JP2000169988A - Water storage tank provided with water purifier - Google Patents

Water storage tank provided with water purifier

Info

Publication number
JP2000169988A
JP2000169988A JP10342859A JP34285998A JP2000169988A JP 2000169988 A JP2000169988 A JP 2000169988A JP 10342859 A JP10342859 A JP 10342859A JP 34285998 A JP34285998 A JP 34285998A JP 2000169988 A JP2000169988 A JP 2000169988A
Authority
JP
Japan
Prior art keywords
water
treated
oxidation
ozone
promoting catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10342859A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP10342859A priority Critical patent/JP2000169988A/en
Publication of JP2000169988A publication Critical patent/JP2000169988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To completely decompose organic matters of low molecular weight, to achieve the sterilization and deodorization, and to prevent the pollution by introducing ozone generated in a water electrolysis cell in a water to be treated in a container, and achieving the strong oxidation through the stirring circulation by a mixing pump and an oxidation promoting catalyst. SOLUTION: A water 7 to be treated which is stored in a container 3 of a water storage tank 1 is circulated in a stirring manner by a mixing pump 9 through a water suction side 11, a water discharge side 12 and a high level container 13, ozone to be supplied from a water purifier 2 to the suction side 11 through an inlet pipe 27 is mixed, and organic matters are oxidized through decomposition and sterilization through an oxidation promoting catalyst 15 such as platinum. In the purifier 2, wet ozone which is pure and easy to dissolve is efficiently and safely generated at a low cost by electrolyzing deionized water obtained by passing a part of the water 7 to be treated through an ion exchange resin tower 18 by an electrolytic cell 20 provided with a solid electrolytic film and a gas diffusion electrode. The oxidation promoting catalyst 15 generates hydro-radicals to increase the oxidizing power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水を電気分解して
生成したオゾンで、カップ式飲料自動販売機の飲料水タ
ンクや、金魚水槽や食品冷却水槽等の水に融解した有機
物の分解を行い、殺菌と脱臭と汚濁防止を目的とする浄
水装置を備えた貯水槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the decomposition of organic matter dissolved in water in a drinking water tank of a cup-type beverage vending machine, a goldfish water tank, a food cooling water tank, etc. using ozone generated by electrolysis of water. The present invention relates to a water storage tank provided with a water purification device for sterilization, deodorization, and prevention of pollution.

【0002】[0002]

【従来の技術】従来、カップ式飲料自動販売機の飲料水
タンクとして設置されている貯水槽の汚濁防止には塩素
発生装置が一般に用いられていた。この塩素発生装置に
よる貯水槽の浄化方法とは、貯水槽内に陰極と陽極の一
対の電極を浸漬し、水を電気分解することにより浄水中
に不純物として含まれる塩素イオンを陽極面上で酸化さ
せ、塩素を生成させ、その塩素と塩素が水に溶けること
により生じる次亜塩素酸とで殺菌消毒を行う方法であ
る。
2. Description of the Related Art Conventionally, a chlorine generator has been generally used for preventing pollution of a water storage tank installed as a drinking water tank of a cup-type beverage vending machine. The method of purifying the water tank by this chlorine generator is to immerse a pair of cathode and anode electrodes in the water tank and electrolyze the water to oxidize chlorine ions contained as impurities in the purified water on the anode surface. In this method, chlorine is generated, and the chlorine and hypochlorous acid generated by dissolving the chlorine in water are used for sterilization.

【0003】塩素は安心して使える消毒剤として、従来
より主に水道水の消毒に用いられ、有効残留塩素濃度は
0.1ppm以上あれば殺菌力を持つとされている。よ
って、この塩素発生装置においても塩素イオンを陽極面
上で酸化させ、残留塩素濃度が約0.5ppmになるよ
う塩素を生成するように設定している。水道水の殺菌に
用いられる理由は塩素が残留性に優れているためであ
り、水道水のように浄水場から各家庭にまで殺菌消毒効
果を維持させるには残留性のある塩素による処理が好ま
しいのである。
[0003] Chlorine has been used mainly as a disinfectant that can be used with peace of mind, mainly for disinfecting tap water. It is said that chlorine having a residual chlorine concentration of 0.1 ppm or more has bactericidal activity. Therefore, this chlorine generator is also set so that chlorine ions are oxidized on the anode surface and chlorine is generated so that the residual chlorine concentration becomes about 0.5 ppm. The reason for the sterilization of tap water is that chlorine is excellent in persistence, and treatment with residual chlorine is preferred to maintain the sterilization effect from tap water to each household like tap water. It is.

【0004】このカップ式飲料自動販売機の飲料水タン
クとして設置されている貯水槽の汚濁防止には塩素の消
毒殺菌は大きな問題が生じる。即ち生成した塩素が残留
するために塩素特有の臭いを発し、また塩素または次亜
塩素酸が各種清涼飲料成分と反応し、塩素化合物を形成
し、味や匂いを変質させるため、おいしい飲料の供給が
できないという致命的な問題点があった。
[0004] Disinfection and sterilization of chlorine poses a major problem in preventing contamination of a water storage tank installed as a drinking water tank of the cup-type beverage vending machine. In other words, the generated chlorine remains to emit a smell peculiar to chlorine, and chlorine or hypochlorous acid reacts with various soft drink components to form chlorine compounds, alter the taste and smell, and supply a delicious beverage. There was a fatal problem that it was not possible.

【0005】また、塩素の発生量は供給される水道の水
質により変化し、水に含まれる陽イオンや塩素イオン等
の陰イオンの濃度に大きく影響され、設置場所と時期に
より変化するため、定期的に予備実験を行い電解時間を
設定する必要がある。さらに、電極への堆積物の影響等
により生成量は不安定となり一定の濃度に設定するのは
困難である。
In addition, the amount of chlorine generated varies depending on the quality of the supplied tap water, and is greatly affected by the concentration of anions such as cations and chlorine ions contained in the water. It is necessary to perform preliminary experiments and set the electrolysis time. Further, the amount of generation is unstable due to the influence of deposits on the electrodes and the like, and it is difficult to set the concentration at a constant level.

【0006】さらに、近年においては塩素と水道水中に
含まれる微量の有機物とが反応し、発癌性の有るトリハ
ロメタンを生成させる可能性を指摘されることが多くな
り、塩素殺菌については見直しが必要となっている。
Further, in recent years, it has been often pointed out that chlorine reacts with a trace amount of organic matter contained in tap water to form carcinogenic trihalomethane, and it is necessary to review chlorine sterilization. Has become.

【0007】そこで、近年では特開昭61−14739
3号公報に示されるように、カップ式飲料自動販売機の
飲料水を貯留する水リザーバーに対してオゾナイザを付
設し、このオゾナイザで生成したオゾンガスを水リザー
バー内の貯留水中に供給して溶解し、水の殺菌消毒を行
い、これにより飲料水の水質維持を図るようにしたもの
が提案されている。
Therefore, in recent years, Japanese Patent Application Laid-Open No. 61-14739 has been proposed.
As shown in Japanese Patent Publication No. 3 (2003), an ozonizer is attached to a water reservoir for storing drinking water of a cup-type beverage vending machine, and the ozone gas generated by the ozonizer is supplied to and dissolved in the stored water in the water reservoir. In addition, there has been proposed an apparatus which sterilizes and disinfects water to thereby maintain the quality of drinking water.

【0008】オゾンは塩素に比べ残留性が少なく、比較
的早く安全な酸素に分解するため、食品の味を変質させ
たり異臭をつけることがないので、水道水と違い持続性
を必要としない食品の加工やカップ式飲料自動販売機の
飲料水タンクとして設置される貯水槽の殺菌消毒用とし
ては適切なものである。
[0008] Ozone is less persistent than chlorine and decomposes into safe oxygen relatively quickly, so that it does not alter the taste of food and does not give off odors. It is suitable for disinfecting and disinfecting water tanks installed as drinking water tanks in cup-type beverage vending machines.

【0009】オゾンの生成方法としては特開昭61−1
47393号公報に示されるように放電式のオゾナイザ
で空気中の酸素をオゾンに酸化させる方法と、水を電気
分解して水素と酸素とを生成する時、その酸素発生時の
副生成物としてオゾンを得る方法とがある。
As a method for producing ozone, Japanese Patent Application Laid-Open No.
No. 47393, a method in which oxygen in the air is oxidized to ozone by a discharge type ozonizer, and a method in which water is electrolyzed to generate hydrogen and oxygen, and ozone is generated as a by-product when the oxygen is generated. There is a way to get.

【0010】空気中の酸素からオゾンを生成する方法
は、空気中の約80%の窒素も同時に酸化するため、二
酸化窒素や一酸化窒素等の窒素酸化物も生成するため、
処理ガスを水に吹き込み溶解させオゾン水を製造する
と、同時に窒素酸化物も水に溶けるため硝酸が形成さ
れ、強酸性のオゾン水となる問題がある。
In the method of producing ozone from oxygen in air, about 80% of nitrogen in air is oxidized at the same time, so that nitrogen oxides such as nitrogen dioxide and nitric oxide are also produced.
When ozone water is produced by blowing and dissolving the processing gas into water, nitrogen oxides are also dissolved in water at the same time, so that nitric acid is formed, resulting in a problem of strongly acidic ozone water.

【0011】また、80%の窒素ガスが含まれ酸素濃度
は20%と低いことは、生成する処理ガス中のオゾンガ
ス分圧が低くなり、水へのオゾンの溶解量が小さく、低
濃度のオゾン水しか製造できないばかりか、水に溶け切
らない余剰オゾンが発生し易くなる。特開昭61−14
7393号公報に示されるように余剰オゾンを別の水槽
の汚濁防止に使用することも考えられるが、さらに濃度
が薄くなるため有効な殺菌効果を確保できない問題があ
る。
The fact that 80% of nitrogen gas is contained and the oxygen concentration is as low as 20% means that the partial pressure of ozone gas in the generated processing gas is low, the amount of dissolved ozone in water is small, and Not only can water be produced, but excess ozone that is not completely soluble in water is likely to be generated. JP-A-61-14
Although it is conceivable to use surplus ozone to prevent contamination of another aquarium as shown in US Pat. No. 7,393, there is a problem that an effective sterilizing effect cannot be secured because the concentration is further reduced.

【0012】よって、効率的にオゾンを水に溶かし、中
性でクリーンなオゾン水を生成するためには、純粋で高
濃度オゾンが得られる水電解式のオゾン生成方法が推奨
される。
Therefore, in order to efficiently dissolve ozone in water and to generate neutral and clean ozone water, a water electrolysis type ozone generation method capable of obtaining pure and high-concentration ozone is recommended.

【0013】また、被処理水を飲用に使用する場合は、
オゾンが被処理水中に含まれる有機物を分解してできる
有害であるアルデヒド類の副生成物の問題がある。この
副生成物の分解を促進させる方法として特開平4−24
3597号公報に示されるように散気管をオゾン分解触
媒である白金,二酸化マンガン,酸化銅,過酸化ニッケ
ル,亜鉛,酸化チタン,二酸化珪素等の中から選択して
構成することが知られている。
When the water to be treated is used for drinking,
There is a problem of harmful by-products of aldehydes formed by ozone decomposing organic substances contained in the water to be treated. As a method for accelerating the decomposition of this by-product, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent No. 3597, it is known that an air diffusion tube is formed by selecting from an ozone decomposition catalyst such as platinum, manganese dioxide, copper oxide, nickel peroxide, zinc, titanium oxide, silicon dioxide and the like. .

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記の
特開平4−243597号公報に示される方法で、散気
管を使用するには水の電解で得られる純粋で高濃度のオ
ゾンのガス量もガス圧も不足し十分な散気効果が得られ
ず、また散気管がオゾン分解触媒で構成されているた
め、オゾンが水と反応しオゾン分子より酸化力の強いヒ
ドロキシルラジカルを生成する前にオゾンの分解が進
み、水中の有機物を効率良く分解するまでには至らない
欠点があった。
However, according to the method disclosed in Japanese Patent Application Laid-Open No. Hei 4-243597, the amount of pure high-concentration ozone gas obtained by electrolysis of water is limited by using a diffuser. Insufficient pressure and sufficient diffusing effect cannot be obtained.Also, since the diffuser tube is composed of an ozone decomposition catalyst, the ozone reacts with water to produce hydroxyl radicals which are more oxidizing than ozone molecules. Decomposition has progressed, and there is a drawback that organic substances in water are not efficiently decomposed.

【0015】そこで本発明は、上記する問題点を解消す
ることを目的とするものである。
Therefore, an object of the present invention is to solve the above-mentioned problems.

【0016】[0016]

【課題を解決するための手段】本発明は前記する目的を
達成するために、陰極室と、陽極室と、前記陰極室と陽
極室とを仕切る固体電解質膜とを有する電解セルと、被
処理水を蓄え、かつ被処理水中においてオゾンに接触し
てヒドロキシルラジカルを生成する酸化促進触媒体を内
設した貯水槽とを具備していて、前記電解セルで水の電
気分解によって生成するオゾンを含むガスを前記貯水槽
の被処理水中に導入管により導入することとしたもので
ある。
In order to achieve the above object, the present invention provides an electrolytic cell having a cathode chamber, an anode chamber, a solid electrolyte membrane separating the cathode chamber and the anode chamber, A water tank containing an oxidation-promoting catalyst for generating hydroxyl radicals upon contact with ozone in the water to be treated, and containing ozone generated by electrolysis of water in the electrolytic cell. The gas is introduced into the water to be treated in the water storage tank by an introduction pipe.

【0017】そして、貯水槽中の被処理水の給排水機能
を持ち、かつ被処理水を循環撹拌するミキシングポンプ
を貯水槽内に設け、前記ミキシングポンプの吸水側にオ
ゾンを含むガスを導入し、ミキシングポンプの排水側に
酸化促進触媒体を配設することとした。
A mixing pump having a function of supplying and draining the water to be treated in the water storage tank and circulating and stirring the water to be treated is provided in the water storage tank, and a gas containing ozone is introduced into the water absorption side of the mixing pump. An oxidation-promoting catalyst is arranged on the drain side of the mixing pump.

【0018】また、ミキシングポンプの排水側から被処
理水が導入される反応容器を設け、前記反応容器内には
多孔質状の酸化促進触媒体を設けることとした。
A reaction vessel into which water to be treated is introduced from the drain side of the mixing pump is provided, and a porous oxidation-promoting catalyst is provided in the reaction vessel.

【0019】また、貯水槽中の被処理水の給排水機能を
持ち、かつ被処理水を循環撹拌するミキシングポンプを
貯水槽内に設け、前記ミキシングポンプの吸水側にオゾ
ンを含むガスを導入し、ミキシングポンプの回転羽根の
表面を酸化促進触媒体で形成することとした。
A mixing pump having a function of supplying and draining the water to be treated in the water storage tank and circulating and stirring the water to be treated is provided in the water storage tank, and a gas containing ozone is introduced into the water absorption side of the mixing pump. The surface of the rotating blades of the mixing pump is formed of an oxidation promoting catalyst.

【0020】また、酸化促進触媒体と、酸化促進触媒体
に対して電気絶縁性を持つ対極部材とに、被処理水を介
して電圧を印加することとした。
A voltage is applied to the oxidation-promoting catalyst and the counter electrode member having electrical insulation with respect to the oxidation-promoting catalyst via the water to be treated.

【0021】また、酸化促進触媒体と対極部材とに印加
する電圧を変動可能とした。また、直流電圧印加装置に
より、対極部材をアノードに、酸化促進触媒体をカソー
ドとなるように直流電圧を印加することとした。
Further, the voltage applied to the oxidation promoting catalyst and the counter electrode member can be varied. In addition, a DC voltage is applied by a DC voltage applying device so that the counter electrode member is used as an anode and the oxidation promoting catalyst is used as a cathode.

【0022】また、酸化促進触媒体を白金、および/ま
たは、チタンに白金を表面処理した材質とした。
The oxidation-promoting catalyst is made of platinum and / or a material obtained by surface-treating platinum on titanium.

【0023】[0023]

【発明の実施の形態】本発明は各請求項に記載した構成
とすることにより実施できるのであるが、その実施の形
態を理解し易いように以下に構成とその構成による作用
を併記する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be embodied by adopting the constitution described in each claim. However, the constitution and the operation by the constitution are described below so that the embodiment can be easily understood.

【0024】請求項1に記載の発明は、陰極室と、陽極
室と、前記陰極室と陽極室とを仕切る固体電解質膜とを
有する電解セルと、被処理水を蓄え、かつ被処理水中に
おいてオゾンに接触してヒドロキシルラジカルを生成す
る酸化促進触媒体を内設した貯水槽とを具備していて、
前記電解セルで水の電気分解によって生成するオゾンを
含むガスを前記貯水槽の被処理水中に導入管により導入
するように構成した。
According to the first aspect of the present invention, there is provided an electrolytic cell having a cathode chamber, an anode chamber, a solid electrolyte membrane for partitioning the cathode chamber and the anode chamber, storing the water to be treated, and A water storage tank provided with an oxidation-promoting catalyst that generates hydroxyl radicals upon contact with ozone,
A gas containing ozone generated by electrolysis of water in the electrolytic cell is introduced into the water to be treated in the water storage tank by an introduction pipe.

【0025】水の電気分解で生成する純粋で高濃度の湿
潤オゾンは比較的容易に被処理水に溶解すると共に被処
理水中に含まれる雑菌や有機物と反応を起こし、さらに
酸化促進触媒体とオゾンが反応する過程で酸化力の高い
ヒドロキシルラジカルを生じることでオゾンだけでは分
解できない低分子の有機物を分解し浄水効果を高めるも
のである。
Pure and high-concentration wet ozone produced by the electrolysis of water is relatively easily dissolved in the water to be treated and reacts with various bacteria and organic substances contained in the water to be treated. It produces hydroxyl radicals with high oxidizing power in the process of reacting to decompose low molecular organic substances that cannot be decomposed by ozone alone, thereby enhancing the water purification effect.

【0026】請求項2記載の発明は、貯水槽中の被処理
水の給排水機能を持ち、かつ被処理水を循環撹拌するミ
キシングポンプを貯水槽内に設け、前記ミキシングポン
プの吸水側にオゾンを含むガスを導入し、ミキシングポ
ンプの排水側に酸化促進触媒体を配設する構成とした。
従ってミキシングポンプの排水側にオゾンの酸化促進触
媒体を有するので、ミキシングポンプによりオゾンと被
処理水との溶解を効率的に行うと共に、比較的溶解オゾ
ン濃度の高いミキシングポンプの排水側に酸化促進触媒
体を設置することにより殺菌と浄水効果を高めることが
できる。
According to a second aspect of the present invention, a mixing pump having a function of supplying and discharging the water to be treated in the water storage tank and circulating and stirring the water to be treated is provided in the water storage tank, and ozone is supplied to the water absorption side of the mixing pump. A gas containing gas was introduced, and an oxidation promoting catalyst was disposed on the drain side of the mixing pump.
Therefore, since the ozone oxidation promoting catalyst is provided on the discharge side of the mixing pump, the ozone and the water to be treated are efficiently dissolved by the mixing pump, and the oxidation is promoted on the discharge side of the mixing pump having a relatively high dissolved ozone concentration. By disposing the catalyst, sterilization and water purification effects can be enhanced.

【0027】請求項3記載の発明は、ミキシングポンプ
の排水側から被処理水が導入される反応容器を設け、前
記反応容器内には多孔質状の酸化促進触媒体を設ける構
成としたもので、反応容器内の表面積の大きい多孔質状
の酸化促進触媒体で集中的に効率良く殺菌と有機物の分
解が行われる。
According to a third aspect of the present invention, a reaction vessel into which water to be treated is introduced from the drain side of the mixing pump is provided, and a porous oxidation-promoting catalyst is provided in the reaction vessel. The porous oxidation-promoting catalyst having a large surface area in the reaction vessel intensively and efficiently sterilizes and decomposes organic substances.

【0028】請求項4記載の発明は、貯水槽中の被処理
水の給排水機能を持ち、かつ貯水槽の被処理水を循環撹
拌するミキシングポンプを貯水槽内に設け、このミキシ
ングポンプの吸水側にオゾンを含むガスを導入し、ミキ
シングポンプの回転羽根の表面を酸化促進触媒体で形成
したもので、回転羽根で被処理水を強制的に循環撹拌す
ると同時にオゾンの酸化促進を進めることで、より確実
に殺菌と有機物の分解が行われるようにした。
According to a fourth aspect of the present invention, a mixing pump having a function of supplying and draining water to be treated in a water storage tank and circulating and stirring the water to be treated in the water storage tank is provided in the water storage tank. A gas containing ozone is introduced into the mixing pump, and the surface of the rotating blades of the mixing pump is formed of an oxidation-promoting catalyst.Forcibly circulating and agitating the water to be treated by the rotating blades and simultaneously promoting the oxidation of ozone. Sterilization and decomposition of organic matter were performed more reliably.

【0029】請求項5記載の発明は、酸化促進触媒体
と、酸化促進触媒体に対して電気絶縁性を持つ対極部材
とに、被処理水を介して電圧を印加したもので、酸化促
進触媒体に電位を印加することで、オゾンの分解が加速
されると共にヒドロキシルラジカルの生成も活発化する
ことになり殺菌と有機物の分解がより推進される。
According to a fifth aspect of the present invention, a voltage is applied to the oxidation-promoting catalyst and the counter electrode member having electrical insulation with respect to the oxidation-promoting catalyst via water to be treated. By applying an electric potential to the medium, the decomposition of ozone is accelerated and the generation of hydroxyl radicals is activated, so that sterilization and decomposition of organic substances are further promoted.

【0030】請求項6記載の発明は、印加する電圧を変
動可能とし、被処理水の汚染度合いに応じ、即ち雑菌や
有機物の量に応じてオゾン分解の速度を調節し、無駄な
オゾン分解を避けるようにしたものである。
According to a sixth aspect of the present invention, the applied voltage can be varied, and the rate of ozonolysis is adjusted according to the degree of contamination of the water to be treated, that is, according to the amount of germs and organic substances, to reduce unnecessary ozonolysis. It is something to avoid.

【0031】請求項7記載の発明は、直流電圧印加装置
により対極部材をアノードに、酸化促進触媒体をカソー
ドとなるよう直流電圧を印加したもので、還元作用を持
つカソードにより酸化促進を効率的に行うものである。
According to a seventh aspect of the present invention, a DC voltage is applied by a DC voltage applying device so that the counter electrode member becomes the anode and the oxidation accelerating catalyst becomes the cathode. What to do.

【0032】請求項8記載の発明は、酸化促進触媒体を
白金、および/または、チタンに白金を表面処理した材
質としたもので、汎用性があり、適度なオゾン分解特性
を持ち、耐食性の高い白金を用いることで無駄なオゾン
分解を避けることができる。
The invention according to claim 8 is characterized in that the oxidation-promoting catalyst is made of platinum and / or a material obtained by surface-treating platinum on titanium, which is versatile, has appropriate ozonolysis characteristics, and has corrosion resistance. By using high platinum, useless ozone decomposition can be avoided.

【0033】以下本発明の一実施の形態について、図面
を参照しながら説明する。 (実施の形態1)図1は本発明の実施の形態1における
貯水槽1とその浄水装置2との構成を示すものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 shows a configuration of a water storage tank 1 and a water purification device 2 thereof according to Embodiment 1 of the present invention.

【0034】貯水槽1は貯水容器3と蓋4とを有してお
り、フロート5の信号による給水弁6の開閉により被処
理水7が所定の水位Hに保たれる。
The water storage tank 1 has a water storage container 3 and a lid 4. The water 7 to be treated is maintained at a predetermined water level H by opening and closing a water supply valve 6 according to a signal from a float 5.

【0035】貯水槽1内の被処理水7は、駆動モータ8
で回転するミキシングポンプ9により誘導パイプ10内
を吸水側11から排水側12に流れ、水位Hよりも高い
位置にある高台容器13まで持ち上げられ排水口14か
ら落下させることにより循環撹拌される。
The water 7 to be treated in the water storage tank 1 is
The water flows through the guide pipe 10 from the water suction side 11 to the drainage side 12 by the mixing pump 9 rotating at the above, and is lifted to the hill vessel 13 at a position higher than the water level H, and is dropped from the drainage port 14 to be circulated and stirred.

【0036】浄水装置2は、給排水機能を持つミキシン
グポンプ9と、酸化促進機能を持つ酸化促進触媒体15
と、オゾンガスを生成する機能を持つオゾン発生部16
とから構成される。
The water purification device 2 includes a mixing pump 9 having a water supply / drainage function and an oxidation promoting catalyst 15 having an oxidation promoting function.
And an ozone generator 16 having a function of generating ozone gas
It is composed of

【0037】酸化促進触媒体15は、貯水槽1の被処理
水7中にホルダー17により固定されていてエキスパン
ド状のチタン材の表面に白金をめっきした素材で形成し
たものである。
The oxidation-promoting catalyst body 15 is fixed in the water 7 to be treated in the water storage tank 1 by a holder 17 and is made of a material in which platinum is plated on the surface of an expanded titanium material.

【0038】オゾン発生部16は、イオン交換樹脂塔1
8とガス分離室19を併設する電解セル20と制御回路
21を備えている。
[0038] The ozone generator 16 includes the ion exchange resin tower 1
An electrolysis cell 20 provided with a gas separation chamber 8 and a gas separation chamber 19 and a control circuit 21 are provided.

【0039】イオン交換樹脂塔18は、フィルターA2
2とフィルターB23との間にイオン交換樹脂24が充
填されたもので、イオン交換樹脂塔18の下部とミキシ
ングポンプ9の排水側12の誘導パイプ10とは連通管
25で連通されている。
The ion exchange resin tower 18 is provided with a filter A2
The space between the filter 2 and the filter B23 is filled with the ion exchange resin 24. The lower portion of the ion exchange resin tower 18 and the guide pipe 10 on the drain side 12 of the mixing pump 9 are communicated by a communication pipe 25.

【0040】また、イオン交換樹脂塔18の上部とガス
分離室19とは通水路26で通水が可能となっており、
さらに、ガス分離室19の上部には、ミキシングポンプ
9の吸水側11にガスを導くことができるように導入管
27と、また圧力調整のための空気穴28とがあり、空
気穴28とガス分離室19との間にはオゾン分解触媒2
9が設けられている。
The upper part of the ion-exchange resin tower 18 and the gas separation chamber 19 can be passed through a water passage 26.
Further, at the upper part of the gas separation chamber 19, there are provided an introduction pipe 27 for guiding the gas to the water suction side 11 of the mixing pump 9 and an air hole 28 for adjusting the pressure. Between the separation chamber 19 and the ozone decomposition catalyst 2
9 are provided.

【0041】図2は水の電気分解によりオゾンを発生さ
せる電解セル20の構成を示す縦断面図である。ガス拡
散電極30と集電体31とを有する陰極32を備えた陰
極室33と、オゾン発生電極である陽極34を有する陽
極室35とで構成されており、陰極室33と陽極室35
とは固体電解質膜36で仕切られ、ゼロギャップで構成
されている。
FIG. 2 is a longitudinal sectional view showing the structure of the electrolytic cell 20 for generating ozone by electrolysis of water. A cathode chamber 33 having a cathode 32 having a gas diffusion electrode 30 and a current collector 31; and an anode chamber 35 having an anode 34 serving as an ozone generating electrode.
Are separated by a solid electrolyte membrane 36 and have a zero gap.

【0042】固体電解質膜36は水素イオンの交換機能
があるスルフォン酸基を持つフッ素樹脂が主体の膜であ
り、スルフォン酸基の水素イオンが自由に出入りする性
質を利用して水素イオン伝導型の固体電解質膜36とし
て開発されたものである。
The solid electrolyte membrane 36 is a membrane mainly composed of a fluororesin having a sulfonic acid group capable of exchanging hydrogen ions. The solid electrolyte membrane 36 has a hydrogen ion conduction type utilizing the property that hydrogen ions of the sulfonic acid group can freely enter and exit. It has been developed as a solid electrolyte membrane 36.

【0043】この固体電解質膜36は水素イオンのみを
伝達する性質を持つ高分子物質であり、その他のイオン
を伝導したり、透過したりすることは比較的少ない。本
実施例で使用した水素イオン伝導型膜の固体電解質膜3
6はデュポン社からナフィオン膜との商品名で販売され
ているN117の固体高分子膜を用いた。
The solid electrolyte membrane 36 is a polymer substance having a property of transmitting only hydrogen ions, and relatively does not transmit or transmit other ions. The solid electrolyte membrane 3 of the hydrogen ion conduction type membrane used in this embodiment
No. 6 used an N117 solid polymer membrane sold by DuPont under the trade name of Nafion membrane.

【0044】陽極34は多孔質状の耐食性金属チタンの
基体表面にβ型の二酸化鉛を電着によって形成した。
The anode 34 was formed by electrodepositing β-type lead dioxide on the surface of a porous corrosion-resistant metallic titanium substrate.

【0045】陰極32は通気性を有する多孔性のメッシ
ュ状のものとして、表面に白金超微粒子を担持したカー
ボン粉末とフッ素樹脂粉末の混合物を加圧成形して適度
な撥水性を持たせた多孔性のガス拡散電極30と電荷を
均一に伝達する集電体31との接合体として形成されて
いる。
The cathode 32 is made of a porous mesh having air permeability, and is formed by pressing a mixture of a carbon powder and a fluororesin powder carrying ultrafine platinum particles on the surface thereof to provide a water repellent with an appropriate water repellency. It is formed as a joined body of the conductive gas diffusion electrode 30 and the current collector 31 that transmits electric charges uniformly.

【0046】37は吸入口38に取り付けられた外気を
吸入する吸入ファン39と、排気口40とからなる吸排
気機構であり、陰極室33のガス拡散電極30に酸素を
含む外気を順次送り込むものである。
Reference numeral 37 denotes an intake / exhaust mechanism comprising an intake fan 39 attached to an intake port 38 for inhaling outside air, and an exhaust port 40, which sequentially sends outside air containing oxygen to the gas diffusion electrode 30 of the cathode chamber 33. It is.

【0047】電解セル20とガス分離室19とは下部開
口部41とガス移動管42で通じておりイオン交換樹脂
塔18を通過してきたイオン交換水はガス分離室19に
注水されると共に陽極室35にも注水することになる。
The electrolytic cell 20 and the gas separation chamber 19 communicate with each other through the lower opening 41 and the gas transfer pipe 42. The ion exchange water that has passed through the ion exchange resin tower 18 is injected into the gas separation chamber 19 and the anode chamber. Water will also be injected into 35.

【0048】43は陽極室35での水の電解により発生
する酸素ガスとオゾンガスの混合ガスがガス移動管42
を通じてガス分離室19に移動し、水面上の空間部44
に滞留した後排出していく吐出口であり、吐出口43か
ら導入管27を通じてミキシングポンプ9の吸水側11
に微調整弁45を介し導入される。またガス分離室19
の一部のガスはオゾン分解触媒29を介して空気穴28
を通じ大気に通じる。
Reference numeral 43 denotes a gas transfer pipe 42 which is a mixed gas of oxygen gas and ozone gas generated by electrolysis of water in the anode chamber 35.
To the gas separation chamber 19 through the space 44
Is discharged from the outlet 43 and discharged from the outlet 43 through the inlet pipe 27 to the water suction side 11 of the mixing pump 9.
Is introduced through a fine adjustment valve 45. Gas separation chamber 19
Some of the gas in the air hole 28 through the ozone decomposition catalyst 29
Through to the atmosphere.

【0049】ここで、ガス分離室19と陽極室35の固
定位置は貯水槽1内の被処理水7の水位高さHよりも高
くすることで、ミキシングポンプ9が稼働し高台容器1
3に被処理水7が満たされることにより、水位バランス
にてガス分離室19と陽極室35にもイオン交換水が満
たされるようになっている。
Here, the fixing position of the gas separation chamber 19 and the anode chamber 35 is set higher than the water level H of the water 7 to be treated in the water storage tank 1, so that the mixing pump 9 is operated and the elevated vessel 1
3 is filled with the to-be-processed water 7, so that the gas separation chamber 19 and the anode chamber 35 are also filled with ion-exchanged water at a water level balance.

【0050】また、制御回路21は蓄電池機能もあり、
ミキシングポンプ9が停止してもしばらくは電解が続け
られることで陽極34表面を乾燥させ、還元反応を防止
する機能を有する。
The control circuit 21 also has a storage battery function,
Even if the mixing pump 9 is stopped, the electrolysis is continued for a while to dry the surface of the anode 34 and prevent the reduction reaction.

【0051】また、46は貯水槽1内のオゾン濃度をセ
ンシングするオゾンガスセンサーであり、信号を制御回
路21に送り、電解セル20の陽極34と陰極32に加
わる電圧を調整することでオゾン濃度をコントロールす
るものである。
Reference numeral 46 denotes an ozone gas sensor for sensing the ozone concentration in the water storage tank 1. The ozone gas sensor 46 sends a signal to the control circuit 21 and adjusts the voltage applied to the anode 34 and the cathode 32 of the electrolytic cell 20 to adjust the ozone concentration. Control.

【0052】ここで、本発明の実施の形態1に用いた酸
化促進触媒体15と陽極34の表面処理工程について説
明する。
Here, the surface treatment step of the oxidation promoting catalyst 15 and the anode 34 used in Embodiment 1 of the present invention will be described.

【0053】まず酸化促進触媒体15は、前処理として
多孔質状の耐食性金属チタン材の基体を5%の界面活性
剤の溶液で超音波洗浄により脱脂し、イオン交換水です
すいだ後、5%の蓚酸溶液の沸騰水に5分間浸漬し表面
の酸化層を取り除き、さらに下地処理直前に1規定の硫
酸を電解研磨液とし、4A/dm2 の条件で陰極側にて
電解還元処理をした。
First, as a pretreatment, the oxidation-promoting catalyst 15 is degreased by ultrasonic cleaning with a 5% surfactant solution of a porous corrosion-resistant metal titanium base material, and rinsed with ion-exchanged water. % Oxalic acid solution in boiling water for 5 minutes to remove the oxidized layer on the surface. Immediately before the base treatment, 1N sulfuric acid was used as an electropolishing liquid and electrolytic reduction was performed on the cathode side at 4 A / dm 2 . .

【0054】上記の前処理後、塩化白金酸を各々0.1
モルの濃度に調整した塩酸混合溶液に浸漬し、40℃で
15分間の予備乾燥後、520℃で焼き付けた。この焼
き付け下地処理を3回繰り返し、約1μmの導電性酸化
金属の下地層を設けた。
After the above pretreatment, chloroplatinic acid was added in an amount of 0.1% each.
It was immersed in a mixed solution of hydrochloric acid adjusted to a molar concentration, preliminarily dried at 40 ° C. for 15 minutes, and baked at 520 ° C. This baking base treatment was repeated three times to provide a conductive metal oxide base layer of about 1 μm.

【0055】次に、下地層処理面を4A/dm2 で30
秒間の電解還元処理を行った後、塩化白金酸を各々0.
1モルの濃度に調整した塩酸混合溶液に浸漬し、2A/
dm 2 で20分間の白金の電解めっき処理を行った。
Next, the surface to be treated with the underlayer is set at 4 A / dm.TwoAt 30
After performing the electrolytic reduction treatment for 2 seconds, chloroplatinic acid was added to each of 0.1 ml.
Immersed in a hydrochloric acid mixed solution adjusted to a concentration of 1 mol, and
dm TwoFor 20 minutes.

【0056】また、陽極34も同様に、前処理として多
孔質状の耐食性金属チタン材の基体を5%の界面活性剤
の溶液で超音波洗浄により脱脂し、イオン交換水ですす
いだ後、5%の蓚酸溶液の沸騰水に5分間浸漬し表面の
酸化層を取り除き、さらに下地処理直前に1規定の硫酸
を電解研磨液とし、4A/dm2 の条件で陰極側にて電
解還元処理をした。
Similarly, as a pretreatment, the anode 34 is degreased by ultrasonic cleaning with a 5% surfactant solution of a porous corrosion-resistant metallic titanium substrate, rinsed with ion-exchanged water, % Oxalic acid solution in boiling water for 5 minutes to remove the oxidized layer on the surface. Immediately before the base treatment, 1N sulfuric acid was used as an electropolishing liquid and electrolytic reduction was performed on the cathode side at 4 A / dm 2 . .

【0057】上記の前処理後、塩化白金酸を各々0.1
モルの濃度に調整した塩酸混合溶液に浸漬し、40℃で
15分間の予備乾燥後、520℃で焼き付けた。この焼
き付け下地処理を3回繰り返し、約1μmの導電性酸化
金属の下地層を設けた。
After the above pretreatment, chloroplatinic acid was added in an amount of 0.1% each.
It was immersed in a mixed solution of hydrochloric acid adjusted to a molar concentration, preliminarily dried at 40 ° C. for 15 minutes, and baked at 520 ° C. This baking base treatment was repeated three times to provide a conductive metal oxide base layer of about 1 μm.

【0058】次に下地処理面を4A/dm2 で30秒間
の電解還元処理を行った後、オゾン発生選択性触媒とし
て二酸化鉛の電気めっき処理を行った。
Next, the undertreated surface was subjected to electrolytic reduction treatment at 4 A / dm 2 for 30 seconds, followed by electroplating of lead dioxide as an ozone generation selective catalyst.

【0059】二酸化鉛のめっきは、まず3.5規定の水
酸化ナトリウムの飽和酸化鉛溶液をめっき浴とし1.1
A/dm2 で陽極側にて20分間処理し、数ミクロンの
α型の二酸化鉛を形成した。この時の浴温は40℃とし
た。
In the plating of lead dioxide, first, a saturated lead oxide solution of 3.5N sodium hydroxide was used as a plating bath to prepare a plating bath.
A / dm 2 treatment on the anode side for 20 minutes formed α-type lead dioxide of several microns. The bath temperature at this time was 40 ° C.

【0060】次に30重量%の硝酸鉛の1規定の硝酸浴
で、4A/dm2 の条件で40分間、陽極にてオゾン発
生選択性触媒であるβ型の二酸化鉛の触媒層を形成し
た。この時の浴温度は70℃とした。
Next, in a 1N nitric acid bath of 30% by weight of lead nitrate, a catalyst layer of β-type lead dioxide as an ozone generation selective catalyst was formed at the anode under the conditions of 4 A / dm 2 for 40 minutes. . The bath temperature at this time was 70 ° C.

【0061】以下、上記で説明した実施の形態1の陽極
34を有する電解セル20中の化学反応と酸化促進触媒
体15の表面での反応と貯水槽1と浄水装置2の作用に
ついて説明する。
Hereinafter, the chemical reaction in the electrolytic cell 20 having the anode 34 of the first embodiment described above, the reaction on the surface of the oxidation promoting catalyst 15, and the operation of the water storage tank 1 and the water purification device 2 will be described.

【0062】まず、貯水槽1に源水である被処理水7が
給水弁6から給水され水位Hまで満たされるとフロート
5が働き給水が停止される。また、水位調整力により貯
水槽1に浸漬されているミキシングポンプ9の排水側1
2の誘導パイプ10に通じている連通管25を通り、イ
オン交換樹脂塔18に流れ込んでHの水位まで被処理水
で満たされる。満たされた被処理水は、フィルターA2
2,イオン交換樹脂24,フィルターB23を通り抜け
る間に、被処理水に含まれる陽イオンである金属イオン
は水素イオンに、陰イオンである塩素イオンや炭酸イオ
ンは水酸基イオンにイオン交換樹脂24の表面でイオン
交換され電気伝導度が2μs以下のイオン交換水とな
る。
First, when the water 7 to be treated, which is the source water, is supplied to the water storage tank 1 from the water supply valve 6 and the water is filled to the water level H, the float 5 is activated and the water supply is stopped. In addition, the drain side 1 of the mixing pump 9 immersed in the water tank 1 by the water level adjusting force.
The water flows into the ion exchange resin tower 18 through the communication pipe 25 communicating with the second guide pipe 10 and is filled with the water to be treated to the H level. Filled water to be treated is filtered by filter A2
2. While passing through the ion-exchange resin 24 and the filter B23, metal ions as cations contained in the water to be treated are converted into hydrogen ions, and chloride ions and carbonate ions as anions are converted into hydroxyl ions. And ion-exchanged water having an electric conductivity of 2 μs or less.

【0063】次に浄水装置2の電源を入れると、駆動モ
ータ8と制御回路21が運転状態となり、ミキシングポ
ンプ9が稼働し、陽極34と陰極32に直流電圧が付加
され吸入ファン39が稼働する。
Next, when the power of the water purification device 2 is turned on, the drive motor 8 and the control circuit 21 are in an operating state, the mixing pump 9 is operated, a DC voltage is applied to the anode 34 and the cathode 32, and the suction fan 39 is operated. .

【0064】ミキシングポンプ9が稼働すると被処理水
7の循環撹拌が開始され、吸水側11よりミキシングポ
ンプ9内に吸い込まれ排水側12に吐き出される流れが
生じることになる。その流れの勢いは誘導パイプ10を
ガイドとし高台容器13まで汲み上げられ排水口14よ
り貯水容器3内に落下する被処理水7の循環を開始す
る。
When the mixing pump 9 is operated, the circulation and agitation of the water 7 to be treated is started, and a flow is drawn from the water suction side 11 into the mixing pump 9 and discharged to the drain side 12. The momentum of the flow starts circulation of the water 7 to be treated, which is pumped up to the hill 13 using the guide pipe 10 and falls from the drain 14 into the water reservoir 3.

【0065】なお、高台容器13にまで水位が上昇する
ことにより、イオン交換樹脂塔18内の水位も上昇し、
通水路26を介しガス分離室19にイオン交換水が侵入
し、下部開口部41を通じ陽極室35にもイオン交換水
が侵入する。さらに、このイオン交換水は電解液として
働くため通気性のある陽極34を通して固体電解質膜3
6の表面を満たす。
Incidentally, as the water level rises to the hill vessel 13, the water level in the ion exchange resin tower 18 also rises,
Ion-exchanged water enters the gas separation chamber 19 through the water passage 26, and also enters the anode chamber 35 through the lower opening 41. Further, since the ion-exchanged water works as an electrolytic solution, the solid electrolyte membrane 3 is passed through an air-permeable anode 34.
Fill the surface of No. 6.

【0066】陽極34と固体電解質膜36の界面にイオ
ン交換水である電解液が満たされると、固体電解質膜3
6が吸水し、スルフォン酸基の水素イオンが活性化し、
陰極32と陽極34との導通が良くなり陽極34と固体
電解質膜36の界面でイオン交換水である電解液の電気
分解反応が開始される。
When the interface between the anode 34 and the solid electrolyte membrane 36 is filled with an electrolyte solution which is ion-exchanged water, the solid electrolyte membrane 3
6 absorbs water and activates the hydrogen ion of the sulfonic acid group,
The conduction between the cathode 32 and the anode 34 is improved, and the electrolysis reaction of the electrolytic solution, which is ion-exchanged water, starts at the interface between the anode 34 and the solid electrolyte membrane 36.

【0067】陽極34の表面材質はβ型の二酸化鉛であ
り、腐食電位が高く反応酸素を含むオゾン発生選択性触
媒として働き、電極材の溶解は殆ど無く、陽極34の表
面においてはイオン交換水である電解液中の水分子を酸
化し、化1ないし化4の反応が起こる。反応式の平衡電
位より化1と化4が主体となり、陽極34の表面から酸
素ガスとオゾンガスが発生する。
The material of the surface of the anode 34 is β-type lead dioxide, which has a high corrosion potential and functions as an ozone generation selective catalyst containing reactive oxygen. Almost no electrode material is dissolved. The water molecules in the electrolytic solution are oxidized, and the reactions of Chemical Formulas 1 to 4 occur. Oxygen gas and ozone gas are generated from the surface of the anode 34 mainly from chemical formulas 1 and 4 from the equilibrium potential of the reaction formula.

【0068】ここで、白金等のめっき表面であれば、酸
素過電圧が低くなり化1の反応のみで、オゾンの生成は
少ないが、酸素過電圧が高く、反応酸素を含むβ型の二
酸化鉛では、反応酸素が化1の反応式に触媒作用として
介在するため化4の反応が積極的に生じることとなり、
オゾンの生成が効率良く行われ、生成ガス中のオゾン濃
度は高くなる。実施の形態1では、3.5Vの直流電圧
を印加し2Aの電流が流れることにより、約50mg/
hrのオゾン発生量を得た。
Here, if the surface of the plating is made of platinum or the like, the oxygen overvoltage is low, and only the reaction of Formula 1 is performed, and the generation of ozone is small, but the oxygen overvoltage is high, and β-type lead dioxide containing reactive oxygen has the following problems. Since the reaction oxygen intervenes as a catalyst in the reaction formula 1, the reaction of the formula 4 is positively caused,
Ozone is efficiently generated, and the ozone concentration in the generated gas increases. In the first embodiment, when a DC voltage of 3.5 V is applied and a current of 2 A flows, about 50 mg /
hr ozone generation was obtained.

【0069】[0069]

【化1】 Embedded image

【0070】[0070]

【化2】 Embedded image

【0071】[0071]

【化3】 Embedded image

【0072】[0072]

【化4】 Embedded image

【0073】電解液がイオン交換水であり、水素イオン
の対イオンは殆ど無いため、過剰となる水素イオンは水
素イオン伝導型膜である固体電解質膜36を通じて陰極
室33に移動する。そのため、陽極室35内では水素イ
オン濃度の増加は見られず、pHは源水またはイオン交
換水と同じpHを維持し、被処理水7が浄水を使用し、
中性であれば中性を維持することになる。
Since the electrolytic solution is ion-exchanged water and there is almost no counter ion for hydrogen ions, excess hydrogen ions move to the cathode chamber 33 through the solid electrolyte membrane 36 which is a hydrogen ion conductive membrane. Therefore, no increase in the hydrogen ion concentration is observed in the anode chamber 35, the pH is maintained at the same pH as the source water or the ion-exchanged water, and the treated water 7 uses purified water,
If it is neutral, it will maintain neutrality.

【0074】陰極室33の陰極32はガス拡散電極30
で構成されることにより、吸入ファン39により送り込
まれてくる外気に含まれる酸素と、陰極32から負の電
位として流れてくる電子と、陽極室35で生成されて固
体電解質膜36を通過してくる水素イオンとの3つの成
分が存在し、化5の反応を起こすことにより水分子を生
成する。生成した水分子は固体電解質膜36に吸着する
か、蒸気となって排気口40から排出される。
The cathode 32 of the cathode chamber 33 is the gas diffusion electrode 30
And the oxygen contained in the outside air sent by the suction fan 39, the electrons flowing as a negative potential from the cathode 32, and the electrons generated in the anode chamber 35 and passing through the solid electrolyte membrane 36. There are three components with the coming hydrogen ions, and a water molecule is generated by causing the reaction of Chemical Formula 5. The generated water molecules are adsorbed on the solid electrolyte membrane 36 or are vaporized and discharged from the exhaust port 40.

【0075】[0075]

【化5】 Embedded image

【0076】また、固体電解質膜36に密着して取り付
けることにより、外気に含まれる酸素と、陰極32を経
由し運ばれた電子と、固体電解質膜36を通過してくる
水素イオンとを白金超微粒子の触媒作用でもって円滑に
反応させることが可能となるもので、陰極32のガス拡
散電極30と固体電解質膜36とを隔離すると水素イオ
ンの移動が不導体のガス層に邪魔されて円滑に行かず、
また陰極32に貫通穴が無いと外気に接する面から固体
電解質膜36への酸素の移動を陰極32自身が遮断する
ため円滑な3つの成分の反応ができなくなる。
Further, by being closely attached to the solid electrolyte membrane 36, oxygen contained in the outside air, electrons carried through the cathode 32, and hydrogen ions passing through the solid electrolyte membrane 36 are converted to platinum When the gas diffusion electrode 30 of the cathode 32 and the solid electrolyte membrane 36 are isolated from each other, the movement of hydrogen ions is hindered by the nonconductive gas layer, and the reaction can be smoothly performed by the catalytic action of the fine particles. Without going
If the cathode 32 has no through-hole, the cathode 32 itself blocks the movement of oxygen from the surface in contact with the outside air to the solid electrolyte membrane 36, so that the three components cannot react smoothly.

【0077】以上のように陰極32として多孔質状のガ
ス拡散電極30のような貫通穴を有する多孔性のメッシ
ュ状のものを用い、固体電解質膜36に密着して取り付
けることにより、吸排気機構37で送り込まれる酸素
と、陽極室35から固体電解質膜36を通過してくる水
素イオンと陰極32を経由して運ばれる電子により水分
を生成することは、陰極32の表面からの水素ガスの発
生を無くすことができ、水素ガスによる火災や爆発の危
険を除去することができる。また陰極室33には電解
液,浄水,イオン交換水,蒸留水、純水等を必要としな
いので電解水の処理や濃度調整の管理が必要でなくなる
ため、非常に電解セル20の構造が簡素化でき、部材の
費用も削減できる。
As described above, a porous mesh-like material having through holes such as the porous gas diffusion electrode 30 is used as the cathode 32, and is attached to the solid electrolyte membrane 36 in close contact with the cathode 32, so that a suction / exhaust mechanism is provided. The generation of water by the oxygen fed by the 37, the hydrogen ions passing from the anode chamber 35 through the solid electrolyte membrane 36, and the electrons carried through the cathode 32 is the generation of hydrogen gas from the surface of the cathode 32. Can be eliminated, and the danger of fire or explosion due to hydrogen gas can be eliminated. In addition, since the cathode chamber 33 does not require an electrolytic solution, purified water, ion-exchanged water, distilled water, pure water, or the like, it is not necessary to manage the treatment of the electrolytic water and control the concentration, and the structure of the electrolytic cell 20 is very simple. And the cost of components can be reduced.

【0078】陽極室35では主に化1と化4の反応で生
じる酸素とオゾンが生成する。その酸素とオゾンの混合
ガスを電解セル20のガス移動管42からガス分離室1
9に浮力で移動し水面上の空間部44に分離される。水
面上の空間部44が細管の導入管27でミキシングポン
プ9の吸水側11に通じているため、水面上の空間部4
4より微減圧となっているミキシングポンプ9の吸水側
11に導かれる。また、生成されるガスが多かった場合
にはその余剰ガスは空気穴28を通し大気に放出され
る。この時、オゾン分解触媒29を介して大気に放出さ
れるためオゾンの漏れによる危険性はなくなる。
In the anode chamber 35, oxygen and ozone mainly generated by the reaction of Chemical Formulas 1 and 4 are generated. The mixed gas of oxygen and ozone is supplied from the gas transfer pipe 42 of the electrolytic cell 20 to the gas separation chamber 1.
9 and moves to the space portion 44 on the water surface by buoyancy. Since the space portion 44 on the water surface communicates with the water suction side 11 of the mixing pump 9 by the introduction pipe 27 of a thin tube, the space portion 4 on the water surface
It is led to the water suction side 11 of the mixing pump 9 which is slightly reduced in pressure from 4. If a large amount of gas is generated, the surplus gas is released to the atmosphere through the air holes 28. At this time, since it is released to the atmosphere via the ozone decomposition catalyst 29, there is no danger due to ozone leakage.

【0079】即ちミキシングポンプ9で被処理水7が循
環撹拌されているため、オゾンを含む混合ガスが貯水槽
1の被処理水7とミキシングされ、貯水槽1の被処理水
7を殺菌する。ミキシングする混合ガスの量は導入管2
7の微調整弁45で調整し濃度を設定する。
That is, since the water 7 to be treated is circulated and agitated by the mixing pump 9, the mixed gas containing ozone is mixed with the water 7 to be treated in the water storage tank 1, and the water to be treated 7 in the water storage tank 1 is sterilized. The amount of mixed gas to be mixed is
The fineness is adjusted by the fine adjustment valve 45 and the concentration is set.

【0080】ここで、空気穴28が無いと、微調整弁4
5の開閉度合いにより、ミキシングポンプ9の微減圧量
と電解により生成する混合ガス量とのバランスが合わな
くなり、ガス分離室19内の水面上の空間部44の圧力
が変化し水面が上下する。最悪の場合ガス分離室19内
の水が無くなったり、水面上の空間部44が無くなり電
解水が導入管27を通り貯水槽1に流れ込むこともあ
る。しかし、空気穴28があると、電解による混合ガス
の生成量が多いと混合ガスの一部がオゾン分解触媒29
を通じ空気穴28から大気に放出され、また微減圧によ
り引かれる量が多い場合は、空気穴28から空気が入り
込み、ガス分離室19の水位を高台容器13の水位と同
じ高さで維持することができる。
Here, if there is no air hole 28, the fine adjustment valve 4
Due to the opening / closing degree of 5, the balance between the slightly reduced pressure amount of the mixing pump 9 and the mixed gas amount generated by the electrolysis is not balanced, and the pressure of the space portion 44 on the water surface in the gas separation chamber 19 changes, and the water surface moves up and down. In the worst case, the water in the gas separation chamber 19 may be exhausted, or the space 44 on the water surface may be lost, and the electrolyzed water may flow into the water storage tank 1 through the introduction pipe 27. However, when the air hole 28 is provided, if the amount of the mixed gas generated by the electrolysis is large, a part of the mixed gas will
When a large amount is discharged from the air hole 28 to the atmosphere through the air hole and is drawn by a slight decompression, air enters through the air hole 28 to maintain the water level of the gas separation chamber 19 at the same level as the water level of the elevated container 13. Can be.

【0081】このように源水の被処理水7からイオン交
換樹脂塔18によりイオン交換水を直接作ることで、被
処理水7の水質に左右されることなく、純粋で高濃度で
さらに湿潤の水電解オゾンを得ることができ、水に溶解
させても中性に近く、人体への影響も少なく、オゾン殺
菌処理した被処理水は塩素のような特有な臭いも無く、
清涼飲料水のエキスと反応して味や臭いを変質させるこ
とも少なくなり、おいしい飲料水が提供でき、排水も環
境に悪影響を及ぼさないものとなる。
As described above, the ion-exchange water is directly produced from the source water to be treated 7 by the ion-exchange resin tower 18, so that it is pure, high-concentration and moisturized regardless of the quality of the water 7 to be treated. Water electrolysis ozone can be obtained, even when dissolved in water, it is almost neutral, there is little effect on the human body, and the treated water that has been ozone sterilized has no peculiar smell like chlorine,
Reacting with the extract of the soft drink to lessen the taste and odor is lessened, so that a delicious drink can be provided, and the drainage does not adversely affect the environment.

【0082】また、貯水槽1中の被処理水7に含まれる
オゾン量が増加し、余剰オゾンが生成すると高台容器1
3の上層空間でのオゾンガス濃度が上昇する。このオゾ
ンガス濃度をオゾンガスセンサー46で感知し、制御回
路21の直流電圧値を変化させることにより被処理水7
中のオゾン濃度をコントロールすることができる。
When the amount of ozone contained in the water 7 to be treated in the water storage tank 1 increases and surplus ozone is generated,
3, the ozone gas concentration in the upper space increases. This ozone gas concentration is sensed by an ozone gas sensor 46 and the DC voltage of the
The ozone concentration in can be controlled.

【0083】水電解式オゾンは純粋で、高濃度である特
徴以外に、混合ガス自体の湿度が高い特徴を持つ。この
特徴は酸素分子やオゾン分子が水蒸気分子と分子間引力
で引き付け合い、馴染み易くなっていることを示唆し、
ヘンリーの法則の分圧差による水への溶解性の差以上
に、電解式オゾンの方が解け易い。
The water electrolysis type ozone has a feature that the humidity of the mixed gas itself is high in addition to a feature of being pure and having a high concentration. This feature suggests that oxygen molecules and ozone molecules are attracted to water vapor molecules by intermolecular attraction, making it easier to be familiar with.
Electrolytic ozone is easier to dissolve than the difference in solubility in water due to the partial pressure difference according to Henry's law.

【0084】即ち水電解式オゾンを使った貯水槽1の浄
水装置2では、貯水槽1の水面上層空間のオゾンガス濃
度のセンシングにより水中オゾン濃度を推定可能であ
り、安価なオゾンガスセンサー46での制御が容易にで
きる。
That is, in the water purifier 2 of the water storage tank 1 using the water electrolysis type ozone, it is possible to estimate the underwater ozone concentration by sensing the ozone gas concentration in the space above the water surface of the water storage tank 1, and control with the inexpensive ozone gas sensor 46. Can be easily done.

【0085】本発明の実施の形態1においては0.1p
pmのオゾンガス濃度で、抵抗変化の大きい錫をドープ
した酸化インジウム薄膜のオゾンガスセンサー46を使
用し、抵抗変化を信号として捉らえ、電解セル20に印
加する電圧を制御することで、貯水槽1内の水中オゾン
濃度を50μg/リットル以下に安定化することができ
た。
In the first embodiment of the present invention, 0.1 p
By using a tin-doped indium oxide thin film ozone gas sensor 46 with an ozone gas concentration of pm and a large resistance change, the resistance change is captured as a signal, and the voltage applied to the electrolytic cell 20 is controlled to thereby control the water storage tank 1. The ozone concentration in the water in the inside could be stabilized to 50 μg / liter or less.

【0086】そして、オゾンガスを被処理水7に混合す
るだけで殺菌効果はあるが、有機物を分解した後の副生
成物の問題が生じる。即ち浄水中に含まれるわずかなフ
ミン酸等の有機物が分解して蓚酸やギ酸等の低分子量の
有機酸が生成しpHが変化する。また、飲用すると人の
健康に害を生じるホルムアルデヒドも生成するといわれ
ている。
Although the ozone gas is mixed only with the water 7 to be treated, it has a bactericidal effect, but there is a problem of by-products after decomposing organic substances. That is, a small amount of organic substances such as humic acid contained in the purified water is decomposed, and low-molecular-weight organic acids such as oxalic acid and formic acid are generated, and the pH changes. It is also said that drinking alcohol produces formaldehyde, which is harmful to human health.

【0087】しかし、先に説明した実施の形態1におい
ては貯水容器3内の被処理水7中には多孔質状のチタン
材に白金を表面処理した酸化促進触媒体15が配置され
ていて、水中のオゾンと白金触媒とが接触すると化6か
ら化9の反応が進みヒドロキシルラジカルが生成すると
いわれ、このヒドロキシルラジカルはオゾン以上に酸化
力が強くオゾンだけでは分解しない低分子量の有機物を
も分解する。
However, in the first embodiment described above, in the water 7 to be treated in the water storage container 3, the oxidation-promoting catalyst 15 obtained by surface-treating a porous titanium material with platinum is disposed. It is said that when ozone in water comes into contact with a platinum catalyst, the reaction of chemical formulas (6) to (9) proceeds to generate hydroxyl radicals. These hydroxyl radicals have a higher oxidizing power than ozone and also decompose low molecular weight organic substances that cannot be decomposed by ozone alone. .

【0088】[0088]

【化6】 Embedded image

【0089】[0089]

【化7】 Embedded image

【0090】[0090]

【化8】 Embedded image

【0091】[0091]

【化9】 Embedded image

【0092】よって、ミキシングポンプ9により貯水容
器3内を循環するオゾンを含む被処理水7は酸化促進触
媒体15の表面でヒドロキシルラジカルを生成し、有機
物の酸化分解を促進させる。従って有害といわれている
蓚酸やギ酸やホルムアルデヒドを効率良く安全な二酸化
炭素と水に分解する。図3に酸化促進触媒の有無による
有機物濃度の変化を過マンガン酸カリウムの消費量を指
標としてプロットした。試験に供した有機物は蓚酸を過
マンガン酸カリウムの消費量が約10mg/リットルに
なるように添加した。
Thus, the to-be-treated water 7 containing ozone circulated in the water storage container 3 by the mixing pump 9 generates hydroxyl radicals on the surface of the oxidation-promoting catalyst 15 to promote oxidative decomposition of organic substances. Therefore, oxalic acid, formic acid, and formaldehyde, which are said to be harmful, are efficiently decomposed into safe carbon dioxide and water. FIG. 3 plots the change in the concentration of organic matter depending on the presence or absence of the oxidation-promoting catalyst, with the consumption of potassium permanganate as an index. Oxalic acid was added to the organic substances subjected to the test such that the consumption of potassium permanganate was about 10 mg / liter.

【0093】図3の曲線Aで示すように、オゾンのみで
の酸化では30%程度しか蓚酸を分解することができな
かったのに対し、曲線Bのオゾンと触媒を共存させた場
合には約100%の分解ができている。即ちオゾンの酸
化力だけでは不十分であった有機物の分解反応が、酸化
促進触媒の共存だけで促進されたことはオゾンより酸化
力の強いヒドロキシルラジカルが生成していることを示
唆する。
As shown by the curve A in FIG. 3, oxalic acid could be decomposed only by about 30% in the oxidation using only ozone, whereas when the catalyst was coexisted with the ozone in the curve B, about 30% was decomposed. 100% decomposition has been achieved. In other words, the fact that the decomposition reaction of organic substances, which was insufficient only by the oxidizing power of ozone, was promoted only by the coexistence of the oxidation-promoting catalyst, suggesting that hydroxyl radicals having a stronger oxidizing power than ozone were generated.

【0094】(実施の形態2)図4は本発明の実施の形
態2における貯水槽とその浄水装置との構成を示すもの
である。なお実施の形態1と同じ構成部分については同
一符号を付与し、詳細な説明は省略する。
(Embodiment 2) FIG. 4 shows a configuration of a water storage tank and a water purification device thereof according to Embodiment 2 of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0095】貯水槽1および浄水装置2の構成は実施の
形態1と同じであり、酸化促進触媒体15が高台容器1
3の排水口14の出口に位置し、ミキシングポンプ9の
排水側から被処理水が反応容器47内に導入されるよう
に取り付けられた構成としたものであり、酸化促進触媒
体15の材料も実施の形態1と同様の多孔質のチタン材
に白金処理を施したものを用いた。
The structures of the water storage tank 1 and the water purification device 2 are the same as those of the first embodiment.
3 is installed at the outlet of the drain port 14 so that the water to be treated is introduced into the reaction vessel 47 from the drain side of the mixing pump 9. The same porous titanium material as in the first embodiment, which was subjected to a platinum treatment, was used.

【0096】以下、上記で説明した実施の形態2の作用
について説明するが、電解セル20中の化学反応等は実
施の形態1と同じであり省略する。
Hereinafter, the operation of the second embodiment described above will be described, but the chemical reactions and the like in the electrolytic cell 20 are the same as those of the first embodiment, and a description thereof will be omitted.

【0097】ミキシングポンプ9が稼働すると被処理水
の循環撹拌が開始され、吸水側11よりミキシングポン
プ9内に吸い込まれ排水側12に吐き出される流れが生
じる。この流れの勢いは誘導パイプ10をガイドとし高
台容器13にまで汲み上げられ排水口14より流れ出
す。この時、酸化促進触媒の入った反応容器47が排水
口14に固定されているため、循環する被処理水は分散
することなくすべて反応容器47内に入り酸化促進触媒
体15と接触することとなる。即ち被処理水7に含まれ
るオゾンは酸化促進触媒体15に確実に触れヒドロキシ
ルラジカルを効率良く生成し有機物の分解をさらに促進
することとなる。
When the mixing pump 9 is operated, the circulation and stirring of the water to be treated is started, and a flow is drawn from the water suction side 11 into the mixing pump 9 and discharged to the drain side 12. The momentum of this flow is pumped up to the hill vessel 13 using the guide pipe 10 as a guide, and flows out from the drain port 14. At this time, since the reaction vessel 47 containing the oxidation promoting catalyst is fixed to the drain port 14, all of the circulating water to be treated enters the reaction vessel 47 without being dispersed and comes into contact with the oxidation promoting catalyst body 15. Become. That is, the ozone contained in the water to be treated 7 surely touches the oxidation promoting catalyst 15 to efficiently generate hydroxyl radicals and further promote the decomposition of organic substances.

【0098】(実施の形態3)図5は本発明の実施の形
態3における貯水槽とその浄水装置との構成を示すもの
である。なお実施の形態1と同じ構成部分については同
一符号を付与し、詳細な説明は省略する。
(Embodiment 3) FIG. 5 shows a configuration of a water storage tank and a water purification device thereof according to Embodiment 3 of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0099】貯水槽1および浄水装置2の構成は実施の
形態1と同じであり、酸化促進触媒体15をミキシング
ポンプ9上の誘導パイプ10に充填したもので、誘導パ
イプ10の内壁に固定したものである。酸化促進触媒体
15の材料は実施の形態1と同様の多孔質のチタン材に
白金処理を施したものを用いた。
The structures of the water storage tank 1 and the water purification device 2 are the same as those of the first embodiment. The oxidation promoting catalyst 15 is filled in the guide pipe 10 on the mixing pump 9 and is fixed to the inner wall of the guide pipe 10. Things. As the material of the oxidation-promoting catalyst body 15, the same porous titanium material as in the first embodiment, which was subjected to a platinum treatment, was used.

【0100】以下、上記で説明した実施の形態3の作用
について説明するが、電解セル20中の化学反応等は実
施の形態1と同じであり省略する。
Hereinafter, the operation of the third embodiment described above will be described, but the chemical reaction and the like in the electrolytic cell 20 are the same as in the first embodiment, and a description thereof will be omitted.

【0101】ミキシングポンプ9が稼働すると被処理水
7の循環撹拌が開始され、吸水側11よりミキシングポ
ンプ9内に吸い込まれ排水側12に吐き出される流れが
生じる。この流れの勢いは誘導パイプ10をガイドとし
高台容器13にまで汲み上げられ排水口14より流れ出
すが、この時、酸化促進触媒体15がミキシングポンプ
9の上にある誘導パイプ10内に固定されることによ
り、循環する被処理水7は分散することなくすべて酸化
促進触媒体15と接触する。また、オゾンが十分被処理
水7中に含まれる時点にて酸化促進触媒体15に接触す
ることはオゾンが自己分解する前にヒドロキシルラジカ
ルを効率的に生成し有機物の分解をさらに促進すること
になる。
When the mixing pump 9 is operated, the circulation and agitation of the water 7 to be treated is started, and a flow is drawn from the water suction side 11 into the mixing pump 9 and discharged to the drain side 12. The momentum of this flow is pumped up to the hill vessel 13 using the guide pipe 10 as a guide, and flows out from the drain port 14. At this time, the oxidation promoting catalyst 15 is fixed in the guide pipe 10 above the mixing pump 9. As a result, the circulating water 7 comes into contact with the oxidation-promoting catalyst 15 without being dispersed. In addition, contacting the oxidation-promoting catalyst 15 at a time when ozone is sufficiently contained in the water-to-be-treated 7 means that hydroxyl radicals are efficiently generated before the ozone is self-decomposed, thereby further promoting the decomposition of organic substances. Become.

【0102】(実施の形態4)図6は本発明の実施の形
態4における貯水槽とその浄水装置との構成を示すもの
である。なお実施の形態1と同じ構成部分については同
一符号を付与し、詳細な説明は省略する。
(Embodiment 4) FIG. 6 shows a configuration of a water storage tank and a water purification device thereof according to Embodiment 4 of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0103】貯水槽1の被処理水7の給排水機能を持
ち、貯水槽1の被処理水7を循環撹拌するミキシングポ
ンプ9の回転羽根48の表面を酸化促進触媒体15で形
成したもので、その他の構成については実施の形態1と
同様である。
The mixing pump 9 has a function of supplying and draining the water 7 to be treated in the water storage tank 1 and circulates and agitates the water 7 to be treated in the water storage tank 1. Other configurations are the same as those of the first embodiment.

【0104】以下、上記で説明した実施の形態4の作用
について説明する。ミキシングポンプ9が稼働すると被
処理水7の循環撹拌が開始され、吸水側11よりミキシ
ングポンプ9内に吸い込まれ排水側12に吐き出される
流れが生じる。この流れの勢いは誘導パイプ10をガイ
ドとし高台容器13にまで汲み上げられ排水口14より
流れ出すが、この時、酸化促進触媒体15がミキシング
ポンプ9の回転羽根48に形成しておくことにより、循
環する被処理水は分散することなく強制的に酸化促進触
媒体15と接触することとなる。即ち被処理水に含まれ
るオゾンは酸化促進触媒体15に触れヒドロキシルラジ
カルを効率的に生成し有機物の分解をさらに促進するも
のである。また、オゾンの被処理水7への溶解間近で反
応を行うことができ、オゾンが自己分解することなく高
濃度の溶解時点にて反応させることにより一層効率的に
有機物の分解が可能である。
Hereinafter, the operation of the above-described fourth embodiment will be described. When the mixing pump 9 operates, the circulation and agitation of the water 7 to be treated is started, and a flow is drawn from the water suction side 11 into the mixing pump 9 and discharged to the drain side 12. The momentum of this flow is pumped up to the hill vessel 13 using the guide pipe 10 as a guide, and flows out from the drain port 14. At this time, the oxidation promoting catalyst 15 is formed on the rotating blades 48 of the mixing pump 9 to circulate. The water to be treated comes into contact with the oxidation-promoting catalyst body 15 without being dispersed. That is, the ozone contained in the water to be treated touches the oxidation promoting catalyst 15 to efficiently generate hydroxyl radicals and further promote the decomposition of organic substances. Further, the reaction can be performed in the vicinity of the dissolution of ozone in the water 7 to be treated, and the organic substance can be decomposed more efficiently by reacting the ozone at the time of high concentration dissolution without self-decomposition.

【0105】(実施の形態5)図7は本発明の実施の形
態5における貯水槽とその浄水装置との構成を示すもの
である。なお実施の形態1と同じ構成部分については同
一符号を付与し、詳細な説明は省略する。
(Embodiment 5) FIG. 7 shows a configuration of a water storage tank and a water purification device thereof according to Embodiment 5 of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0106】この浄水装置2には直流電圧印加装置49
を有し、誘導パイプ10に固定された酸化促進触媒体1
5がカソード50に、酸化促進触媒体15とは電気絶縁
性を持ち、酸化促進触媒体15と相対して誘導パイプ1
0内に固定された対極部材51がアノード52になるよ
う、被処理水7を介し直流電圧を印加したもので、その
他の構成については実施の形態1と同様である。
This water purification device 2 has a DC voltage application device 49.
And the oxidation-promoting catalyst 1 fixed to the induction pipe 10
Reference numeral 5 denotes a cathode 50, which has an electrical insulation property with respect to the oxidation promoting
A direct current voltage is applied via the water to be treated 7 so that the counter electrode member 51 fixed in 0 becomes the anode 52, and other configurations are the same as those in the first embodiment.

【0107】酸化促進触媒体15と対極部材51の材質
はチタンに白金処理を施したものを用い、直流電圧印加
装置49による印加電圧は変動が可能とし、有機物が過
マンガン酸カリウム消費量で5mg/リットル以上では
5Vの電位を、5mg/リットル以下では3Vの電位を
印加した。
The material of the oxidation accelerating catalyst 15 and the counter electrode member 51 is a material obtained by subjecting titanium to platinum treatment. The voltage applied by the DC voltage applying device 49 can be varied, and the organic matter is 5 mg in terms of potassium permanganate consumption. A potential of 5 V was applied at a rate of 5 V / liter or more, and a potential of 3 V was applied at a rate of 5 mg / liter or less.

【0108】以下、上記で説明した実施の形態5の作用
について説明する。ミキシングポンプ9が稼働すると被
処理水7の循環撹拌が開始され、吸水側11より電解セ
ル20で生成したオゾンを含む被処理水7がミキシング
ポンプ9内に吸い込まれ排水側12に吐き出される流れ
が生じる。この流れの勢いは誘導パイプ10をガイドと
し高台容器13にまで汲み上げられ排水口14より流れ
出すが、この時、酸化促進触媒体15が誘導パイプ10
内に固定されていると酸化促進触媒体の表面にて化6か
ら化9の反応を生じ、オゾンより酸化力の強いヒドロキ
シルラジカルが生成し、有機物との分解を促進させる。
さらにマイナスの電位を印加させると化10の反応によ
りオゾンと水素イオン(その他カチオン等でも良い)と
電子との反応によりオゾン分解が加速される。このオゾ
ン分解の加速は化6から化9の反応も加速させることに
より、ヒドロキシルラジカルの生成が多くなり有機物と
の分解が進む。
The operation of the fifth embodiment described above will be described below. When the mixing pump 9 is operated, the circulation and stirring of the water to be treated 7 is started, and the water to be treated 7 containing ozone generated in the electrolytic cell 20 is sucked into the mixing pump 9 from the water suction side 11 and discharged to the drain side 12. Occurs. The momentum of this flow is pumped up to the hill vessel 13 using the guide pipe 10 as a guide, and flows out from the drain port 14. At this time, the oxidation promoting catalyst 15 is
When immobilized inside, the reaction of Chemical formula 6 to Chemical formula 9 occurs on the surface of the oxidation-promoting catalyst, and a hydroxyl radical having a stronger oxidizing power than ozone is generated, thereby promoting decomposition with organic substances.
Further, when a negative potential is applied, the decomposition of ozone is accelerated by the reaction of ozone with hydrogen ions (other cations and the like) and electrons by the reaction of Chemical Formula 10. The acceleration of the ozonolysis also accelerates the reactions of Chemical formulas 6 to 9 to increase the production of hydroxyl radicals and promote the decomposition with organic substances.

【0109】[0109]

【化10】 Embedded image

【0110】この分解の加速は印加電圧に比例するもの
で、印加電圧を高くすると分解が早められる。有機物の
少ない状態で印加電圧を過剰に高くすると無意味なオゾ
ン分解だけが加速することになり反応途中に生成するヒ
ドロキシルラジカルを有効に利用できないだけで無駄で
ある。そこで直流電圧印加装置49を可変にし、適度な
分解速度を選定できるようにする。
The acceleration of the decomposition is proportional to the applied voltage, and the higher the applied voltage, the faster the decomposition. If the applied voltage is excessively increased in a state where the amount of organic substances is small, only meaningless ozonolysis is accelerated, and the hydroxyl radical generated during the reaction cannot be effectively used. Therefore, the DC voltage applying device 49 is made variable so that an appropriate decomposition rate can be selected.

【0111】また、本実施例では対極部材51にアノー
ド52として耐食性が必要であり、チタンに白金を表面
処理を施した電極を用いたが、酸化促進触媒体15と対
極部材51との材質を同様にすることで、交流電圧を印
加しても同様の効果が得られる。
Further, in this embodiment, the counter electrode member 51 is required to have corrosion resistance as the anode 52, and an electrode obtained by subjecting titanium to platinum surface treatment is used. By doing the same, the same effect can be obtained even if an AC voltage is applied.

【0112】なお、本実施例に白金およびチタンに白金
を表面処理したものを酸化促進触媒体15として用いた
のは白金が適度なオゾン分解速度を有するものであると
共に、オゾンとの触媒による摩滅を少なくするためであ
る。オゾン分解触媒として活性炭や二酸化マンガン,酸
化銅,二酸化珪素,アルミナ,酸化鉄等があるが、活性
炭や二酸化マンガンはオゾン分解性能が大きすぎ、その
他の触媒を含め徐々にではあるが粉化と摩滅の傾向が高
く、飲料水の殺菌には不向きであり、白金とチタンの組
合せが最も良い。
In this example, platinum and a surface-treated titanium with platinum were used as the oxidation-promoting catalyst 15 because platinum had an appropriate ozone decomposition rate and abrasion with ozone by the catalyst. This is to reduce the number. Activated carbon and manganese dioxide, copper oxide, silicon dioxide, alumina, iron oxide, etc. are available as ozonolysis catalysts. Activated carbon and manganese dioxide have too large an ozone decomposition performance, and powdering and attrition are slow, including other catalysts. The combination of platinum and titanium is the best for sterilization of drinking water.

【0113】また、多孔質体とはエキスパンドメタルや
チタン繊維の焼結体を示すものであるが、多孔質でなく
とも効果がある。しかし表面積を大きくするには多孔質
体を使用するのが有効である。
The porous body refers to a sintered body of expanded metal or titanium fiber, but it is effective even if it is not porous. However, it is effective to use a porous body to increase the surface area.

【0114】本実施例においては電解セル20とガス分
離室19とは貯水槽1の水位Hよりも高く設置し、ミキ
シングポンプ9が停止した時、電解セル20の陽極室3
5からイオン交換水が自動的に排水され、蓄電池機能に
よりミキシングポンプ9の停止後もしばらく電解セル2
0への電位の印加を継続することで電極の劣化を極力防
止する構成としたが、水槽と浄化装置との構成を規定す
るものではない。
In this embodiment, the electrolytic cell 20 and the gas separation chamber 19 are installed higher than the water level H of the water storage tank 1, and when the mixing pump 9 is stopped, the anode chamber 3 of the electrolytic cell 20 is stopped.
5, the ion-exchanged water is automatically drained from the electrolysis cell 2 by the storage battery function even after the mixing pump 9 is stopped.
Although the configuration in which deterioration of the electrodes is prevented as much as possible by continuing application of the potential to 0, the configuration of the water tank and the purification device is not specified.

【0115】[0115]

【発明の効果】以上のように本発明は、陰極室と陽極室
と、前記陰極室と陽極室とを仕切る固体電解質膜とを有
する電解セルと、被処理水を蓄え、かつ被処理水中にお
いてオゾンに接触してヒドロキシルラジカルを生成する
酸化促進触媒体を内設した貯水槽とを具備していて、前
記電解セルで水の電気分解によって生成するオゾンを含
むガスを前記貯水槽の被処理水中に導入管により導入す
るように構成したので、水の電気分解で生成する純粋で
高濃度の湿潤オゾンは比較的容易に被処理水に溶解する
と共に被処理水中に含まれる雑菌や有機物と反応を起こ
し、さらに酸化促進触媒体とオゾンが反応する過程で酸
化力の高いヒドロキシルラジカルを生じることでオゾン
だけでは分解できない低分子の有機物を分解し浄水効果
を高めることができる。
As described above, the present invention relates to an electrolytic cell having a cathode compartment, an anode compartment, a solid electrolyte membrane for partitioning the cathode compartment and the anode compartment, storing water to be treated, and A water tank provided with an oxidation-promoting catalyst for generating hydroxyl radicals in contact with ozone, wherein a gas containing ozone generated by electrolysis of water in the electrolytic cell is treated in the water to be treated in the water tank. Pure and high-concentration wet ozone generated by the electrolysis of water dissolves relatively easily in the water to be treated and reacts with various bacteria and organic substances contained in the water to be treated. Oxygen is generated, and hydroxyl radicals with high oxidizing power are generated in the process of reaction between the oxidation promoting catalyst and ozone, thereby decomposing low molecular organic substances that cannot be decomposed by ozone alone and improving the water purification effect. That.

【0116】また、貯水槽中の被処理水の給排水機能を
持ち、かつ被処理水を循環撹拌するミキシングポンプを
貯水槽内に設け、前記ミキシングポンプの吸水側にオゾ
ンを含むガスを導入し、ミキシングポンプの排水側に酸
化促進触媒体を有するもので、ミキシングポンプにより
オゾンと被処理水との溶解を効率的に行うと共に、溶解
しているオゾン濃度の高いミキシングポンプの排水側に
酸化促進触媒体を設置することにより殺菌と浄化効果を
高めることができる。
A mixing pump having a function of supplying and draining the water to be treated in the water storage tank and circulating and stirring the water to be treated is provided in the water storage tank, and a gas containing ozone is introduced into the water absorption side of the mixing pump. The mixing pump has an oxidation-promoting catalyst on the drain side. The mixing pump efficiently dissolves ozone and the water to be treated, and the oxidation-promoting catalyst is placed on the drain side of the dissolved high-concentration ozone mixing pump. By disposing the medium, the sterilizing and purifying effects can be enhanced.

【0117】また、ミキシングポンプの排水側から被処
理水が導入される反応容器を設け、反応容器内には多孔
質状の酸化促進触媒体が設けられたもので、反応容器内
の表面積の大きい多孔質状の酸化促進触媒体で集中的に
効率良く殺菌と有機物の分解が行われる。
A reaction vessel into which water to be treated is introduced from the drain side of the mixing pump is provided, and a porous oxidation-promoting catalyst is provided in the reaction vessel, and the reaction vessel has a large surface area. Sterilization and decomposition of organic substances are intensively and efficiently performed by the porous oxidation-promoting catalyst.

【0118】また、貯水槽中の被処理水の給排水機能を
持ち、かつ被処理水を循環撹拌するミキシングポンプを
貯水槽内に設け、前記ミキシングポンプの吸水側にオゾ
ンを含むガスを導入し、ミキシングポンプの回転羽根の
表面を酸化促進触媒体で形成したもので、回転羽根で被
処理水を強制的に循環撹拌すると同時にオゾンの酸化促
進を進めることで、より確実に殺菌と有機物の分解が行
われる。
A mixing pump having a function of supplying and draining the water to be treated in the water storage tank and circulating and stirring the water to be treated is provided in the water storage tank, and a gas containing ozone is introduced into the water absorption side of the mixing pump. The surface of the mixing pump's rotating blades is made of an oxidation-promoting catalyst.Forcibly circulating and agitating the water to be treated with the rotating blades, and at the same time promoting the oxidation of ozone, sterilization and decomposition of organic substances are more reliably achieved. Done.

【0119】また、酸化促進触媒体と、酸化促進触媒体
に対して電気絶縁性を持つ対極部材とに、被処理水を介
して電圧を印加し、酸化促進触媒体に電位を印加するこ
とで、オゾンの分解が加速されると共にヒドロキシルラ
ジカルの生成も活発化することになり殺菌と有機物の分
解がより推進される。
Further, a voltage is applied to the oxidation-promoting catalyst and the counter electrode member having electrical insulation properties with respect to the oxidation-promoting catalyst via water to be treated, and a potential is applied to the oxidation-promoting catalyst. In addition, the decomposition of ozone is accelerated and the generation of hydroxyl radicals is activated, so that sterilization and decomposition of organic substances are further promoted.

【0120】また、印加する電圧を変動可能とし、被処
理水の汚染度合いに応じ、即ち雑菌や有機物の量に応じ
てオゾン分解の速度を調節し、無駄なオゾン分解を避け
るようにしたものである。
Further, the applied voltage can be varied, and the rate of ozonolysis is adjusted according to the degree of contamination of the water to be treated, that is, according to the amount of various bacteria and organic substances, so that useless ozonolysis is avoided. is there.

【0121】また、直流電圧印加装置により対極部材を
アノードに酸化促進触媒体をカソードとなるように直流
電圧を印加することにより、還元作用を持つカソードに
より酸化促進を効率的に行うことができる。
Further, by applying a DC voltage by using a DC voltage applying device so that the counter electrode member becomes the anode and the oxidation promoting catalyst becomes the cathode, the oxidation can be efficiently promoted by the cathode having a reducing action.

【0122】また、酸化促進触媒体を白金、および/ま
たは、チタンに白金を表面処理した材質とすることによ
り、汎用性があり、適度なオゾン分解特性を持ち、耐食
性の高い白金やチタンを用いることで無駄なオゾン分解
を避けることができる。
Further, since the oxidation promoting catalyst is made of platinum and / or a material obtained by surface-treating titanium to titanium, platinum or titanium having general versatility, appropriate ozonolysis characteristics and high corrosion resistance is used. This can avoid unnecessary ozonolysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における貯水槽とその浄
水装置の概略図
FIG. 1 is a schematic diagram of a water storage tank and a water purification device thereof according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態1における電解セルの縦断
面図
FIG. 2 is a longitudinal sectional view of the electrolytic cell according to Embodiment 1 of the present invention.

【図3】本発明の実施の形態1における酸化促進触媒体
の有無による有機物の分解速度を示すもので過マンガン
酸カリウム消費量と処理時間との相関を示すグラフ
FIG. 3 is a graph showing a decomposition rate of an organic substance depending on the presence or absence of an oxidation-promoting catalyst in Embodiment 1 of the present invention, and showing a correlation between potassium permanganate consumption and treatment time.

【図4】本発明の実施の形態2における貯水槽とその浄
水装置の概略図
FIG. 4 is a schematic diagram of a water storage tank and a water purification device thereof according to Embodiment 2 of the present invention.

【図5】本発明の実施の形態3における貯水槽とその浄
水装置の概略図
FIG. 5 is a schematic diagram of a water storage tank and a water purification device thereof according to Embodiment 3 of the present invention.

【図6】本発明の実施の形態4における貯水槽とその浄
水装置の概略図
FIG. 6 is a schematic diagram of a water storage tank and a water purification device thereof according to Embodiment 4 of the present invention.

【図7】本発明の実施の形態5における貯水槽とその浄
水装置の概略図
FIG. 7 is a schematic diagram of a water storage tank and a water purification device thereof according to Embodiment 5 of the present invention.

【符号の説明】[Explanation of symbols]

1 貯水槽 2 浄水装置 7 被処理水 9 ミキシングポンプ 11 吸水側 12 排水側 15 酸化促進触媒体 19 ガス分離室 20 電解セル 27 導入管 32 陰極 33 陰極室 34 陽極 35 陽極室 36 固体電解質膜 47 反応容器 48 回転羽根 49 直流電圧印加装置 50 カソード 51 対極部材 52 アノード DESCRIPTION OF SYMBOLS 1 Water storage tank 2 Water purifier 7 Treated water 9 Mixing pump 11 Water absorption side 12 Drainage side 15 Oxidation promotion catalyst 19 Gas separation chamber 20 Electrolysis cell 27 Introducing pipe 32 Cathode 33 Cathode chamber 34 Anode 35 Anode chamber 36 Solid electrolyte membrane 47 Reaction Container 48 Rotating blade 49 DC voltage application device 50 Cathode 51 Counter electrode member 52 Anode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 陰極室と、陽極室と、前記陰極室と陽極
室とを仕切る固体電解質膜とを有する電解セルと、被処
理水を蓄え、かつ被処理水中においてオゾンに接触して
ヒドロキシルラジカルを生成する酸化促進触媒体を内設
した貯水槽とを具備していて、前記電解セルで水の電気
分解によって生成するオゾンを含むガスを前記貯水槽の
被処理水中に導入管により導入するように構成したこと
を特徴とする浄水装置を備えた貯水槽。
1. An electrolytic cell having a cathode chamber, an anode chamber, and a solid electrolyte membrane separating the cathode chamber and the anode chamber; a water to be treated; And a water tank provided with an oxidation-promoting catalyst body for generating water, and a gas containing ozone generated by electrolysis of water in the electrolytic cell is introduced into the water to be treated in the water tank by an introduction pipe. A water tank provided with a water purification device, characterized in that:
【請求項2】 貯水槽中の被処理水の給排水機能を持
ち、かつ被処理水を循環撹拌するミキシングポンプを貯
水槽内に設け、前記ミキシングポンプの吸水側にオゾン
を含むガスを導入し、ミキシングポンプの排水側に酸化
促進触媒体を配設したことを特徴とする請求項1記載の
浄水装置を備えた貯水槽。
2. A mixing pump having a function of supplying and discharging water to be treated in a water storage tank and circulating and stirring the water to be treated is provided in the water storage tank, and a gas containing ozone is introduced into a water absorption side of the mixing pump; The water tank provided with the water purification device according to claim 1, wherein an oxidation promoting catalyst is disposed on a drain side of the mixing pump.
【請求項3】 ミキシングポンプの排水側から被処理水
が導入される反応容器を設け、前記反応容器内には多孔
質状の酸化促進触媒体を設けたことを特徴とする請求項
2記載の浄水装置を備えた貯水槽。
3. The reaction vessel according to claim 2, wherein a reaction vessel into which water to be treated is introduced from a drain side of the mixing pump is provided, and a porous oxidation promoting catalyst is provided in the reaction vessel. Water tank with water purification device.
【請求項4】 貯水槽中の被処理水の給排水機能を持
ち、かつ被処理水を循環撹拌するミキシングポンプを貯
水槽内に設け、前記ミキシングポンプの吸水側にオゾン
を含むガスを導入し、ミキシングポンプの回転羽根の表
面を酸化促進触媒体で形成したことを特徴とする請求項
1記載の浄水装置を備えた貯水槽。
4. A mixing pump having a function of supplying and draining water to be treated in a water storage tank and circulating and stirring the water to be treated is provided in the water storage tank, and a gas containing ozone is introduced into a water absorption side of the mixing pump. The water tank provided with the water purifier according to claim 1, wherein the surface of the rotary blade of the mixing pump is formed of an oxidation promoting catalyst.
【請求項5】 酸化促進触媒体と、酸化促進触媒体に対
して電気絶縁性を持つ対極部材とに、被処理水を介して
電圧を印加するように構成したことを特徴とする請求項
1から4のいずれか1項に記載の浄水装置を備えた貯水
槽。
5. The apparatus according to claim 1, wherein a voltage is applied to the oxidation-promoting catalyst and a counter electrode member having electrical insulation with respect to the oxidation-promoting catalyst via water to be treated. A water storage tank provided with the water purification device according to any one of Items 1 to 4.
【請求項6】 酸化促進触媒体と対極部材とに印加する
電圧を変動可能としたことを特徴とする請求項5記載の
浄水装置を備えた貯水槽。
6. A water storage tank provided with a water purification device according to claim 5, wherein the voltage applied to the oxidation promoting catalyst and the counter electrode member can be varied.
【請求項7】 直流電圧印加装置により、対極部材をア
ノードに、酸化促進触媒体をカソードとなるように直流
電圧を印加したことを特徴とする請求項5または6記載
の浄水装置を備えた貯水槽。
7. A water storage provided with a water purification device according to claim 5, wherein a DC voltage is applied by a DC voltage application device such that the counter electrode member serves as an anode and the oxidation promoting catalyst serves as a cathode. Tank.
【請求項8】 酸化促進触媒体を白金、および/また
は、チタンに白金を表面処理した材質としたことを特徴
とする請求項1から7のいずれか1項に記載の浄水装置
を備えた貯水槽。
8. The water storage provided with a water purification device according to claim 1, wherein the oxidation-promoting catalyst is made of platinum and / or a material obtained by surface-treating platinum on titanium. Tank.
JP10342859A 1998-12-02 1998-12-02 Water storage tank provided with water purifier Pending JP2000169988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10342859A JP2000169988A (en) 1998-12-02 1998-12-02 Water storage tank provided with water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10342859A JP2000169988A (en) 1998-12-02 1998-12-02 Water storage tank provided with water purifier

Publications (1)

Publication Number Publication Date
JP2000169988A true JP2000169988A (en) 2000-06-20

Family

ID=18357054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10342859A Pending JP2000169988A (en) 1998-12-02 1998-12-02 Water storage tank provided with water purifier

Country Status (1)

Country Link
JP (1) JP2000169988A (en)

Similar Documents

Publication Publication Date Title
JP3988827B2 (en) Method and apparatus for producing negative and positive redox potential (ORP) water
JP5764179B2 (en) Electrolyzer for generating pH-controlled hypohalous acid aqueous solution for sterilization applications
JP4116726B2 (en) Electrochemical treatment method and apparatus
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
US6398928B1 (en) Electrolytic ozone generating method, system and ozone water producing system
JP4932529B2 (en) Water treatment method
JP4865651B2 (en) Wastewater treatment method and apparatus
JP3783972B2 (en) Cyanide water treatment method
JPH09299953A (en) Electrolytic water generator
JP2001293478A (en) Waste water treating device
JP2005146344A (en) Electrode for oxygen reduction, device and method for producing hydrogen peroxide using the electrode, water treatment device and method using the device and method for producing hydrogen peroxide, and washing machine
JP2001262636A (en) Water storage tank equipped with water purifier
JP2000169988A (en) Water storage tank provided with water purifier
JP2003190954A (en) Method for sterilizing seawater and apparatus therefor
JP2004313780A (en) Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash
JP2000265292A (en) Water storage tank provided with water purifier
JP2000160379A (en) Electrolytic ozonizer and purified water tank provided with the ozonizer
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JP3399452B2 (en) Batch type electrolyzed water generator
JPS6128396B2 (en)
JP3776091B2 (en) Organic sludge treatment equipment
JPH081167A (en) Water treatment apparatus
JP3583608B2 (en) Electrolytic sterilizing apparatus and electrolytic sterilizing method
US20240174533A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
JP2001246381A (en) Method and device for manufacturing alkaline ionized water