JP2000164944A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module

Info

Publication number
JP2000164944A
JP2000164944A JP10335414A JP33541498A JP2000164944A JP 2000164944 A JP2000164944 A JP 2000164944A JP 10335414 A JP10335414 A JP 10335414A JP 33541498 A JP33541498 A JP 33541498A JP 2000164944 A JP2000164944 A JP 2000164944A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode group
heat
type thermoelectric
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10335414A
Other languages
Japanese (ja)
Inventor
Yasuhiro Notohara
康裕 能登原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10335414A priority Critical patent/JP2000164944A/en
Publication of JP2000164944A publication Critical patent/JP2000164944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module which can easily be used, even in a narrow space and can efficiently hold difference in temperature between its high and low temperature sides. SOLUTION: A plurality of P type thermoelectric conversion elements 4, providing temperature differences between ends thereof caused by their current passage, a plurality of N type thermoelectric conversion elements 5 disposed alternately adjacent to the elements 4 to provide temperature differences between ends thereof caused by their current passage, a first group of electrodes 6 connected in series so as to put the elements 4 and 5 therebetween, and a second group of electrodes 7 consisting of plural electrical bodies provided opposed to the first electrode group 6 are provided on the upper surface of an insulating substrate 2 being flush with each other. In this case, either of the first and second electrode groups 6 and 7 may form either of a heat radiating surface and a heat absorbing surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄型で、電子部品
回路等の狭いスペースでの取り付け性に優れた、熱電変
換モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion module which is thin and has excellent mountability in a narrow space such as an electronic component circuit.

【0002】[0002]

【従来の技術】近年、地球環境問題や電子機器の高密度
実装化に伴う電子部品からの放熱対策等の点から、排熱
を電気エネルギーに変換する熱電発電や、フロンを用い
ないで冷却が出来る熱電変換技術が注目を浴びており、
熱電変換素子の材料や、熱電変換モジュールの開発が盛
んに行われるようになってきた。
2. Description of the Related Art In recent years, thermoelectric power generation, which converts waste heat into electric energy, and cooling without using chlorofluorocarbons, have been developed in view of global environmental issues and measures to dissipate heat from electronic components accompanying high-density mounting of electronic devices. A possible thermoelectric conversion technology is attracting attention,
Materials for thermoelectric conversion elements and thermoelectric conversion modules have been actively developed.

【0003】熱を電気に変換し、若しくは電気を熱に変
換する従来の熱電変換モジュールについては、たとえば
特開平2−294082号公報に記載されたものがあ
り、図13にその構成の概略を示す。
A conventional thermoelectric conversion module that converts heat into electricity or converts electricity into heat is described in, for example, Japanese Patent Application Laid-Open No. 2-294082, and FIG. .

【0004】図13に示すように、熱電変換モジュール
21は、電気的に絶縁性のセラミックス等からなる基板
22と、P型の熱電変換素子25及びN型の熱電変換素
子26と、複数のP型の熱電変換素子25及びN型の熱
電変換素子26とを電気的に直列に接続するための銅等
からなる第1の電極群23と第2の電極群24、及びリ
ード端子27,28から構成されている。リード端子2
7をマイナス極及びリード端子28をプラス極として、
熱電変換モジュール21にP型の熱電変換素子25から
N型の熱電変換素子26へ直流電流を流すことにより、
第1の電極群23には吸熱作用が生じ、第2の電極群2
4には発熱作用が生じる。逆に、熱電変換モジュール2
1の第1の電極群23と第2の電極群24の間に温度差
を付与することで、リード端子27,28から電力を取
り出すことができる。
As shown in FIG. 13, a thermoelectric conversion module 21 includes a substrate 22 made of an electrically insulating ceramic or the like, a P-type thermoelectric conversion element 25, an N-type thermoelectric conversion element 26, and a plurality of P-type thermoelectric conversion elements. Electrode group 23 and second electrode group 24 made of copper or the like for electrically connecting series-type thermoelectric conversion element 25 and N-type thermoelectric conversion element 26 in series with lead terminals 27 and 28. It is configured. Lead terminal 2
7 as a negative pole and the lead terminal 28 as a positive pole,
By passing a direct current from the P-type thermoelectric conversion element 25 to the N-type thermoelectric conversion element 26 to the thermoelectric conversion module 21,
The first electrode group 23 has an endothermic effect, and the second electrode group 2
4 has an exothermic effect. Conversely, thermoelectric conversion module 2
By providing a temperature difference between the first electrode group 23 and the second electrode group 24, electric power can be extracted from the lead terminals 27 and 28.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな構成の従来の熱電変換モジュール21では、温度差
は第1の電極群23と第2の電極群24の間で生じるた
めに、これらの第1,第2の電極群23,24の間に一
定以上の距離を保つことが必要である。したがって、熱
電変換モジュール21の薄型化が困難であり、そのスペ
ースの制約から、高密度に実装した電子回路を有する電
子機器などの冷却や温度調節には、使用が困難である等
の問題を有していた。
However, in the conventional thermoelectric conversion module 21 having such a configuration, since a temperature difference occurs between the first electrode group 23 and the second electrode group 24, these temperature It is necessary to keep a certain distance or more between the first and second electrode groups 23 and 24. Therefore, it is difficult to reduce the thickness of the thermoelectric conversion module 21, and there is a problem that it is difficult to use the thermoelectric conversion module 21 for cooling and temperature control of electronic devices having electronic circuits mounted at high density due to space restrictions. Was.

【0006】また、図13に示した従来の熱電変換モジ
ュール21では、例えば第1の電極群23側を吸熱面と
して使用する場合に、第2の電極群24が発熱側とな
る。このため、第2の電極群24からの熱を放熱するた
めには、絶縁性の基板を介さなくてはならず、多くの場
合それらの基板は熱伝導性がよくないために放熱効果が
低下し、モジュールの性能を低下させるという問題もあ
る。
In the conventional thermoelectric conversion module 21 shown in FIG. 13, when the first electrode group 23 is used as a heat absorbing surface, the second electrode group 24 is on the heat generating side. Therefore, in order to dissipate the heat from the second electrode group 24, it is necessary to pass through an insulating substrate, and in many cases, the heat dissipating effect is reduced due to poor thermal conductivity of those substrates. However, there is a problem that the performance of the module is reduced.

【0007】そこで本発明は、このような従来の問題点
を解決するもので、電極群からなる発熱面と吸熱面を同
一平面上に形成することで熱電変換素子を薄型化して電
子機器などの冷却や温度制御を容易にでき、電極群から
発生する熱も絶縁性基板を介すことなく直接放熱でき、
放熱効果をよくして、モジュールの性能を高めることが
できる熱電変換モジュールを提供することを目的とす
る。
Accordingly, the present invention is to solve such a conventional problem. By forming a heat generating surface and an heat absorbing surface formed of an electrode group on the same plane, the thermoelectric conversion element can be thinned to reduce the thickness of an electronic device or the like. Cooling and temperature control can be easily performed, and the heat generated from the electrode group can be radiated directly without passing through the insulating substrate.
An object of the present invention is to provide a thermoelectric conversion module capable of improving the heat radiation effect and improving the performance of the module.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の熱電変換モジュールは、絶縁性基板の上面
に、通電によって素子の両端に温度差を生じる複数のP
型熱電変換素子と、前記P型熱電変換素子と交互に隣接
するように配置され通電によって素子の両端に温度差を
生じる複数のN型熱電変換素子と、前記P型熱電変換素
子と前記N型熱電変換素子とを挟み込むように直列に接
続する複数の電極体からなる第1の電極群と、前記第1
の電極群に対向して設けられ複数の電極体からなる第2
の電極群とをそれぞれ同一平面上に備え、前記第1の電
極群及び前記第2の電極群が発熱面または吸熱面のどち
らかを形成可能としたことを特徴とする。
In order to achieve the above object, a thermoelectric conversion module according to the present invention comprises a plurality of P-type thermoelectric conversion modules, each having a temperature difference between both ends of an element when energized, on an upper surface of an insulating substrate.
A plurality of N-type thermoelectric conversion elements, a plurality of N-type thermoelectric conversion elements which are arranged so as to be alternately adjacent to the P-type thermoelectric conversion elements, and generate a temperature difference at both ends of the element when energized, the P-type thermoelectric conversion elements and the N-type A first electrode group including a plurality of electrode bodies connected in series so as to sandwich the thermoelectric conversion element;
Of a plurality of electrode bodies provided opposite to the electrode group of
Are provided on the same plane, and the first electrode group and the second electrode group can form either a heat generating surface or a heat absorbing surface.

【0009】これにより、熱電変換素子を薄型化して電
子機器などの冷却や温度制御を容易にでき、熱電変換モ
ジュールの発熱面の放熱効果を高めることができる。
[0009] This makes it possible to make the thermoelectric conversion element thinner, thereby facilitating cooling and temperature control of electronic devices and the like, and to enhance the heat radiation effect of the heat generating surface of the thermoelectric conversion module.

【0010】[0010]

【発明の実施の形態】本願の請求項1に記載の発明は、
絶縁性基板の上面に、通電によって素子の両端に温度差
を生じる複数のP型熱電変換素子と、前記P型熱電変換
素子と交互に隣接するように配置され通電によって素子
の両端に温度差を生じる複数のN型熱電変換素子と、前
記P型熱電変換素子と前記N型熱電変換素子とを挟み込
むように直列に接続する複数の電極体からなる第1の電
極群と、前記第1の電極群に対向して設けられ複数の電
極体からなる第2の電極群とをそれぞれ同一平面上に備
え、前記第1の電極群及び前記第2の電極群が発熱面ま
たは吸熱面のどちらかを形成可能としたことを特徴とす
る熱電変換モジュールであり、電極群の面積を熱電変換
素子の面積に関わりなく任意に設定することができると
いう作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention described in claim 1 of the present application is
On the upper surface of the insulating substrate, a plurality of P-type thermoelectric conversion elements that generate a temperature difference at both ends of the element when energized, and are arranged so as to be alternately adjacent to the P-type thermoelectric conversion elements, and the temperature difference is applied to both ends of the element by energization. A plurality of N-type thermoelectric conversion elements, a first electrode group including a plurality of electrode bodies connected in series so as to sandwich the P-type thermoelectric conversion element and the N-type thermoelectric conversion element, and the first electrode A second electrode group, which is provided to face the group and is composed of a plurality of electrode bodies, is provided on the same plane, and the first electrode group and the second electrode group are provided with either a heat generating surface or a heat absorbing surface. A thermoelectric conversion module characterized in that it can be formed, and has an effect that the area of an electrode group can be arbitrarily set regardless of the area of a thermoelectric conversion element.

【0011】本願の請求項2に記載の発明は、前記P型
熱電変換素子、前記N型熱電変換素子及び前記第1また
は第2の電極群の前記絶縁性基板との間の接触面どうし
の間に、相互の間の熱伝達量を抑制する関係を持たせた
ことを特徴とする請求項1に記載の熱電変換モジュール
であり、第1の電極群と第2の電極群間での基板を介し
ての熱伝導を抑えることができ、電極群の間で発生する
温度差を効率よく保持することができるという作用を有
する。
According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: a contact surface between the P-type thermoelectric conversion element, the N-type thermoelectric conversion element, and the insulating substrate of the first or second electrode group; The thermoelectric conversion module according to claim 1, wherein a relationship between the first electrode group and the second electrode group is provided between the first electrode group and the second electrode group. This has the effect of suppressing heat conduction through the electrodes and efficiently maintaining the temperature difference generated between the electrode groups.

【0012】本願の請求項3に記載の発明は、前記第1
の電極群及び前記第2の電極群のどちらか一方が発熱面
となって前記絶縁性基板と接触する面の熱伝熱量を、吸
熱面となる前記第1の電極群または前記第2の電極群が
前記絶縁性基板と接触する面の伝熱量より大きくしたこ
とを特徴とする請求項1に記載の熱電変換モジュールで
あり、発熱する方の電極群から他方の吸熱する方の電極
群への基板を介しての熱伝導を抑えることができ、電極
群の間で発生する温度差を効率よく保持することができ
るという作用を有する。
[0012] The invention described in claim 3 of the present application is the first invention.
Either the electrode group or the second electrode group serves as a heat-generating surface, and the heat transfer amount of the surface in contact with the insulating substrate is reduced by the first electrode group or the second electrode serving as a heat-absorbing surface. 2. The thermoelectric conversion module according to claim 1, wherein the group is larger than a heat transfer amount of a surface in contact with the insulating substrate, wherein the group of the heat-generating electrodes is connected to the other group of the heat-absorbing electrodes. Heat conduction through the substrate can be suppressed, and the temperature difference generated between the electrode groups can be efficiently maintained.

【0013】本願の請求項4に記載の発明は、前記第1
の電極群または第2の電極群の発熱面となる面に、放熱
部材を設けたことを特徴とする請求項1,2及び3のい
ずれかに記載の熱電変換モジュールであり、発熱する方
の電極群から他方の吸熱する方の電極群への熱伝導を抑
えることができ、電極群の間で発生する温度差を効率よ
く保持することができるという作用を有する。
[0013] The invention described in claim 4 of the present application is the first invention.
4. The thermoelectric conversion module according to claim 1, wherein a heat radiating member is provided on a surface serving as a heat generating surface of the electrode group or the second electrode group. Heat conduction from the electrode group to the other electrode group that absorbs heat can be suppressed, and the temperature difference generated between the electrode groups can be efficiently maintained.

【0014】以下、本発明の実施の形態について、図
1、図2、図3、図4、図5、図6、図7、図8、図
9、図10、図11及び図12を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11 and 12. Will be explained.

【0015】(実施の形態1)図1は本発明の実施の形
態1による熱電変換モジュールの構成図である。
(Embodiment 1) FIG. 1 is a configuration diagram of a thermoelectric conversion module according to Embodiment 1 of the present invention.

【0016】図1において、熱電変換モジュール1は、
絶縁性基板2の上面に、通電によって素子の両端に温度
差を生じる複数のP型熱電変換素子4と、これらのP型
熱電変換素子4と交互に隣接するように配置され通電に
よって素子の両端に温度差を生じる複数のN型熱電変換
素子5とを備えている。そして、交互に隣接するように
配置されたP型熱電変換素子4とN型熱電変換素子5と
を挟み込むように直列に接続する複数の電極体からなる
第1の電極群6と、これらの第1の電極群6に対向して
設けられ複数の電極体からなる第2の電極群7とを同一
平面上に備えている。第1の電極群6は外周部に配置さ
れ第2の電極群は7は第1の電極群6に包囲されて中心
部に設けられている。したがって、直流電流を通じる方
向によって第1の電極群6及び第2の電極群7が発熱面
または吸熱面のどちらかを形成する。また、8はリード
端子8a,8bの組からなる端子で、リード端子8a,
8bからP型熱電変換素子4とN型熱電変換素子5に直
流電力を供給する。ここで、一方のリード端子8aを陽
極とし他方のリード端子8bを陰極とした場合には、電
流はN型熱電変換素子5からP型熱電変換素子4に流れ
ることになる。したがって、第2の電極群7が吸熱面と
なり、第1の電極群6は発熱面となる。
In FIG. 1, a thermoelectric conversion module 1 comprises:
On the upper surface of the insulating substrate 2, a plurality of P-type thermoelectric conversion elements 4 which generate a temperature difference at both ends of the element by energization, and are arranged alternately adjacent to the P-type thermoelectric conversion elements 4 and both ends of the element are energized by energization. And a plurality of N-type thermoelectric conversion elements 5 that cause a temperature difference. Then, a first electrode group 6 composed of a plurality of electrode bodies connected in series so as to sandwich the P-type thermoelectric conversion elements 4 and the N-type thermoelectric conversion elements 5 arranged alternately adjacent to each other, A second electrode group 7 comprising a plurality of electrode bodies provided opposite to one electrode group 6 is provided on the same plane. The first electrode group 6 is arranged at the outer peripheral portion, and the second electrode group 7 is provided at the center portion surrounded by the first electrode group 6. Therefore, the first electrode group 6 and the second electrode group 7 form either the heat generating surface or the heat absorbing surface depending on the direction in which the direct current flows. Reference numeral 8 denotes a terminal composed of a set of lead terminals 8a and 8b.
8b supplies DC power to the P-type thermoelectric conversion element 4 and the N-type thermoelectric conversion element 5. Here, when one lead terminal 8a is an anode and the other lead terminal 8b is a cathode, current flows from the N-type thermoelectric conversion element 5 to the P-type thermoelectric conversion element 4. Therefore, the second electrode group 7 becomes a heat absorbing surface, and the first electrode group 6 becomes a heat generating surface.

【0017】なお、実施の形態1の熱電変換モジュール
1では、その基板2はアルミナを材料とし、第1の電極
群6と第2の電極群7は銅合金とし、N型熱電変換素子
5及びP型熱電変換素子4はBiとTeとを主成分とす
る熱電変換素子材料によって形成されている。
In the thermoelectric conversion module 1 of the first embodiment, the substrate 2 is made of alumina, the first electrode group 6 and the second electrode group 7 are made of a copper alloy, and the N-type thermoelectric conversion elements 5 and The P-type thermoelectric conversion element 4 is formed of a thermoelectric conversion element material containing Bi and Te as main components.

【0018】以上のように構成された熱電変換モジュー
ル1について、以下その動作を図2に基づいて説明す
る。
The operation of the thermoelectric conversion module 1 configured as described above will be described below with reference to FIG.

【0019】図2は本発明の一実施の形態における熱電
変換モジュール1の動作図である。図1と同じ符号のも
のは基本的に同じであるため、ここでは説明を省略す
る。
FIG. 2 is an operation diagram of the thermoelectric conversion module 1 according to one embodiment of the present invention. 1 are basically the same as those in FIG. 1, and the description is omitted here.

【0020】リード端子8a,8bに直流電源を結線
し、第1の電極群6の一つの電極からN型熱電変換素子
5の一つを通り、第2の電極群7の一つの電極からP型
熱電変換素子4の一つ方向へと電流が流れるようにす
る。実施の形態1の熱電変換モジュール1内では、N型
熱電変換素子5とP型熱電変換素子4とが電気的に直流
接続されているので、第1の電極群6内では、P型熱電
変換素子4からN型熱電変換素子5へ電流が流れ、第2
の電極群7内では、N型熱電変換素子5からP型熱電変
換素子4へ電流が流れるようになる。したがって、熱電
変換モジュール1の中央部に形成された第2の電極群7
ではペルチェ効果により吸熱が発生し、外周部に形成さ
れる第1の電極群6は発熱する。こうして、第1の電極
群6と第2の電極群7との間に熱の移動が生じ、第2の
電極群7の温度は低下し第1の電極群6の温度は上昇す
ることになる。このようにすることで、第2の電極群7
は、吸熱の動作を行う熱電変換素子群と直接接合されて
いるために効率よく冷却され、第1の電極群6は、発熱
の動作を行う熱電変換素子群と直接接合されているため
に効率よく加熱される。すなわち、第2の電極群7から
第1の電極群6への熱の移動が効率よく行える。したが
って、第2の電極群7と冷却等の温度制御を要する対象
物、例えば電子部品などを直接接触させておけば、対象
物の冷却等の温度制御を極めて効率よく行うことができ
る。
A DC power supply is connected to the lead terminals 8a and 8b, passes from one electrode of the first electrode group 6 to one of the N-type thermoelectric conversion elements 5, and passes from one electrode of the second electrode group 7 to P The current is caused to flow in one direction of the thermoelectric conversion element 4. In the thermoelectric conversion module 1 of the first embodiment, the N-type thermoelectric conversion element 5 and the P-type thermoelectric conversion element 4 are electrically DC-connected, so that the P-type thermoelectric conversion A current flows from the element 4 to the N-type thermoelectric conversion element 5, and the second
In the electrode group 7, a current flows from the N-type thermoelectric conversion element 5 to the P-type thermoelectric conversion element 4. Therefore, the second electrode group 7 formed at the center of the thermoelectric conversion module 1
In this case, heat is absorbed by the Peltier effect, and the first electrode group 6 formed on the outer peripheral portion generates heat. Thus, heat transfer occurs between the first electrode group 6 and the second electrode group 7, so that the temperature of the second electrode group 7 decreases and the temperature of the first electrode group 6 increases. . By doing so, the second electrode group 7
Is efficiently cooled because it is directly joined to a thermoelectric conversion element group that performs an endothermic operation, and the first electrode group 6 is efficiently joined because it is directly joined to a thermoelectric conversion element group that performs an exothermic operation. Well heated. That is, heat can be efficiently transferred from the second electrode group 7 to the first electrode group 6. Therefore, if the second electrode group 7 is directly in contact with an object requiring temperature control such as cooling, for example, an electronic component, the temperature control such as cooling of the object can be performed very efficiently.

【0021】また、冷却などの温度制御を要する対象物
に導電性がある場合には、対象物と第2の電極群7との
間に極めて薄い絶縁体を挟むだけでよく、同一面内で対
象物に直接接触させて加熱及び冷却することができる。
したがって、従来の技術のように一定の厚みの絶縁体を
介して冷却又は加熱していたものに比べ、対象物の温度
制御が極めて効率よく行えるようになる。
When an object requiring temperature control such as cooling has conductivity, only an extremely thin insulator needs to be interposed between the object and the second electrode group 7, and the object can be kept in the same plane. Heating and cooling can be performed by directly contacting the object.
Therefore, the temperature control of the object can be performed very efficiently as compared with the prior art in which cooling or heating is performed via an insulator having a constant thickness.

【0022】また、第2の電極群7に吸収された熱は、
P型及びN型の熱電変換素子4,5群を通過して第1の
電極群6へ伝達され、第1の電極群6の表面及び基板2
を通して熱電変換モジュール1の外部へと放出される。
このため、発熱部となる第1の電極群6に別に放熱板等
の放熱対策を必要とせず、簡単な構造にすることができ
る。
The heat absorbed by the second electrode group 7 is
The light is transmitted to the first electrode group 6 through the P-type and N-type thermoelectric conversion elements 4 and 5, and the surface of the first electrode group 6 and the substrate 2
Through the thermoelectric conversion module 1.
Therefore, the first electrode group 6 serving as the heat generating portion does not require a separate heat radiation measure such as a heat radiation plate, and can have a simple structure.

【0023】さらに本発明の熱電変換モジュール1は、
同一面内にP型及びN型の熱電変換素子4,5及び第
1,第2の電極群6,7を配置しているので、電子機器
内部等の狭いスペース内にある対象物を効率よく冷却、
加熱して温度制御することができる。
Further, the thermoelectric conversion module 1 of the present invention
Since the P-type and N-type thermoelectric conversion elements 4 and 5 and the first and second electrode groups 6 and 7 are arranged in the same plane, an object in a narrow space such as the inside of an electronic device can be efficiently processed. cooling,
The temperature can be controlled by heating.

【0024】なお、実施の形態1では、第1の電極群6
内ではP型熱電変換素子4からN型熱電変換素子5の方
へと電流が流れ、第2の電極群7内ではN型熱電変換素
子5からP型熱電変換素子4へと電流が流れるように直
流を通じたが、電流を通じる方向はこれに限るものでは
ない。すなわち、上記の説明とは逆に、第1の電極群6
内ではN型熱電変換素子5からP型熱電変換素子4の方
へと電流が流れ、第2の電極群7内ではP型熱電変換素
子4からN型熱電変換素子5へと電流が流れるように直
流電源を接続すると、外周部に形成された第1の電極群
6が冷却面となり、中央部に形成された第2の電極群7
が加熱面となる。
In the first embodiment, the first electrode group 6
Inside, the current flows from the P-type thermoelectric conversion element 4 to the N-type thermoelectric conversion element 5, and within the second electrode group 7, the current flows from the N-type thermoelectric conversion element 5 to the P-type thermoelectric conversion element 4. However, the direction in which the current flows is not limited to this. That is, contrary to the above description, the first electrode group 6
Inside, the current flows from the N-type thermoelectric conversion element 5 to the P-type thermoelectric conversion element 4, and within the second electrode group 7, the current flows from the P-type thermoelectric conversion element 4 to the N-type thermoelectric conversion element 5. When a DC power supply is connected to the first electrode group 6, the first electrode group 6 formed on the outer peripheral portion serves as a cooling surface, and the second electrode group 7
Is the heating surface.

【0025】このことにより、対象物を加熱又は冷却の
一方的な操作ではなく、予め定められた温度範囲に温度
制御する場合に適するものとなり、通電する直流の極性
を変えることによってのみ精密な温度制御ができること
になる。
This makes it suitable for controlling the temperature of the object within a predetermined temperature range, rather than one-side operation of heating or cooling the object. You will be able to control it.

【0026】また、実施の形態1では、第1の電極群6
と、第2の電極群7と、P型熱電変換素子4と、N型熱
電変換素子5とを正方形状に並べて配置したが、電極群
と熱電変換素子群との配置は正方形状にこだわるもので
はなく、長方形状であっても、円形状であっても何等問
題はなく、熱電変換モジュール1を使用する場所に応じ
た形状とすれば良い。
In the first embodiment, the first electrode group 6
And the second electrode group 7, the P-type thermoelectric conversion element 4, and the N-type thermoelectric conversion element 5 are arranged side by side in a square shape, but the arrangement of the electrode group and the thermoelectric conversion element group is fixed in a square shape. However, there is no problem if the shape is a rectangle or a circle, and the shape may be determined according to the place where the thermoelectric conversion module 1 is used.

【0027】次に、第1の電極群6と第2の電極群7の
配置について図3及び図4に基づいて説明する。図3は
本発明の一実施の形態による熱電変換モジュールの配置
図で、図4は本発明の一実施の形態による熱電変換モジ
ュールのもう一つの配置図である。図1と同じ符号のも
のは基本的に同一であるためここでは説明を省略する。
Next, the arrangement of the first electrode group 6 and the second electrode group 7 will be described with reference to FIGS. FIG. 3 is a layout diagram of the thermoelectric conversion module according to one embodiment of the present invention, and FIG. 4 is another layout diagram of the thermoelectric conversion module according to one embodiment of the present invention. 1 are basically the same as those in FIG.

【0028】図1の例では、第1の電極群6が第2の電
極群7を取り囲んだ形状となっているが、図3に示すよ
うに、第1の電極群6と第2の電極群7とがP型及びN
型の熱電変換素子4,5の群を挟んで対向しているよう
な形状や、図4に示すようにたように、同一平面上に図
3に示した構成のものを複数個組み合わせたものでもか
まわない。この場合では、同一平面上の任意の場所に吸
熱面と発熱面をそれぞれ独立して設けることができ、例
えば電子回路などの広い範囲で複数の電子部品を同時に
温度制御することが可能となる。
In the example of FIG. 1, the first electrode group 6 has a shape surrounding the second electrode group 7. As shown in FIG. 3, however, the first electrode group 6 and the second electrode group 6 have the same shape. Group 7 is P-type and N
And a combination of a plurality of thermoelectric conversion elements having the configuration shown in FIG. 3 on the same plane as shown in FIG. 4, as shown in FIG. But it doesn't matter. In this case, the heat absorption surface and the heat generation surface can be independently provided at arbitrary positions on the same plane, and it is possible to simultaneously control the temperature of a plurality of electronic components over a wide range such as an electronic circuit.

【0029】(実施の形態2)実施の形態1では絶縁性
の基板2の同一平面上にP型及びN型の熱電変換素子
4,5の群を平面状に配置しているので、第1の電極群
6と第2の電極群7との間で温度差が大きくなってくる
と、加熱面である第1の電極群6から冷却面である第2
の電極群7の方へ基板2を通じて熱伝導が生じ、熱電変
換モジュール1の効率が低下するようになる。
(Embodiment 2) In Embodiment 1, the groups of P-type and N-type thermoelectric conversion elements 4 and 5 are arranged in a plane on the same plane of the insulating substrate 2. When the temperature difference between the second electrode group 6 and the second electrode group 7 increases, the first electrode group 6 that is the heating surface and the second electrode group that is the cooling surface
The heat conduction occurs through the substrate 2 toward the electrode group 7, and the efficiency of the thermoelectric conversion module 1 is reduced.

【0030】そこで、実施の形態2では、基板2と第1
の電極群6、第2の電極群7及びP型,N型の熱電変換
素子4,5の群との接触面積を小さくすることで第2の
電極群7から第1の電極群6への基板2を通しての伝熱
量を低減させ、熱電変換モジュール1を更に高性能化す
る構成とする。
Therefore, in the second embodiment, the substrate 2 and the first
The contact area between the second electrode group 6 and the second electrode group 7 and the group of the P-type and N-type thermoelectric conversion elements 4 and 5 is reduced so that the second electrode group 7 can be connected to the first electrode group 6. The configuration is such that the amount of heat transfer through the substrate 2 is reduced and the thermoelectric conversion module 1 is further enhanced in performance.

【0031】図5は本発明の実施の形態2による熱電変
換モジュール1の構成図である。図1の例と同じ構成部
材については共通の符号で指示し、本実施の形態2にお
いても基本的に同一なので説明は省略する。
FIG. 5 is a configuration diagram of a thermoelectric conversion module 1 according to Embodiment 2 of the present invention. The same constituent members as those in the example of FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted because they are basically the same in the second embodiment.

【0032】熱電変換モジュール1は実施の形態1と同
様の構成で、表面に溝9を形成したセラミックス等の絶
縁体からなる基板2上に、第1の電極群6と第2の電極
群7及びP型熱電変換素子4とN型熱電変換素子5とを
設けた構成となっている。また、実施の形態1と同様
に、熱電変換モジュール1の基板2はアルミナ、第1の
電極群6と第2の電極群7は銅合金、P型熱電変換素子
4とN型熱電変換素子5はBiとTeとを主成分とする
熱電変換素子材料を使用した。
The thermoelectric conversion module 1 has the same configuration as that of the first embodiment, and has a first electrode group 6 and a second electrode group 7 on a substrate 2 made of an insulator such as ceramics having a groove 9 formed on the surface. And a configuration in which a P-type thermoelectric conversion element 4 and an N-type thermoelectric conversion element 5 are provided. As in the first embodiment, the substrate 2 of the thermoelectric conversion module 1 is alumina, the first electrode group 6 and the second electrode group 7 are copper alloy, and the P-type thermoelectric conversion element 4 and the N-type thermoelectric conversion element 5 Used a thermoelectric conversion element material mainly containing Bi and Te.

【0033】図5から明らかなように、基板2に形成さ
れた溝9により第1の電極群6、第2の電極群7及び熱
電変換素子群の基板2との接触面積が小さくなり、その
結果第2の電極群7から第1の電極群6への基板2を通
しての熱伝導が減少し、第1の電極群6と第2の電極群
7の間に生じた温度差を効率よく保持できるようにな
る。
As is apparent from FIG. 5, the contact area of the first electrode group 6, the second electrode group 7, and the thermoelectric conversion element group with the substrate 2 is reduced by the groove 9 formed in the substrate 2, As a result, the heat conduction from the second electrode group 7 to the first electrode group 6 through the substrate 2 is reduced, and the temperature difference generated between the first electrode group 6 and the second electrode group 7 is efficiently held. become able to.

【0034】(実施の形態3)実施の形態2では、基板
2上の全面に溝9を形成した。これにより、第2の電極
群7から第1の電極群6への基板2を通しての熱伝導量
が減少し、熱電変換モジュール1の第1の電極群6と第
2の電極群7との間で発生する温度差を極めて効率よく
保持することができた。基板2上の全面に溝9を形成す
るのは、量産性を考慮した際は効果的なのであるが、実
施の形態2では発熱して温度が上昇する第1の電極群6
と基板2との接触面積が少なくなることから、第1の電
極群6からの放熱効果が実施の形態1と比較して低下す
ることになる。
Third Embodiment In the second embodiment, the groove 9 is formed on the entire surface of the substrate 2. As a result, the amount of heat conduction from the second electrode group 7 to the first electrode group 6 through the substrate 2 is reduced, and the heat transfer between the first electrode group 6 and the second electrode group 7 of the thermoelectric conversion module 1 is reduced. The temperature difference generated in was able to be maintained extremely efficiently. Forming the groove 9 on the entire surface of the substrate 2 is effective in consideration of mass productivity, but in the second embodiment, the first electrode group 6 whose temperature rises due to heat generation.
Since the contact area between the first electrode group 6 and the substrate 2 is reduced, the heat radiation effect from the first electrode group 6 is reduced as compared with the first embodiment.

【0035】そこで、本実施の形態3では、第1の電極
群6からの放熱効果の低下を防止するため、どちらか一
方の電極群が発熱面となり基板2の表面と接触する面の
伝熱量を、他方の電極群が吸熱面となり基板2と接触す
る面の伝熱量より大きくする構成とした。この構成を図
6,図7及び図8により説明する。
Therefore, in the third embodiment, in order to prevent a decrease in the heat radiation effect from the first electrode group 6, one of the electrode groups becomes a heat generating surface and the heat transfer amount of the surface in contact with the surface of the substrate 2. Is configured such that the other electrode group becomes a heat absorbing surface and is larger than the heat transfer amount of the surface in contact with the substrate 2. This configuration will be described with reference to FIGS. 6, 7, and 8.

【0036】図6は本発明による実施の形態3における
熱電変換モジュール1の構成図、図7は本発明による実
施の形態3における熱電変換モジュール1のA−A断面
図で、図8は本発明による実施の形態3における熱電変
換モジュール1のもう一つの構成例を示すA−A断面図
である。ここで図1と同じ符号のものは、本実施の形態
でも基本的には同じであるのでここでは説明を省略す
る。
FIG. 6 is a configuration diagram of the thermoelectric conversion module 1 according to the third embodiment of the present invention, FIG. 7 is a cross-sectional view taken along the line AA of the thermoelectric conversion module 1 according to the third embodiment of the present invention, and FIG. FIG. 13 is a cross-sectional view taken along the line AA showing another configuration example of the thermoelectric conversion module 1 according to the third embodiment. Here, components having the same reference numerals as those in FIG. 1 are basically the same in the present embodiment, and therefore description thereof is omitted here.

【0037】本実施の形態3では、吸熱して温度が低下
する第2の電極群7,P型熱電変換素子4及びN型熱電
変換素子5と基板2とが接触する面に、凹凸10を形成
することによって、第2の電極群7と基板2との接触面
積を小さくし、伝熱量を小さくすることができる。一
方、発熱して温度が上昇する第1の電極群6の基板2と
接触する面は、その平面を平滑にすることによって、第
1の電極群6からの基板2への熱伝導量を大きくするこ
とで放熱性を高めることができる。
In the third embodiment, the unevenness 10 is formed on the surface where the substrate 2 is in contact with the second electrode group 7, the P-type thermoelectric conversion element 4 and the N-type thermoelectric conversion element 5 whose temperature is reduced by absorbing heat. By forming, the contact area between the second electrode group 7 and the substrate 2 can be reduced, and the heat transfer amount can be reduced. On the other hand, the surface of the first electrode group 6 in contact with the substrate 2 where the temperature rises due to heat generation is smoothed to increase the amount of heat conduction from the first electrode group 6 to the substrate 2. By doing so, the heat dissipation can be improved.

【0038】なお、実施の形態1と同様に、基板2はア
ルミナ、第1の電極群6と第2の電極群7は銅合金、P
型熱電変換素子4とN型熱電変換素子5はBiとTeと
を主成分とする熱電変換素子材料である。
As in the first embodiment, the substrate 2 is made of alumina, the first electrode group 6 and the second electrode group 7 are made of a copper alloy,
The thermoelectric conversion element 4 and the N-type thermoelectric conversion element 5 are thermoelectric conversion element materials mainly containing Bi and Te.

【0039】このようにすると、発熱して温度が上昇す
る第1の電極群6からの熱が基板2を通して第2の電極
群7へ侵入するのを抑えることができると同時に、第1
の電極群6から基板2を通しての放熱性が高まるために
熱電変換モジュール1の第1の電極群6と第2の電極群
7の間で生じる温度差を極めて効率よく保持できるよう
になる。
In this way, it is possible to prevent heat from the first electrode group 6, which generates heat and rise in temperature, from entering the second electrode group 7 through the substrate 2, and at the same time, to reduce the temperature of the first electrode group 7.
Since the heat dissipation from the electrode group 6 of the thermoelectric conversion module 1 through the substrate 2 is enhanced, the temperature difference generated between the first electrode group 6 and the second electrode group 7 of the thermoelectric conversion module 1 can be held extremely efficiently.

【0040】ここで、各電極群と基板2との熱的接触を
変えるには、実施の形態3のように基板2との接触する
表面性状を変化させ、基板2と各電極群との接触面積を
変えることでも実現できる。この他にも、基板2の材質
を変えたりすることで、熱伝達の形態を変えて対応する
こともできる。
Here, in order to change the thermal contact between each electrode group and the substrate 2, the surface property of contact with the substrate 2 is changed as in the third embodiment, and the contact between the substrate 2 and each electrode group is changed. It can also be realized by changing the area. In addition, by changing the material of the substrate 2, the form of heat transfer can be changed.

【0041】例えば、図8に示すように、吸熱する第2
の電極群7、P型熱電変換素子4、及びN型熱電変換素
子5と、基板2とが接触する領域の基板2の材質をジル
コニア等の低熱伝導性材料16で形成し、発熱する第1
の電極群6と基板2とが接触する領域の基板2の材質を
窒化アルミ等の高熱伝導性材料17で形成する等の複合
材料から構成することもできる。この構成により、第2
の電極群7から第1の電極群6への基板2を通しての熱
の移動が減少すると共に、第1の電極群6から基板2を
通しての放熱性が高まるために熱電変換モジュール1の
第1の電極群6と第2の電極群7との間で発生する温度
差を極めて効率よく保持できるようになる。
For example, as shown in FIG.
The electrode group 7, the P-type thermoelectric conversion element 4, the N-type thermoelectric conversion element 5, and the substrate 2 in the region where the substrate 2 comes into contact are formed of a low thermal conductive material 16 such as zirconia to generate heat.
The material of the substrate 2 in a region where the electrode group 6 and the substrate 2 are in contact with each other may be formed of a composite material such as a material formed of a high thermal conductive material 17 such as aluminum nitride. With this configuration, the second
The transfer of heat from the electrode group 7 to the first electrode group 6 through the substrate 2 is reduced, and the heat dissipation from the first electrode group 6 through the substrate 2 is increased. The temperature difference generated between the electrode group 6 and the second electrode group 7 can be held extremely efficiently.

【0042】(実施の形態4)ここで、以上の各実施の
形態においては、第2の電極群7と接触する温度制御の
対象物から吸熱され第1の電極群6へ伝導される熱量が
さらに増加し、第1の電極群6からの放熱が限界に達し
た場合には、第1の電極群6から第2の電極群7への熱
の戻りが無視できない程度に大きくなる。
(Embodiment 4) Here, in each of the above embodiments, the amount of heat absorbed from the temperature control object in contact with the second electrode group 7 and transmitted to the first electrode group 6 is reduced. When the heat dissipation from the first electrode group 6 reaches a limit further, the return of heat from the first electrode group 6 to the second electrode group 7 becomes so large that it cannot be ignored.

【0043】そこで、本実施の形態4では、温度制御の
対象物からの熱量が増加した場合でも、第1の電極群6
の放熱効果を高めるために、発熱する第1の電極群6の
面に放熱するための放熱部材を設けた構成とする。
Therefore, in the fourth embodiment, even when the amount of heat from the object to be temperature-controlled increases, the first electrode group 6
In order to enhance the heat radiation effect, a heat radiation member for dissipating heat is provided on the surface of the first electrode group 6 that generates heat.

【0044】図9は本発明の実施の形態4による熱電変
換モジュールの構成図、図10は本発明の実施の形態4
による熱電変換モジュールのB−B断面図、図11は本
発明の実施の形態4による熱電変換モジュールの放熱部
材の取り付け図、図12は本発明の実施の形態4による
熱電変換モジュールのもう一つの放熱部材の取り付け図
である。ここでも図1と同じ構成部材については共通の
符号で指示し、その詳細な説明は省略する。
FIG. 9 is a configuration diagram of a thermoelectric conversion module according to a fourth embodiment of the present invention, and FIG. 10 is a fourth embodiment of the present invention.
11 is a sectional view of a thermoelectric conversion module according to Embodiment 4 of the present invention, and FIG. 12 is another view of the thermoelectric conversion module according to Embodiment 4 of the present invention. It is a mounting view of a heat radiation member. Here, the same components as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0045】図9において、実施の形態1と同様に、第
1の電極群6と第2の電極群7とP型熱電変換素子4、
及びN型熱電変換素子5を設けた基板2の裏面に、熱伝
導性の高い金属等からなる放熱部材13を基板2を貫通
させて設けている。この放熱部材13の第1の電極群6
への取り付けは、第1の電極群6に設けた凹部へ放熱部
材13をかしめ法によって取り付ける。したがって、こ
のかしめにより、放熱部材13は第1の電極群6と密接
に接触して固定される。
In FIG. 9, as in the first embodiment, the first electrode group 6, the second electrode group 7, the P-type thermoelectric conversion element 4,
On the back surface of the substrate 2 provided with the N-type thermoelectric conversion elements 5, a heat radiating member 13 made of a metal having high thermal conductivity is provided so as to penetrate the substrate 2. The first electrode group 6 of the heat radiation member 13
The heat dissipating member 13 is attached to the concave portion provided in the first electrode group 6 by caulking. Accordingly, the heat dissipating member 13 is fixed in close contact with the first electrode group 6 by this caulking.

【0046】なお、実施の形態1と同様に、熱電変換モ
ジュール1の基板2にはアルミナを用い、第1の電極群
6と第2の電極群7には銅合金を用い、P型熱電変換素
子4とN型熱電変換素子5には、BiとTeとを主成分
とする熱電変換素子材料を、また放熱部材13には銅合
金を使用した。
As in the first embodiment, the substrate 2 of the thermoelectric conversion module 1 is made of alumina, the first electrode group 6 and the second electrode group 7 are made of copper alloy, and the P-type thermoelectric conversion module is used. For the element 4 and the N-type thermoelectric conversion element 5, a thermoelectric conversion element material mainly containing Bi and Te was used, and for the heat radiation member 13, a copper alloy was used.

【0047】本実施の形態4の構成では、第1の電極群
6の熱は、第1の電極群6の表面及び第1の電極群6が
接触する基板2以外にも放熱部材13を介して放熱され
る。このため、放熱性がさらに向上し、第2の電極群7
と接触する温度制御の対象物からの熱量がかなり増加し
た場合でも、第1の電極群6からの放熱が限界に達する
ことなく、第1の電極群6から、冷却すべき第2の電極
群7への熱の戻りを極めて小さくできる。その結果、基
板2を通しての第1の電極群6から第2の電極群7への
熱の移動が減少し、熱電変換モジュール1の冷却効率が
一層向上し、熱電変換モジュール1の用途が更に拡大さ
れることになる。
In the structure of the fourth embodiment, the heat of the first electrode group 6 is transmitted through the heat radiating member 13 in addition to the surface of the first electrode group 6 and the substrate 2 in contact with the first electrode group 6. Heat is dissipated. Therefore, the heat dissipation is further improved, and the second electrode group 7
Even if the amount of heat from the object of temperature control that contacts the first electrode group 6 does not reach the limit, the second electrode group to be cooled from the first electrode group 6 does not reach the limit. The return of heat to 7 can be extremely small. As a result, the transfer of heat from the first electrode group 6 to the second electrode group 7 through the substrate 2 is reduced, the cooling efficiency of the thermoelectric conversion module 1 is further improved, and the use of the thermoelectric conversion module 1 is further expanded. Will be done.

【0048】なお、実施の形態4では、基板2を貫く放
熱部材13に銅合金からなる材料を用いたが、基板2を
貫く放熱部材13は銅合金に限るものでなく、Al合金
やMg合金、或いはヒートパイプ等のように熱伝導率が
高く放熱性の良い材料であればよい。また、基板2を貫
く放熱部材13は棒に限るものではなく、棒以外にも板
等、熱を外部に放出するものであればよい。
In the fourth embodiment, the heat dissipating member 13 penetrating the substrate 2 is made of a copper alloy material. However, the heat dissipating member 13 penetrating the substrate 2 is not limited to a copper alloy, but may be an Al alloy or a Mg alloy. Alternatively, any material having a high heat conductivity and good heat dissipation, such as a heat pipe, may be used. The heat radiating member 13 penetrating through the substrate 2 is not limited to a rod, but may be a plate or any other material that emits heat to the outside.

【0049】また、実施の形態4では、放熱部材13を
基板2を貫通させる構成にしたが、基板2を貫通しなく
とも、基板2の平面に沿わせた構成でもよい。更に、実
施の形態4では、自然放熱による冷却を前提としている
が、放熱部材13の冷却方法は、図11に示すように、
熱電変換モジュール1の裏面に冷却ファン18を設けて
もよい。このように冷却ファン18を備えると、基板2
を貫く放熱部材13からの放熱は自然対流によるより格
段に大きくなり、第1の電極群6から第2の電極群7へ
の熱の移動が更に減少し、熱電変換モジュール1の冷却
効率が更に向上することになる。また、図12に示すよ
うに例えば放熱フィン19のようなものを第1の電極群
6に接触して設けても、同様の効果が得られる。
In the fourth embodiment, the heat radiating member 13 is configured to penetrate the substrate 2. However, the configuration may be such that the heat radiating member 13 does not penetrate the substrate 2 and extends along the plane of the substrate 2. Further, in the fourth embodiment, cooling by natural heat radiation is premised. However, as shown in FIG.
A cooling fan 18 may be provided on the back surface of the thermoelectric conversion module 1. When the cooling fan 18 is provided in this manner, the substrate 2
The heat radiation from the heat dissipating member 13 penetrating through the first electrode group 6 is significantly larger than that due to natural convection, the transfer of heat from the first electrode group 6 to the second electrode group 7 is further reduced, and the cooling efficiency of the thermoelectric conversion module 1 is further improved. Will be improved. Also, as shown in FIG. 12, a similar effect can be obtained by providing, for example, a radiation fin 19 in contact with the first electrode group 6.

【0050】[0050]

【発明の効果】本発明の熱電変換モジュールは、薄型化
して電子機器などの狭いスペースでの電子部品の冷却や
温度制御を容易にできるほか、電極群から発生する熱も
絶縁性基板を介すことなく直接放熱できるので、放熱効
果をよくして、熱電変換モジュールの性能を高めること
ができるという効果を有する。
The thermoelectric conversion module of the present invention can be thinned to facilitate cooling and temperature control of electronic components in a narrow space such as electronic equipment, and heat generated from the electrode group is also transmitted through the insulating substrate. Since the heat can be dissipated directly without the heat, the heat dissipating effect can be improved and the performance of the thermoelectric conversion module can be enhanced.

【0051】また、発熱する方の電極群から他の一方の
吸熱する方の電極群への基板を介しての熱の移動を抑え
ることができ、また発熱する方の電極群の熱は基板を介
しても放熱できるので、第1の電極群と第2の電極群の
温度差を効率良く保てるようになるという効果を有す
る。
Further, it is possible to suppress the transfer of heat through the substrate from the electrode group that generates heat to the other electrode group that absorbs heat, and the heat of the electrode group that generates heat removes the heat from the substrate. Since heat can be dissipated through the first electrode group, the temperature difference between the first electrode group and the second electrode group can be efficiently maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1による熱電変換モジュー
ルの構成図
FIG. 1 is a configuration diagram of a thermoelectric conversion module according to a first embodiment of the present invention.

【図2】本発明の一実施の形態における熱電変換モジュ
ールの動作図
FIG. 2 is an operation diagram of the thermoelectric conversion module according to one embodiment of the present invention.

【図3】本発明の一実施の形態による熱電変換モジュー
ルの配置図
FIG. 3 is a layout diagram of a thermoelectric conversion module according to an embodiment of the present invention.

【図4】本発明の一実施の形態による熱電変換モジュー
ルのもう一つの配置図
FIG. 4 is another layout diagram of the thermoelectric conversion module according to one embodiment of the present invention.

【図5】本発明の実施の形態2による熱電変換モジュー
ルの構成図
FIG. 5 is a configuration diagram of a thermoelectric conversion module according to a second embodiment of the present invention.

【図6】本発明による実施の形態3における熱電変換モ
ジュールの構成図
FIG. 6 is a configuration diagram of a thermoelectric conversion module according to a third embodiment of the present invention.

【図7】本発明による実施の形態3における熱電変換モ
ジュールのA−A断面図
FIG. 7 is a sectional view taken along line AA of the thermoelectric conversion module according to Embodiment 3 of the present invention.

【図8】本発明による実施の形態3における熱電変換モ
ジュールのもう一つのA−A断面図
FIG. 8 is another AA sectional view of the thermoelectric conversion module according to the third embodiment of the present invention.

【図9】本発明の実施の形態4による熱電変換モジュー
ルの構成図
FIG. 9 is a configuration diagram of a thermoelectric conversion module according to a fourth embodiment of the present invention.

【図10】本発明の実施の形態4による熱電変換モジュ
ールのB−B断面図
FIG. 10 is a BB cross-sectional view of a thermoelectric conversion module according to a fourth embodiment of the present invention.

【図11】本発明の実施の形態4による熱電変換モジュ
ールの放熱部材の取り付け図
FIG. 11 is a mounting diagram of a heat radiation member of the thermoelectric conversion module according to the fourth embodiment of the present invention.

【図12】本発明の実施の形態4による熱電変換モジュ
ールのもう一つの放熱部材の取り付け図
FIG. 12 is a view showing an attachment of another heat radiation member of the thermoelectric conversion module according to the fourth embodiment of the present invention.

【図13】従来の技術の熱電変換モジュールの構成図FIG. 13 is a configuration diagram of a conventional thermoelectric conversion module.

【符号の説明】[Explanation of symbols]

1 熱電変換モジュール 2 基板 4 P型熱電変換素子 5 N型熱電変換素子 6 第1の電極群 7 第2の電極群 8 端子 8a,8b リード端子 9 溝 10 凹凸 13 放熱部材 16 低熱伝導性材料 17 高熱伝導性材料 18 冷却ファン 19 放熱フィン 21 熱電変換モジュール 22 基板 23 第1の電極群 24 第2の電極群 25 P型の熱電変換素子 26 N型の熱電変換素子 27,28 リード端子 DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion module 2 Substrate 4 P-type thermoelectric conversion element 5 N-type thermoelectric conversion element 6 1st electrode group 7 2nd electrode group 8 Terminal 8a, 8b Lead terminal 9 Groove 10 Unevenness 13 Heat dissipation member 16 Low heat conductive material 17 High thermal conductive material 18 Cooling fan 19 Radiation fin 21 Thermoelectric conversion module 22 Substrate 23 First electrode group 24 Second electrode group 25 P-type thermoelectric conversion element 26 N-type thermoelectric conversion element 27, 28 Lead terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板の上面に、通電によって素子の
両端に温度差を生じる複数のP型熱電変換素子と、前記
P型熱電変換素子と交互に隣接するように配置され通電
によって素子の両端に温度差を生じる複数のN型熱電変
換素子と、前記P型熱電変換素子と前記N型熱電変換素
子とを挟み込むように直列に接続する複数の電極体から
なる第1の電極群と、前記第1の電極群に対向して設け
られ複数の電極体からなる第2の電極群とをそれぞれ同
一平面上に備え、前記第1の電極群及び前記第2の電極
群が発熱面または吸熱面のどちらかを形成可能としたこ
とを特徴とする熱電変換モジュール。
1. A plurality of P-type thermoelectric conversion elements which generate a temperature difference at both ends of the element by energization on an upper surface of an insulating substrate; A plurality of N-type thermoelectric conversion elements having a temperature difference at both ends, a first electrode group including a plurality of electrode bodies connected in series so as to sandwich the P-type thermoelectric conversion element and the N-type thermoelectric conversion element, A second electrode group provided with a plurality of electrode bodies and opposed to the first electrode group is provided on the same plane, and the first electrode group and the second electrode group are formed on a heat generating surface or a heat absorbing surface; A thermoelectric conversion module characterized in that one of the surfaces can be formed.
【請求項2】前記P型熱電変換素子、前記N型熱電変換
素子及び前記第1または第2の電極群の前記絶縁性基板
との間の接触面どうしの間に、相互の間の熱伝達量を抑
制する関係を持たせたことを特徴とする請求項1に記載
の熱電変換モジュール。
2. Heat transfer between the P-type thermoelectric conversion element, the N-type thermoelectric conversion element, and contact surfaces between the first or second electrode group and the insulating substrate. The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module has a relationship of suppressing the amount.
【請求項3】前記第1の電極群及び前記第2の電極群の
どちらか一方が発熱面となって前記絶縁性基板と接触す
る面の伝熱量を、吸熱面となる前記第1の電極群または
前記第2の電極群が前記絶縁性基板と接触する面の伝熱
量より大きくしたことを特徴とする請求項1に記載の熱
電変換モジュール。
3. The first electrode, wherein one of the first electrode group and the second electrode group serves as a heat-generating surface and the amount of heat transferred from the surface in contact with the insulating substrate serves as a heat-absorbing surface. 2. The thermoelectric conversion module according to claim 1, wherein the group or the second electrode group has a heat transfer amount larger than a heat transfer amount on a surface in contact with the insulating substrate. 3.
【請求項4】前記第1の電極群または第2の電極群の発
熱面となる面に、放熱部材を設けたことを特徴とする請
求項1,2及び3のいずれかに記載の熱電変換モジュー
ル。
4. The thermoelectric conversion device according to claim 1, wherein a heat radiating member is provided on a surface of the first electrode group or the second electrode group which is a heat generating surface. module.
JP10335414A 1998-11-26 1998-11-26 Thermoelectric conversion module Pending JP2000164944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10335414A JP2000164944A (en) 1998-11-26 1998-11-26 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10335414A JP2000164944A (en) 1998-11-26 1998-11-26 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2000164944A true JP2000164944A (en) 2000-06-16

Family

ID=18288292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10335414A Pending JP2000164944A (en) 1998-11-26 1998-11-26 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2000164944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111326A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and thermoelectric conversion system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111326A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and thermoelectric conversion system

Similar Documents

Publication Publication Date Title
JP3510831B2 (en) Heat exchanger
US20150204585A1 (en) Thermoelectric module and heat conversion device including the same
US20050279104A1 (en) Thermoelectric module
JPH0997930A (en) Thermoelectric cooling module and manufacture thereof
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2003124531A (en) Thermoelectric module
CN101471337A (en) Light source die set with good radiating performance
US8166769B2 (en) Self-cooled vertical electronic component
JPWO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic device using the same
JP2008028163A (en) Power module device
JP2000058930A (en) Thermoelement, and its manufacture
KR20140002158A (en) Thermoelectric cooling module and manufacturing method thereof
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
KR100663117B1 (en) Thermoelectric module
JP2002164485A (en) Semiconductor module
JP2000164944A (en) Thermoelectric conversion module
JP2002164585A (en) Thermoelectric conversion module
CN109372059B (en) Nanometer small molecule water generating device
JPH0677347A (en) Substrate
JP2001053342A (en) Thermoelectric heater and cooler
JP2003222426A (en) Heat exchanger
JPH01132146A (en) Semiconductor device
JPH104219A (en) Peltier element
JPH0831992A (en) Semiconductor device using peltier element as its heat dissipating device
JP5453296B2 (en) Semiconductor device