the catalyst layer 56, and a myriad of three-phase interfaces capable of simultaneously transmitting and receiving gas, protons (H + ) and electrons (e) are formed. Offers a place.

【0007】なお、図5において、53はPTFE(ポ
リテトラフルオロエチレン)粒子を示し、触媒層56の
細孔54内および表層に撥水性を付与する役目を担う。
さらに、55はイオン交換膜を示す。ここで、電解質と
して働くイオン交換膜55は、含水状態において良好な
プロトン伝導度を示すため、電池内を湿潤状態に保ちな
がら運転する必要がある。そのため、イオン交換膜55
が乾燥しないように、アノードおよびカソードに供給さ
れる水素および酸素を適度に加湿することにより、イオ
ン交換膜の水分管理がなされている。
In FIG. 5, reference numeral 53 denotes PTFE (polytetrafluoroethylene) particles, which serve to impart water repellency to the inside of the pores 54 of the catalyst layer 56 and to the surface layer.
Further, 55 indicates an ion exchange membrane. Here, since the ion exchange membrane 55 serving as an electrolyte shows good proton conductivity in a water-containing state, it must be operated while keeping the inside of the battery in a wet state. Therefore, the ion exchange membrane 55
The moisture of the ion exchange membrane is controlled by appropriately humidifying the hydrogen and oxygen supplied to the anode and the cathode so as not to dry.

【0008】[0008]

【発明が解決しようとする課題】固体高分子電解質型燃
料電池では、触媒層内の細孔が酸素または水素の供給チ
ャンネルを形成しているために、これら活物質である供
給ガスの加湿により、触媒層表層に水が溜まり、その水
が細孔のガス供給の入り口を塞ぎ、細孔内へのガスの供
給を妨げたり、細孔内に水が溜まり、触媒層の三相界
面、特に電極深部への活物質の供給が滞り、実際に働く
作用面積が減り、電池性能が十分取り出せないというこ
とがある。このために、導電性の多孔質体を含むガス拡
散層および触媒層に、適度な撥水性を付与して、水が溜
まらないようにしている。
In a solid polymer electrolyte fuel cell, the pores in the catalyst layer form a supply channel for oxygen or hydrogen. Water accumulates in the surface layer of the catalyst layer, and the water blocks the gas supply inlet of the pores, hinders the supply of gas into the pores, or accumulates water in the pores. In some cases, the supply of the active material to the deep portion is interrupted, the working area actually working is reduced, and the battery performance cannot be sufficiently taken out. For this reason, a suitable water repellency is imparted to the gas diffusion layer and the catalyst layer containing the conductive porous body so that water does not collect.

【0009】導電性多孔質体への撥水性の付与は、例え
ば一般に用いられる炭素繊維の焼結体であるカーボンペ
ーパー(厚み1.5mm)の場合、PTFE粒子分散溶
液にこのカーボンペーパーを浸漬させてPTFE粒子を
含ませた後、窒素雰囲気中で、約350℃、15分間焼
成することで、炭素繊維表面にPTFEをコートして行
っている。
For imparting water repellency to the conductive porous body, for example, in the case of carbon paper (thickness: 1.5 mm) which is a commonly used sintered body of carbon fiber, the carbon paper is immersed in a PTFE particle dispersion solution. After the PTFE particles are contained, the carbon fiber is coated with PTFE by baking at 350 ° C. for 15 minutes in a nitrogen atmosphere.

【0010】一方、触媒層の撥水性の付与は、触媒粒子
であるカーボン粒子担体に白金などの貴金属粒子を高分
散に担持させた触媒担持カーボン粒子と固体高分子電解
質溶液よりなる触媒層のペーストにPTFE粒子分散溶
液混入することによりなされる。
On the other hand, the water repellency of the catalyst layer is imparted to the catalyst layer by dispersing a noble metal particle such as platinum on a carbon particle carrier, which is a catalyst particle, in a highly dispersed manner, and a catalyst layer paste comprising a solid polymer electrolyte solution and a solid polymer electrolyte solution. By mixing a PTFE particle dispersion solution into the mixture.

【0011】しかし、現状は触媒層および導電性多孔質
体の撥水性は充分ではなく、電池の高出力化をはかるた
めに、高温、加湿のガスを供給してイオン交換膜のプロ
トン伝導度を向上させようとするとすると、かえって触
媒層の細孔内および表層に水が溜まり、触媒層の三相界
面、特に電極深部への活物質の供給が滞り、実際に働く
作用面積が減り、電池性能が十分引き出せないという問
題がある。特に、カソードでは反応に伴い水が生成する
ために、細孔内に水が溜まりやすい傾向にある。
However, at present, the water repellency of the catalyst layer and the conductive porous body is not sufficient. To increase the output of the battery, a high-temperature, humidified gas is supplied to reduce the proton conductivity of the ion exchange membrane. If it were to be improved, water would instead accumulate in the pores of the catalyst layer and in the surface layer, and the supply of active material to the three-phase interface of the catalyst layer, especially to the deep part of the electrode, would be reduced, and the working area that would actually work was reduced, and the battery performance was reduced. There is a problem that can not be pulled out enough. In particular, water is likely to accumulate in the fine pores since water is generated in the cathode due to the reaction.

【0012】これを回避するために、例えば触媒層で
は、触媒層を作製時に付与するPTFE粒子分散溶液の
混合比を増やして、触媒層の撥水性を高めて、細孔内お
よび表層に水が溜まりにくくしてやればよいのだが、P
TFE粒子の電極内の体積増加分だけ、触媒担持カーボ
ン、固体高分子電解質および細孔の占める割合が減り、
電子伝導チャンネル、プロトン伝導チャンネル、酸素ま
たは水素および生成物である水の供給排出チャンネルの
形成を阻害することになり、かえって電池の出力が低下
するという問題がある。
In order to avoid this, for example, in the case of the catalyst layer, the mixing ratio of the PTFE particle dispersion solution applied at the time of preparation of the catalyst layer is increased to increase the water repellency of the catalyst layer, and water is formed in the pores and in the surface layer. You should make it hard to accumulate, but P
The proportion of the catalyst-supporting carbon, the solid polymer electrolyte and the pores is reduced by the volume increase in the electrode of the TFE particles,
There is a problem that the formation of an electron conduction channel, a proton conduction channel, a supply / discharge channel of oxygen or hydrogen and water as a product is inhibited, and the output of the battery is rather reduced.

【0013】また、導電性多孔質体の撥水性の付与を付
与する際のPTFE分散溶液の塗布量を増やせばよいの
だが、あまり増やすとPTFE粒子が導電性多孔質体の
孔を塞ぎ、かえってガスの供給を阻害することになる。
Further, it is only necessary to increase the application amount of the PTFE dispersion solution when imparting water repellency to the conductive porous body. However, if the amount is too large, the PTFE particles close the pores of the conductive porous body, and This will hinder gas supply.

【0014】以上に鑑み、本発明は、上記問題の発生を
防ぎながら燃料電池用電極の撥水性を改善して、燃料電
池電極の高性能化を図るものである。
In view of the above, an object of the present invention is to improve the water repellency of a fuel cell electrode while preventing the above-mentioned problems from occurring, thereby improving the performance of the fuel cell electrode.

【0015】[0015]

【課題を解決するための手段】本願第1の発明の燃料電
池用電極は、固体高分子電解質と触媒粒子と有孔性樹脂
とを含む触媒層を有することを特徴とする。
Means for Solving the Problems The fuel cell electrode of the first invention of the present application is characterized in that it has a catalyst layer containing a solid polymer electrolyte, catalyst particles and a porous resin.

【0016】本願第2の発明の燃料電池用電極は、固体
高分子電解質と触媒粒子とを含む触媒層を有する燃料電
池用電極において、触媒層の細孔相当部または/および
表面に有孔性樹脂を備えていることを特徴とする。
A fuel cell electrode according to a second aspect of the present invention is a fuel cell electrode having a catalyst layer containing a solid polymer electrolyte and catalyst particles, wherein the catalyst layer has a porous equivalent portion and / or a porous surface. It is characterized by having a resin.

【0017】本願第3の発明の燃料電池用電極は、固体
高分子電解質と触媒粒子とを含む触媒層と、導電性多孔
質体を含むガス拡散層とを備える燃料電池用電極におい
て、触媒層および導電性多孔質体が有孔性樹脂を備えて
いることを特徴とする。
According to a third aspect of the present invention, there is provided a fuel cell electrode comprising a catalyst layer containing a solid polymer electrolyte and catalyst particles, and a gas diffusion layer containing a conductive porous material. And the conductive porous body includes a porous resin.

【0018】この場合、導電性多孔質体は、炭素材料よ
りなることがより好ましい。
In this case, the conductive porous body is more preferably made of a carbon material.

【0019】また、上記いずれの発明の燃料電池用電極
においても、樹脂を溶解した溶液の溶媒aを、前記樹脂
に対して不溶性で、かつ溶媒aと相溶性のある溶媒bで
置換する工程を経て得られた有孔性樹脂を使用すること
がより好ましい。
Further, in any of the above fuel cell electrodes of the invention, the step of replacing the solvent a in the solution in which the resin is dissolved with the solvent b insoluble in the resin and compatible with the solvent a is performed. It is more preferable to use the porous resin obtained through the above.

【0020】さらに、上記いずれの構成の電極において
も、固体高分子電解質としてはイオン交換機能を有する
ものを用い、有孔性樹脂としてはイオン交換機能を有さ
ない撥水性のものを用いるのが良い。そして、上記有孔
性樹脂を構成する樹脂としては、フッ素樹脂がより好ま
しく、この中でもポリフッ化ビニリデン(PVdF)系
樹脂を用いるのが好ましい。
Furthermore, in any of the above-mentioned electrodes, it is preferable to use a solid polymer electrolyte having an ion exchange function as the solid polymer electrolyte and a water-repellent electrode having no ion exchange function as the porous resin. good. And as a resin which comprises the said porous resin, a fluororesin is more preferable, and among them, it is preferable to use a polyvinylidene fluoride (PVdF) type resin.

【0021】本願発明の製造方法は、上記本願発明の燃
料電池用電極を製造するための方法であって、固体高分
子電解質と触媒粒子とを含んでなる触媒層に、樹脂を溶
媒aで溶解した溶液を含ませた後、前記樹脂に対して不
溶性で、かつ溶媒aと相溶性のある溶媒bにこれを浸漬
させることを特徴とする。
The manufacturing method of the present invention is a method for manufacturing the fuel cell electrode of the present invention, wherein a resin is dissolved in a solvent a in a catalyst layer containing a solid polymer electrolyte and catalyst particles. After the above solution is contained, this is immersed in a solvent b which is insoluble in the resin and compatible with the solvent a.

【0022】この場合、燃料電池用電極が、固体高分子
電解質と触媒粒子を含んでなる触媒層と、導電性多孔質
体とが積層されてなる構造を有する場合には、触媒層と
導電性多孔質体を含むガス拡散層との積層体に、樹脂を
溶媒aに溶解した溶液を含ませた後、前記樹脂に対して
不溶性で、かつ溶媒aと相溶性のある溶媒bにこの積層
体を浸漬させて製造するのが良い。
In this case, when the fuel cell electrode has a structure in which a catalyst layer containing a solid polymer electrolyte and catalyst particles and a conductive porous body are laminated, the catalyst layer and the conductive layer After a solution obtained by dissolving a resin in a solvent a is included in a laminate with a gas diffusion layer containing a porous body, the laminate is dissolved in a solvent b insoluble in the resin and compatible with the solvent a. It is good to manufacture by immersion.

【0023】[0023]

【発明の実施の形態】以下、本発明に係る燃料電池用電
極の構造例を図で示しながら説明することによって、本
発明についてさらに具体的に説明する。図2、3、4
は、本発明に係る燃料電池用電極の構造例を示す模式図
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to drawings showing an example of the structure of a fuel cell electrode according to the present invention. Figures 2, 3, 4
FIG. 1 is a schematic diagram showing a structural example of a fuel cell electrode according to the present invention.

【0024】これらの図に示されるように、本発明でい
う固体高分子電解質と触媒粒子を含んでなる触媒層は、
触媒粒子21、31、41と固体高分子電解質22、3
2、42とが混ざり合ってこれらが三次元に分布すると
ともに、内部に複数の細孔23、33、43が形成され
た多孔性の触媒層を母体とするものであって、基本的に
は、触媒粒子は電子伝導チャンネルを形成し、固体電解
質はプロトン伝導チャンネルを形成し、細孔は酸素また
は水素および生成物である水の供給排出チャンネルを形
成するものである。
As shown in these figures, the catalyst layer comprising the solid polymer electrolyte and the catalyst particles according to the present invention comprises:
Catalyst particles 21, 31, 41 and solid polymer electrolytes 22, 3
2, 42 are mixed with each other and distributed three-dimensionally, and a porous catalyst layer having a plurality of pores 23, 33, 43 formed therein is used as a base material. The catalyst particles form the electron conduction channel, the solid electrolyte forms the proton conduction channel, and the pores form the supply and discharge channels of oxygen or hydrogen and the product water.

【0025】図2に示す燃料電池用電極は、触媒層の細
孔相当部に三次元連通性の孔を多数有する有孔性樹脂2
4を備えるものであって、図3に示す燃料電池用電極
は、触媒層の表面に三次元連通性の孔を多数有する有孔
性樹脂34を備えるものであって、図4に示す燃料電池
用電極は、触媒層の細孔相当部および表面に三次元連通
性の孔を多数有する有孔性樹脂44を備え、触媒層およ
び導電性の多孔質体が有孔性樹脂を備えるものである。
The fuel cell electrode shown in FIG. 2 is made of a porous resin 2 having a large number of three-dimensionally communicating holes in the portions corresponding to the pores of the catalyst layer.
The fuel cell electrode shown in FIG. 3 is provided with a porous resin 34 having a large number of three-dimensionally communicating holes on the surface of the catalyst layer, and the fuel cell electrode shown in FIG. The electrode for use is provided with a porous resin 44 having a large number of three-dimensionally communicating holes on the surface corresponding to the pores of the catalyst layer and on the surface, and the catalyst layer and the conductive porous body are provided with the porous resin. .

【0026】なお、細孔に有孔性樹脂が配されることに
よって細孔がなくなるため、この部分を細孔相当部と呼
んでいる。また、図において、25、35、45はイオ
ン交換膜を、26、36、46は多孔性の導電性基材カ
ーボン繊維の焼結体よりなるカーボン電極基材を示す。
また、必要に応じては、従来通り触媒層内にPTFE粒
子を付与することもできる。
Since the pores are eliminated by disposing the porous resin in the pores, this portion is called a pore equivalent portion. In the figures, reference numerals 25, 35, and 45 denote ion exchange membranes, and reference numerals 26, 36, and 46 denote carbon electrode substrates made of a sintered body of a porous conductive substrate carbon fiber.
If necessary, PTFE particles can be provided in the catalyst layer as before.

【0027】本発明によれば、触媒層の細孔相当部また
は/および表層に有孔性のイオン交換機能のない樹脂を
配することで、細孔相当部または/および表層の撥水性
が高くなる。そして、これによって、触媒層の表層に水
が溜まって細孔が覆い塞がれるのが防がれ、また細孔内
に水が滞ることも防がれるために、活物質であるガスが
触媒層の三相界面へ澱むことなく供給され、触媒層の高
活性化がはかられる。
According to the present invention, by disposing a porous resin having no porous ion-exchange function in a portion corresponding to the pores of the catalyst layer and / or the surface layer, the water repellency of the portion corresponding to the pores and / or the surface layer is increased. Become. This prevents water from accumulating in the surface layer of the catalyst layer and covering and closing the pores, and also prevents water from stagnating in the pores. The catalyst layer is supplied without stagnation to the three-phase interface of the layer, and the catalyst layer can be highly activated.

【0028】なお、図2のように細孔内のみに、または
図3のように表層のみに有孔性樹脂を配しても本発明の
効果は得られるが、図4のように、触媒層の母体の細孔
相当部内および表層に有孔性樹脂を配した方がより高活
性化がはかられる。
The effect of the present invention can be obtained by arranging the porous resin only in the pores as shown in FIG. 2 or only in the surface layer as shown in FIG. 3, but as shown in FIG. Higher activation can be achieved by arranging a porous resin in the portion corresponding to the pores of the matrix of the layer and in the surface layer.

【0029】また有孔性樹脂は、これらの図に示される
ように触媒層母体の表層の全面すべてに配してもよい
が、表層の一部、または/および細孔内の一部に配して
もよい。
The porous resin may be disposed on the entire surface of the catalyst layer matrix as shown in these figures, but may be disposed on a part of the surface layer and / or a part of the pores. May be.

【0030】本発明の電極において用いられる触媒粒子
としては、白金、ロジウム、ルテニウム、イリジウム、
パラジウム、オスニウムなどの白金族金属およびその合
金粒子、またはこれらの触媒を担持した触媒担持カーボ
ンが適しており、固体高分子電解質としては、イオン交
換樹脂からなるものが好ましく、パーフルオロスルフォ
ン酸またはスチレン−ジビニルベンゼン系のスルフォン
酸型固体高分子電解質が好ましい。
The catalyst particles used in the electrode of the present invention include platinum, rhodium, ruthenium, iridium,
Palladium, platinum group metals such as osnium and alloy particles thereof, or catalyst-carrying carbon supporting these catalysts are suitable, and the solid polymer electrolyte is preferably made of an ion-exchange resin, and is composed of perfluorosulfonic acid or styrene. -A divinylbenzene-based sulfonic acid type solid polymer electrolyte is preferred.

【0031】ここで、活物質の供給、排出がスムーズに
行われるように有孔性樹脂の細孔は連続気泡が好まし
い。また、孔径としては、平均孔径1μm以下、さらに
好ましくは0.5μm以下であることが、有効性樹脂の
多孔度は45%以上であることが、ガスの供給、水の排
出などの面で好ましい。緻密な連続気泡が得られる有孔
性ポリマーの製法として溶媒抽出法を用いることが好ま
しい。すなわち、樹脂を溶解した溶液の溶媒aを、前記
樹脂に対して不溶性で、かつ溶媒aと相溶性のある溶媒
bで置換することにより、樹脂を溶解した溶液中の溶媒
aを抽出して、溶媒aが除去された部分が孔となって有
孔性樹脂を得るものである。
Here, the pores of the porous resin are preferably open cells so that the active material can be smoothly supplied and discharged. The average pore diameter is preferably 1 μm or less, more preferably 0.5 μm or less, and the porosity of the effective resin is preferably 45% or more in terms of gas supply and water discharge. . It is preferable to use a solvent extraction method as a method for producing a porous polymer from which dense open cells can be obtained. That is, by replacing the solvent a of the solution in which the resin is dissolved with a solvent b which is insoluble in the resin and compatible with the solvent a, the solvent a in the solution in which the resin is dissolved is extracted, The portion from which the solvent a has been removed becomes pores to obtain a porous resin.

【0032】ここで、本発明に用いる樹脂は、ポリ塩化
ビニル、ポリアクリロニトリル、ポリエチレンオキシ
ド、ポリプロピレンオキシド等のポリエーテル、ポリア
クリロニトリル、フッ化ビニリデン重合体、ポリ塩化ビ
ニリデン、ポリメチルメタクリレート、ポリメチルアク
リレート、ポリビニルアルコール、ポリメタクリロニト
リル、ポリビニルアセテート、ポリビニルピロリドン、
ポリエチレンイミン、ポリブタジエン、ポリスチレン、
ポリイソプレン、もしくはこれらの誘導体を、単独で、
あるいは混合して用いてもよく、また、上記樹脂を構成
する各種モノマーを共重合させた樹脂を用いてもよい
が、好ましくは撥水性の高いフッ素樹脂、例えば三フッ
化塩化エチレン共重合体(PCTFE)、フッ化ビニリ
デン重合体(PVdF)、フッ化ビニル重合体(PV
F)などの含フッ素ホモポリマーまたは、エチレン・四
フッ化エチレン共重合体(ETFE)、四フッ化エチレ
ン・六フッ化プロピレン共重合体(EPE)、フッ化ビ
ニリデン共重合体などの含フッ素コポリマーが好ましい
し、これらの混合物でもよい。
The resins used in the present invention include polyvinyl chloride, polyacrylonitrile, polyethers such as polyethylene oxide and polypropylene oxide, polyacrylonitrile, vinylidene fluoride polymer, polyvinylidene chloride, polymethyl methacrylate, and polymethyl acrylate. , Polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinylpyrrolidone,
Polyethyleneimine, polybutadiene, polystyrene,
Polyisoprene or a derivative thereof alone,
Alternatively, they may be used as a mixture, or a resin obtained by copolymerizing various monomers constituting the above resin may be used. However, a fluororesin having high water repellency, for example, an ethylene trifluoride chloride copolymer ( PCTFE), vinylidene fluoride polymer (PVdF), vinyl fluoride polymer (PV
F) or a fluorine-containing copolymer such as ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / tetrafluoroethylene / propylene hexafluoride copolymer (EPE), or vinylidene fluoride copolymer Or a mixture thereof.

【0033】そして、先の溶媒抽出法による有効フッ素
樹脂作製の際に、微細で均一な孔が得られることより、
PVdFホモポリマー、フッ化ビニリデン・六フッ化プ
ロピレン共重合体(P(VdF−HFP))または、フ
ッ化ビニリデン・四フッ化エチレン共重合体(P(Vd
F−TFP))などのポリフッ化ビニリデン(PVd
F)系樹脂が好ましい。中でも、撥水性に優れたフッ化
ビニリデン重合体(PVdF)または柔らかくて取り扱
いが容易なフッ化ビニリデン・六フッ化プロピレン共重
合体(P(VdF−HFP))が好ましい。
In the preparation of the effective fluororesin by the solvent extraction method, fine and uniform pores are obtained.
PVdF homopolymer, vinylidene fluoride-propylene hexafluoride copolymer (P (VdF-HFP)) or vinylidene fluoride-tetrafluoroethylene copolymer (P (Vd
F-TFP)) and other polyvinylidene fluorides (PVd
F) -based resins are preferred. Among them, a vinylidene fluoride polymer (PVdF) excellent in water repellency or a vinylidene fluoride-propylene hexafluoride copolymer (P (VdF-HFP)) which is soft and easy to handle is preferable.

【0034】樹脂を溶解する溶媒aとしては、樹脂を溶
解するものであればよく、ジメチルホルムアミド、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、エチルメチルカ
ーボネート等の炭酸エステル、ジメチルエーテル、ジエ
チルエーテル、エチルメチルエーテル、テトラヒドロフ
ラン等のエーテル、ジメチルアセトアミド、1−メチル
−ピロリジノン、n−メチル−ピロリドン等が挙げられ
る。
The solvent a for dissolving the resin may be any solvent capable of dissolving the resin, and may be a carbonate such as dimethylformamide, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, diethyl ether, or the like. Examples thereof include ethers such as ethyl methyl ether and tetrahydrofuran, dimethylacetamide, 1-methyl-pyrrolidinone, and n-methyl-pyrrolidone.

【0035】抽出用溶媒bとしては、水または水とアル
コールの混合溶液が安価で好ましい。
As the solvent b for extraction, water or a mixed solution of water and alcohol is preferred at a low cost.

【0036】これらの組み合わせにおいて、ポリフッ化
ビニリデン(PVdF)または、P(VdF−HFP)
をn−メチルピロリドン(NMP)に溶解させたものを
水または水とアルコールの混合溶液で抽出したものが、
撥水性、孔径の均一性などの面で好ましい。
In these combinations, polyvinylidene fluoride (PVdF) or P (VdF-HFP)
Is dissolved in n-methylpyrrolidone (NMP) and extracted with water or a mixed solution of water and alcohol,
It is preferable in terms of water repellency, uniformity of pore size, and the like.

【0037】このような本発明の燃料電池用電極は、例
えば、触媒担持カーボン粒子と固体高分子電解質溶液お
よび必要に応じてはPTFE粒子分散溶液を加えた触媒
層のペーストを高分子フィルムに製膜(一般に膜厚3〜
30μm)した後、加熱乾燥する方法等により作製され
た従来の触媒層、または、カーボン粒子担体に白金など
の貴金属粒子を高分散に担持させた触媒担持カーボン粒
子および必要に応じてはPTFE粒子分散溶液を加えた
触媒層のペーストを高分子フィルム上に製膜(一般に膜
厚3〜30μm)して加熱乾燥した後、 固体高分子電
解質溶液をこの上から塗布、含浸させる方法により作製
された従来の触媒層に、樹脂を溶媒aにより溶解した溶
液を、塗布または浸漬などによって含ませた後に、前記
樹脂に対して不溶性で、かつ溶媒aと相溶性のある溶媒
bで溶媒aを置換することにより得ることができる。ま
たは、触媒担持カーボン粒子と固体高分子電解質溶液お
よび必要に応じてはPTFE粒子分散溶液を加えた触媒
層のペーストを導電性の多孔質体上に製膜(一般に膜厚
3〜30μm)した後、加熱乾燥する方法等により作製
された従来の電極、または、カーボン粒子担体に白金な
どの貴金属粒子を高分散に担持させた触媒担持カーボン
粒子および必要に応じてはPTFE粒子分散溶液を加え
た触媒層のペーストを導電性の多孔質体上に製膜(一般
に膜厚3〜30μm)して加熱乾燥した後、 固体高分
子電解質溶液をこの上から塗布、含浸させる方法により
作製された従来の電極に、樹脂を溶媒aにより溶解した
溶液を、塗布または浸漬などによって含ませた後に、前
記樹脂に対して不溶性で、かつ溶媒aと相溶性のある溶
媒bで溶媒aを置換することにより得ることができる。
The fuel cell electrode of the present invention can be prepared, for example, by forming a catalyst layer paste containing a catalyst-supporting carbon particle, a solid polymer electrolyte solution and, if necessary, a PTFE particle dispersion solution into a polymer film. Film (generally 3 to
30 μm) and then heating and drying, or a conventional catalyst layer, or a catalyst-supporting carbon particle in which a noble metal particle such as platinum is supported on a carbon particle carrier in a highly dispersed state and, if necessary, a PTFE particle dispersion. A conventional method was prepared by forming a catalyst layer paste to which a solution was added onto a polymer film (generally a thickness of 3 to 30 μm), heating and drying, and then applying and impregnating a solid polymer electrolyte solution from above. After a solution obtained by dissolving a resin in a solvent a is contained in the catalyst layer by coating or dipping, the solvent a is replaced with a solvent b insoluble in the resin and compatible with the solvent a. Can be obtained by Alternatively, a paste of the catalyst layer to which the catalyst-supporting carbon particles and the solid polymer electrolyte solution and, if necessary, the PTFE particle dispersion solution are added, is formed on a conductive porous body (generally, a film thickness of 3 to 30 μm). , A conventional electrode prepared by a method of heating and drying, or a catalyst containing a catalyst-supporting carbon particle in which a noble metal particle such as platinum is supported on a carbon particle carrier in a highly dispersed state and, if necessary, a PTFE particle dispersion solution. A conventional electrode manufactured by a method in which a layer paste is formed on a conductive porous body (generally, a film thickness of 3 to 30 μm), dried by heating, and then coated and impregnated with a solid polymer electrolyte solution. Then, after a solution obtained by dissolving the resin in the solvent a is included by coating or dipping, the solvent a is placed in a solvent b insoluble in the resin and compatible with the solvent a. It can be obtained by.

【0038】特に、上記の後者の作製方法によると、固
体高分子電解質と触媒粒子とを含む触媒層と、導電性多
孔質体を含むガス拡散電極とを備えた燃料電池用電極に
おいて、触媒層および導電性多孔質体が有孔性樹脂を含
むことを特徴とするため、高い活性を持つ燃料電池用電
極が期待できる。また、この場合、高い撥水性を有する
フッ素樹脂を用いれば、導電性多孔質体への撥水性の付
与をあらかじめ行う必要がなく、導電性多孔質体に配さ
れた有孔性樹脂がその役割を担う。
In particular, according to the latter manufacturing method, in a fuel cell electrode provided with a catalyst layer containing a solid polymer electrolyte and catalyst particles and a gas diffusion electrode containing a conductive porous material, Since the conductive porous body contains a porous resin, a fuel cell electrode having high activity can be expected. Further, in this case, if a fluororesin having high water repellency is used, it is not necessary to previously impart water repellency to the conductive porous body, and the porous resin disposed on the conductive porous body plays a role. Carry.

【0039】ここで、導電性多孔質体としては、発泡ニ
ッケル、チタン繊維焼結体などを用いることができる
が、導電性、重量などの面から多孔質炭素基材が好まし
く、炭素繊維の焼結体などがよい。
Here, as the conductive porous body, nickel foam, titanium fiber sintered body, or the like can be used, but a porous carbon substrate is preferable in terms of conductivity, weight, etc. Good union etc.

【0040】[0040]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments.

【0041】[実施例1]白金担持カーボン(田中貴金
属製、10V30E:Valcan XC−72に白金
を30wt%担持)と固体高分子電解質溶液(アルドリ
ッチ社製、ナフィオン5wt%溶液)よりなる触媒層の
ペーストを、導電性多孔質体のカーボンシート(0.5
mm)上に塗布して、窒素雰囲気中で120℃、1Hr
乾燥して得た電極に、PVdF/NMP溶液(PVdF
濃度:15wt%)を真空含浸させた後、水の中に10
分間浸漬して、燃料電池用電極Aを得た。
Example 1 A catalyst layer comprising platinum-supported carbon (Tanaka Kikinzoku, 10V30E: 30 wt% platinum supported on Valcan XC-72) and a solid polymer electrolyte solution (Aldrich, Nafion 5 wt% solution) The paste is applied to a conductive porous carbon sheet (0.5
mm) at 120 ° C. for 1 hour in a nitrogen atmosphere.
A PVdF / NMP solution (PVdF
(Concentration: 15 wt%) in vacuum and then impregnated in water.
The electrode was immersed in the fuel cell for 1 minute to obtain a fuel cell electrode A.

【0042】電極Aは、触媒層の細孔内および表層、さ
らに導電性多孔質体に有効性のPVdF樹脂が配された
構造をしている。
The electrode A has a structure in which effective PVdF resin is disposed in the pores and the surface layer of the catalyst layer, and furthermore, the conductive porous body.

【0043】電極Aの白金量は、約1.0mg/cm2
となるように、ペースト作製時の白金担持カーボンの量
を調整した。
The platinum amount of the electrode A is about 1.0 mg / cm 2
The amount of platinum-carrying carbon during the preparation of the paste was adjusted such that

【0044】さらに、電極Aをホットプレス(140
℃)にてイオン交換膜(デュポン社製、ナフィオン、膜
厚約50μm)の両面に接合し、燃料電池の単セルに組
んでセルAを得た。
Further, the electrode A is hot-pressed (140
C.) and bonded to both surfaces of an ion exchange membrane (Dupont, Nafion, film thickness: about 50 μm), and assembled into a single cell of a fuel cell to obtain a cell A.

【0045】[実施例2]白金担持カーボン(田中貴金
属製、10V30E:Valcan XC−72に白金
を30wt%担持)と固体高分子電解質溶液(アルドリ
ッチ社製、ナフィオン5wt%溶液)よりなるペースト
を、高分子フィルム(PFA)上に塗布して、約1時間
自然乾燥して得た触媒層を、ホットプレス(140℃)
にてイオン交換膜(デュポン社製、ナフィオン、膜厚約
50μm)の両面に接合し、触媒層−イオン交換膜接合
体を得た。さらに、触媒層表面にPVdF/NMP溶液
(PVdF濃度:15wt%)をはけで塗布した後、水
の中に10分間浸漬して、触媒層B−イオン交換膜接合
体を得た。
Example 2 A paste composed of platinum-supported carbon (Tanaka Kikinzoku, 10V30E: platinum supported on Valcan XC-72 at 30 wt%) and a solid polymer electrolyte solution (Aldrich, Nafion, 5 wt% solution) was used. The catalyst layer obtained by coating on a polymer film (PFA) and air-drying for about 1 hour is hot-pressed (140 ° C.)
Was bonded to both surfaces of an ion exchange membrane (manufactured by DuPont, Nafion, film thickness: about 50 μm) to obtain a catalyst layer-ion exchange membrane assembly. Further, a PVdF / NMP solution (PVdF concentration: 15 wt%) was applied to the surface of the catalyst layer with a brush, and then immersed in water for 10 minutes to obtain a catalyst layer B-ion exchange membrane assembly.

【0046】触媒層Bは、主に表層に有孔性のPVdF
樹脂が配された構造を有している。
The catalyst layer B is mainly composed of a porous PVdF
It has a structure in which a resin is arranged.

【0047】触媒層B−イオン交換膜接合体の片面の白
金量は、約約1.0mg/cm2となるように、ペース
ト作製時の白金担持カーボンの量を調整した。
The amount of platinum-carrying carbon during the preparation of the paste was adjusted so that the amount of platinum on one side of the catalyst layer B-ion exchange membrane assembly was about 1.0 mg / cm 2 .

【0048】この接合体の両面にガス拡散層となる撥水
性を付与した導電性多孔質体のカーボンシート(0.5
mm)をホットプレスにて接合し、燃料電池の単セルに
組んでセルBを得た。 [比較例1]白金担持カーボン(田中貴金属製、10V
30E:Valcan XC−72に白金を30wt%
担持)と固体高分子電解質溶液(アルドリッチ社製、ナ
フィオン5wt%溶液)およびPTFE粒子分散溶液
(三井デュポンフロロケミカル社製、テフロン30J)
よりなるペーストを、撥水性を付与した導電性多孔質体
のカーボン電極基材(0.5mm)上に塗布して、窒素
雰囲気中で120℃、1Hr乾燥して燃料電池用電極C
を得た。
A conductive porous carbon sheet (0.5
mm) by hot pressing and assembled into a single cell of a fuel cell to obtain a cell B. [Comparative Example 1] Platinum-supporting carbon (Tanaka Kikinzoku, 10 V
30E: 30 wt% platinum in Valcan XC-72
Supported), a solid polymer electrolyte solution (manufactured by Aldrich, Nafion 5 wt% solution) and a PTFE particle dispersion solution (manufactured by Du Pont-Mitsui Fluorochemicals, Teflon 30J)
The electrode paste for fuel cell was coated on a conductive porous carbon electrode substrate (0.5 mm) having water repellency and dried at 120 ° C. for 1 hour in a nitrogen atmosphere.
I got

【0049】電極Cの白金量は、約約1.0mg/cm
2となるように、ペースト作製時の白金担持カーボンの
量を調整した。
The platinum amount of the electrode C is about 1.0 mg / cm
So that 2 was adjusted supported platinum amount of carbon during the paste producing.

【0050】さらに、電極Cをホットプレス(140
℃)にてイオン交換膜(デュポン社製、ナフィオン、膜
厚約50μm)の両面に接合し、燃料電池の単セルに組
んでセルCを得た。
Further, the electrode C is hot-pressed (140
(C), and bonded to both surfaces of an ion exchange membrane (manufactured by DuPont, Nafion, film thickness: about 50 μm), and assembled into a single cell of a fuel cell to obtain a cell C.

【0051】[比較例2]白金担持カーボン(田中貴金
属製、10V30E:Valcan XC−72に白金
を30wt%担持)と固体高分子電解質(アルドリッチ
社製、ナフィオン5wt%溶液)およびPTFE粒子分
散溶液(三井デュポンフロロケミカル社製,テフロン3
0J)よりなるペーストを、高分子フィルム(PFA)
上に塗布して,約1時間自然乾燥して得た電極を、ホッ
トプレス(140℃)にてイオン交換膜(デュポン社
製、ナフィオン、膜厚約50μm)の両面に接合し、触
媒層D−イオン交換膜接合体を得た。触媒層D−イオン
交換膜接合体の片面の白金量は、約約1.0mg/cm
2となるように、ペースト作製時の白金担持カーボンの
量を調整した。
[Comparative Example 2] Platinum-supported carbon (Tanaka Kikinzoku, 10V30E: 30 wt% platinum supported on Valcan XC-72), solid polymer electrolyte (Aldrich, Nafion 5 wt% solution) and PTFE particle dispersion solution ( Teflon 3 manufactured by Mitsui Dupont Fluorochemicals
0J) is applied to a polymer film (PFA)
The electrode obtained by coating on the surface and air-drying for about 1 hour was bonded to both surfaces of an ion-exchange membrane (Dupont, Nafion, film thickness of about 50 μm) by hot pressing (140 ° C.) to form a catalyst layer D -An ion exchange membrane assembly was obtained. The amount of platinum on one side of the catalyst layer D-ion exchange membrane assembly was about 1.0 mg / cm.
So that 2 was adjusted supported platinum amount of carbon during the paste producing.

【0052】この接合体の両面にガス拡散層となる撥水
性を付与した導電性多孔質体のカーボンシート(0.5
mm)をホットプレスにて接合し、燃料電池の単セルに
組んでセルDを得た。
A conductive porous carbon sheet (0.5) provided with water repellency to serve as a gas diffusion layer on both surfaces of the joined body.
mm) by hot pressing and assembled into a single cell of a fuel cell to obtain a cell D.

【0053】これらのセルの供給ガスに酸素、水素を用
いた際の電流―電圧特性を図1に示す。運転条件は、供
給ガス圧は2気圧で、それぞれ80℃の密閉水槽中でバ
ブリングすることで加湿した。そして、セルの運転温度
は75℃とし、各電流値での測定時の保持時間は5分と
した。
FIG. 1 shows current-voltage characteristics when oxygen and hydrogen were used as supply gases for these cells. The operating conditions were as follows: the supply gas pressure was 2 atm, and each was humidified by bubbling in a closed water tank at 80 ° C. The operating temperature of the cell was set to 75 ° C., and the holding time at the time of measurement at each current value was set to 5 minutes.

【0054】図1より、本発明によるセル(Aおよび
B)は、従来のセル(CおよびD)に比べて、各電流密
度において出力電圧が高いことがわかる。特に、触媒層
の細孔内および表層に有孔性のPVdFを配したAの出
力はBと比べても高いことがわかる。これは本発明によ
れば、触媒層の細孔内および/または表層に高い撥水性
を持つ有孔性のPVdFを配するために、電極の深部に
まで活物質である水素および酸素の確実な供給が可能と
なり、従来の触媒層に比べて実際に作用する触媒層面積
が大きいためである。特に、触媒層の細孔内および表層
に有孔性のPVdFを配したセルAは良好な特性を示し
た。
FIG. 1 shows that the cells (A and B) according to the present invention have a higher output voltage at each current density than the conventional cells (C and D). In particular, it can be seen that the output of A in which porous PVdF is disposed in the pores of the catalyst layer and the surface layer is higher than that of B. According to the present invention, it is possible to dispose the porous PVdF having high water repellency in the pores of the catalyst layer and / or on the surface layer in order to ensure that the active materials hydrogen and oxygen are deep down to the electrode. This is because supply becomes possible, and the area of the catalyst layer actually acting is larger than that of the conventional catalyst layer. In particular, the cell A in which porous PVdF was arranged in the pores of the catalyst layer and in the surface layer showed good characteristics.

【0055】[0055]

【発明の効果】本発明の燃料電池用電極によれば、従来
の電極に比べて実際に作用する電極面積が大きくなり、
高性能な燃料電池の製造が可能となる。また、本発明の
製造方法によれば、高性能な燃料電池の製造が可能な電
極を製造することができる。
According to the fuel cell electrode of the present invention, the electrode area which actually works is larger than the conventional electrode,
High-performance fuel cells can be manufactured. Further, according to the production method of the present invention, an electrode capable of producing a high-performance fuel cell can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セルの電流―電圧特性を示す図。FIG. 1 is a diagram showing current-voltage characteristics of a cell.

【図2】本発明に係る燃料電池用電極の構造を示す模式
図。
FIG. 2 is a schematic view showing the structure of a fuel cell electrode according to the present invention.

【図3】本発明に係る燃料電池用電極の構造を示す模式
図。
FIG. 3 is a schematic view showing the structure of a fuel cell electrode according to the present invention.

【図4】本発明に係る燃料電池用電極の構造を示す模式
図。
FIG. 4 is a schematic view showing the structure of a fuel cell electrode according to the present invention.

【図5】従来の燃料電池用電極の構造を示す模式図。FIG. 5 is a schematic view showing the structure of a conventional fuel cell electrode.

【符号の説明】[Explanation of symbols]

21、31、41:触媒粒子 22、32、42:固体高分子電解質 23、33、43:触媒層の細孔 24、34、44:有孔性樹脂 25、35、45:イオン交換膜 26、36、46:カーボン電極基材 21, 31, 41: catalyst particles 22, 32, 42: solid polymer electrolyte 23, 33, 43: pores of catalyst layer 24, 34, 44: porous resin 25, 35, 45: ion exchange membrane 26, 36, 46: carbon electrode substrate

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質と触媒粒子と有孔性樹
脂とを含む触媒層を有することを特徴とする燃料電池用
電極。
1. An electrode for a fuel cell, comprising a catalyst layer containing a solid polymer electrolyte, catalyst particles, and a porous resin.
【請求項2】 固体高分子電解質と触媒粒子とを含む触
媒層を有する燃料電池用電極において、触媒層の細孔相
当部または/および表面に有孔性樹脂を備えていること
を特徴とする燃料電池用電極。
2. A fuel cell electrode having a catalyst layer containing a solid polymer electrolyte and catalyst particles, wherein a porous resin is provided on a portion corresponding to pores and / or on a surface of the catalyst layer. Electrodes for fuel cells.
【請求項3】 固体高分子電解質と触媒粒子とを含む触
媒層と、導電性多孔質体を含むガス拡散層とを備える燃
料電池用電極において、触媒層および導電性多孔質体が
有孔性樹脂を備えていることを特徴とする燃料電池用電
極。
3. A fuel cell electrode comprising a catalyst layer containing a solid polymer electrolyte and catalyst particles and a gas diffusion layer containing a conductive porous body, wherein the catalyst layer and the conductive porous body are porous. An electrode for a fuel cell, comprising a resin.
【請求項4】 上記有孔性樹脂がフッ素樹脂であること
を特徴とする請求項1〜3記載の燃料電池用電極。
4. The fuel cell electrode according to claim 1, wherein said porous resin is a fluororesin.
【請求項5】 上記有孔性樹脂がポリフッ化ビニリデン
(PVdF)系樹脂であることを特徴とする請求項4記
載の燃料電池用電極。
5. The electrode for a fuel cell according to claim 4, wherein the porous resin is a polyvinylidene fluoride (PVdF) -based resin.
【請求項6】 上記有孔性樹脂がフッ化ビニリデン重合
体(PVdF)であることを特徴とする請求項5記載の
燃料電池用電極。
6. The fuel cell electrode according to claim 5, wherein the porous resin is a vinylidene fluoride polymer (PVdF).
【請求項7】 上記有孔性樹脂がフッ化ビニリデン・六
フッ化プロピレン共重合体(P(VdF−HFP))で
あることを特徴とする請求項5記載の燃料電池用電極。
7. The fuel cell electrode according to claim 5, wherein the porous resin is a vinylidene fluoride / propylene hexafluoride copolymer (P (VdF-HFP)).
【請求項8】 樹脂を溶解した溶液の溶媒aを、前記樹
脂に対して不溶性で、かつ溶媒aと相溶性のある溶媒b
で置換する工程を経ることを特徴とする請求項1〜7記
載の有孔性樹脂の製造方法。
8. A solvent b in which the solvent a of the solution in which the resin is dissolved is insoluble in the resin and compatible with the solvent a.
The method for producing a porous resin according to any one of claims 1 to 7, further comprising a step of substituting the porous resin.
【請求項9】 導電性多孔質体が炭素材料よりなること
を特徴とする請求項3記載の燃料電池用電極。
9. The fuel cell electrode according to claim 3, wherein the conductive porous body is made of a carbon material.
【請求項10】 固体高分子電解質と触媒粒子とを含ん
でなる触媒層に、樹脂を溶媒aに溶解した溶液を含ませ
た後、前記樹脂に対して不溶性で、かつ溶媒aと相溶性
のある溶媒bにこれを浸漬させることを特徴とする請求
項1〜9記載の燃料電池用電極の製造方法。
10. A catalyst layer comprising a solid polymer electrolyte and catalyst particles, containing a solution in which a resin is dissolved in a solvent a, wherein the solution is insoluble in the resin and compatible with the solvent a. 10. The method for producing an electrode for a fuel cell according to claim 1, wherein the electrode is immersed in a certain solvent b.
【請求項11】 触媒層と、導電性多孔質体を含むガス
拡散層との積層体の燃料電池用電極に、樹脂を溶媒aで
溶解した溶液を含ませた後、前記樹脂に対して不溶性
で、かつ溶媒aと相溶性のある溶媒bにこれを浸漬させ
ることを特徴とする燃料電池用電極の製造方法。
11. A fuel cell electrode comprising a stacked body of a catalyst layer and a gas diffusion layer containing a conductive porous body contains a solution obtained by dissolving a resin in a solvent a, and then becomes insoluble in the resin. A method for producing an electrode for a fuel cell, characterized by immersing this in a solvent (b) compatible with the solvent (a).
JP07888999A 1998-10-03 1999-03-24 Fuel cell electrode and manufacturing method thereof Expired - Fee Related JP4320482B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP07888999A JP4320482B2 (en) 1998-10-03 1999-03-24 Fuel cell electrode and manufacturing method thereof
DE10004955A DE10004955A1 (en) 1999-02-05 2000-02-04 Electrode used for a fuel cell comprises a porous polymer and a catalyst layer containing a solid polymer electrolyte and catalyst particles
US09/497,515 US7147957B1 (en) 1999-02-05 2000-02-04 Electrode for fuel cell and manufacturing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29615898 1998-10-03
JP10-296158 1998-10-03
JP07888999A JP4320482B2 (en) 1998-10-03 1999-03-24 Fuel cell electrode and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2000173625A true JP2000173625A (en) 2000-06-23
JP2000173625A5 JP2000173625A5 (en) 2006-04-27
JP4320482B2 JP4320482B2 (en) 2009-08-26

Family

ID=26419952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07888999A Expired - Fee Related JP4320482B2 (en) 1998-10-03 1999-03-24 Fuel cell electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4320482B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064594A1 (en) * 2004-12-17 2006-06-22 Nec Corporation Solid polymer type fuel cell
GB2558058A (en) * 2016-10-26 2018-07-04 Merck Patent Gmbh Immersion-cast catalyst layers for fuel cells and a method for their production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240499B2 (en) 2008-03-11 2013-07-17 株式会社リコー Electrochromic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064594A1 (en) * 2004-12-17 2006-06-22 Nec Corporation Solid polymer type fuel cell
GB2558058A (en) * 2016-10-26 2018-07-04 Merck Patent Gmbh Immersion-cast catalyst layers for fuel cells and a method for their production

Also Published As

Publication number Publication date
JP4320482B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP2001345106A (en) Electrode for fuel cell and manufacturing method
KR101947863B1 (en) Self-wetting membrane electrode unit and fuel cell having such a unit
CN110148759A (en) The preparation method of gas diffusion layer of proton exchange membrane fuel cell towards high current density
JP5118372B2 (en) Direct methanol fuel cell
CN1988225A (en) Gas diffusion layer for proton exchanging film fuel cell and its preparing method
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
CN101212054A (en) Fuel cell membrane electrode and its preparation method
KR100773669B1 (en) Direct-type fuel cell and direct-type fuel cell system
JP2002100372A (en) Gas diffusion electrode for fuel cell and its manufacturing method
CN110797546B (en) Microporous layer structure, preparation method, membrane electrode assembly and fuel cell
CN101000963A (en) Manufacturing method of membrane electrode of fuel cell
JP2009199988A (en) Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same
WO2008096887A1 (en) Membrane-electrode assembly and fuel cell comprising the same
JP4147321B2 (en) Electrode for polymer electrolyte fuel cell
JP4433552B2 (en) Composite catalyst and production method thereof
JP5354982B2 (en) Direct oxidation fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
US7147957B1 (en) Electrode for fuel cell and manufacturing method therefor
US11616247B2 (en) Multi-interface membrane electrode assembly
JP4180556B2 (en) Polymer electrolyte fuel cell
JP4320482B2 (en) Fuel cell electrode and manufacturing method thereof
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
KR100907183B1 (en) Gas diffusion layer of fuel cell, membrane-electrode assembly of fuel cell and fuel cell
JP2002289202A (en) Method for lowering fuel cell cathode activating overvoltage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees