JP2000164450A - Multilayer capacitor - Google Patents

Multilayer capacitor

Info

Publication number
JP2000164450A
JP2000164450A JP10340746A JP34074698A JP2000164450A JP 2000164450 A JP2000164450 A JP 2000164450A JP 10340746 A JP10340746 A JP 10340746A JP 34074698 A JP34074698 A JP 34074698A JP 2000164450 A JP2000164450 A JP 2000164450A
Authority
JP
Japan
Prior art keywords
electrode
capacitance
multilayer capacitor
internal electrode
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10340746A
Other languages
Japanese (ja)
Inventor
Hisashi Sato
恒 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10340746A priority Critical patent/JP2000164450A/en
Publication of JP2000164450A publication Critical patent/JP2000164450A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer capacitor which is constituted in such a way that the designed capacitance of its laminate itself does not fluctuate much, by making parasitic capacitances induced between internal electrode layers and the wiring of a mounting substrate as small as possible. SOLUTION: The multilayer capacitor 1 is constituted by arranging internal electrode layers 2 among the dielectric layers of a laminate 12 formed by laminating a plurality of rectangular dielectric layers upon another and, at the same time, forming external electrodes 5 on both end faces of the laminate 12. A capacitance interrupting electrode 3 composed at least of three or more insular conductive films arranged in parallel is arranged from one external electrode 5 to the other external electrode 5 between the dielectric layers on the outside of the outermost internal electrode layer 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、積層コンデンサ
に属する。特に実装時の実効容量を正確に決めることの
できる表面実装型の積層コンデンサに属する。
The present invention relates to a multilayer capacitor. In particular, it belongs to a surface mount type multilayer capacitor capable of accurately determining the effective capacitance at the time of mounting.

【0002】[0002]

【従来の技術】積層コンデンサは、図9に示すようにセ
ラミックなどからなる矩形状の誘電体層を挟んで電位の
異なる内部電極層2が交互に積層され、その積層体12
の端面に形成された一対の外部電極5,5のいずれかと
接続されて構成されている。そして、各外部電極5が実
装基板6の電極パッド8に半田などの接合部材7にて接
合されることにより、実装基板6に実装される。
2. Description of the Related Art As shown in FIG. 9, a multilayer capacitor is formed by alternately stacking internal electrode layers 2 having different potentials with a rectangular dielectric layer made of ceramic or the like interposed therebetween.
Is connected to one of the pair of external electrodes 5 and 5 formed on the end surface of the first electrode. Each external electrode 5 is mounted on the mounting board 6 by being bonded to the electrode pad 8 of the mounting board 6 by a bonding member 7 such as solder.

【0003】従来より、このような積層コンデンサの実
装方法では、一方の電位の内部電極層と、他方の電位の
内部電極層と接続する実装基板上の電極パッドもしくは
それに連なる配線導体との間で寄生静電容量(以下、寄
生容量という。)が生じる。
Conventionally, in such a mounting method of a multilayer capacitor, an internal electrode layer of one potential and an electrode pad on a mounting board connected to the internal electrode layer of the other potential or a wiring conductor connected thereto are connected. A parasitic capacitance (hereinafter, referred to as a parasitic capacitance) occurs.

【0004】この寄生容量は、寄生ノイズの原因とな
り、特に1GHz以上の高周波領域では顕著に影響を受
ける。そこで、特開平9−129498号公報に記載の
技術では、図10に示すように内部電極層2の外側の誘
電体層間に、各々外部電極と接続する長さの短い一対の
電極2a、2bが形成されていた。
[0004] The parasitic capacitance causes parasitic noise, and is significantly affected particularly in a high frequency region of 1 GHz or more. Therefore, in the technique described in Japanese Patent Application Laid-Open No. 9-129498, a pair of electrodes 2a and 2b each having a short length connected to an external electrode are provided between dielectric layers outside the internal electrode layer 2 as shown in FIG. Had been formed.

【0005】[0005]

【発明が解決しようとする課題】上記特開平9−129
498号公報に記載の技術によって寄生容量をある程度
小さくすることはできるが、実装基板6上の電極パッド
8間に存在する配線18と内部電極層2との間に依然と
して寄生容量が存在している。
Problems to be Solved by the Invention
No. 498, the parasitic capacitance can be reduced to some extent, but the parasitic capacitance still exists between the wiring 18 existing between the electrode pads 8 on the mounting substrate 6 and the internal electrode layer 2. .

【0006】それ故、この発明の目的は、内部電極層と
実装基板の配線との間に生じる寄生容量を極力小さく
し、積層体自身の設計上の静電容量にほぼ等しい静電容
量を有する積層コンデンサを提供することにある。
Therefore, an object of the present invention is to minimize the parasitic capacitance generated between the internal electrode layer and the wiring of the mounting substrate and to have a capacitance substantially equal to the designed capacitance of the laminate itself. An object of the present invention is to provide a multilayer capacitor.

【0007】[0007]

【課題を解決するための手段】その目的を達成するため
に、この発明の積層コンデンサは、複数の矩形状誘電体
層を積層して成る積層体の誘電体層間に内部電極層を配
置するとともに、該積層体の一対の端面に前記内部電極
層と接続する外部電極を形成して成る積層コンデンサに
おいて、最外層の内部電極層の外側に位置する誘電体層
間に、一方の外部電極から他方の外部電極に至るまでの
間に、少なくとも3以上の島状導体膜が並設されて成る
容量遮断電極を配置したことを特徴とする。
In order to achieve the object, a multilayer capacitor according to the present invention has a structure in which an internal electrode layer is arranged between dielectric layers of a laminate formed by laminating a plurality of rectangular dielectric layers. A multilayer capacitor formed by forming external electrodes connected to the internal electrode layers on a pair of end surfaces of the multilayer body, between the dielectric layers located outside the outermost internal electrode layer, from one external electrode to the other. A capacitance cutoff electrode having at least three or more island-shaped conductor films is arranged before reaching the external electrode.

【0008】従って、この容量遮断電極が内部電極層と
実装基板上の電極パッドや配線導体との間に生じる寄生
容量を遮断する。
Accordingly, the capacitance blocking electrode blocks a parasitic capacitance generated between the internal electrode layer and the electrode pad or the wiring conductor on the mounting board.

【0009】しかも容量遮断電極は、両外部電極間の少
なくとも2カ所以上で分断されるよう複数の島状導体膜
が並設されて構成されているので、各分断箇所で線間容
量成分が形成されて、それらが直列に結合されたものと
回路的に等価となる。このため、容量遮断電極と実装基
板の配線導体との間に寄生容量が生じたとしても、積層
体内の内部電極層で形成されている静電容量変化は小さ
い。この容量変化は、容量遮断電極の島状導体膜数が多
いほど小さくなる。
In addition, since the capacitance cut-off electrode is formed by arranging a plurality of island-shaped conductor films in parallel so as to be divided at least at two or more locations between the external electrodes, a line capacitance component is formed at each of the divided locations. Then, they are equivalent in circuit to those connected in series. For this reason, even if a parasitic capacitance occurs between the capacitance cutoff electrode and the wiring conductor of the mounting board, the change in the capacitance formed by the internal electrode layers in the laminate is small. This change in capacitance becomes smaller as the number of island-shaped conductor films of the capacitance cutoff electrode increases.

【0010】尚、容量遮断電極は、内部電極層の両最外
層に、すなわち実装時に下側となる部分だけでなく上側
となる部分にも形成することが好ましい。そうすること
で、表裏の判別なしに実装できる。
It is preferable that the capacitance cut-off electrodes are formed on both outermost layers of the internal electrode layers, that is, not only on the lower part but also on the upper part during mounting. By doing so, it can be implemented without discrimination of front and back.

【0011】分断した容量遮断電極の外部電極接続位置
から第一分断点までの距離、即ち外部電極に接続する島
状導体膜の長さmは、外部電極のうち容量遮断電極と平
行に延びている部分の長さnより僅かに長くするのがよ
い。外部電極は実装基板上の電極パッドと同一極性であ
るから、少なくとも第一分断点までは寄生容量を生じる
ことがなく、その分だけ容量遮断電極と電極パッドとの
間で生じる寄生容量を少なくすることができるからであ
る。
The distance from the external electrode connection position of the divided capacitance blocking electrode to the first dividing point, that is, the length m of the island-shaped conductive film connected to the external electrode extends parallel to the capacitance blocking electrode of the external electrodes. It is better to make it slightly longer than the length n of the part where it exists. Since the external electrodes have the same polarity as the electrode pads on the mounting substrate, no parasitic capacitance is generated at least up to the first breaking point, and the parasitic capacitance generated between the capacitance cut-off electrode and the electrode pad is reduced accordingly. Because you can do it.

【0012】この発明の積層コンデンサの容量遮断電極
は、誘電体層を介して複数の分断電極で構成することが
望ましい。但し、分断箇所については、第1の分断電極
の分断箇所と第2の分断電極の分断箇所とが互いに重な
らないようにする。そして、分断箇所を除いて上記第1
の分断電極と上記第2の分断電極とを対向させる。こう
することで、容量遮断電極が単一の分断電極からなり同
一平面内の電極線間に容量成分が形成されている上記の
構成と異なり、第1の分断電極と第2の分断電極との層
間に容量成分が形成され、それら容量成分が直列に接続
されることとなる。従って、内部電極層と実装基板上の
配線との間に生じる寄生容量は無視して良い程度に低く
なる。
It is desirable that the capacitance cutoff electrode of the multilayer capacitor of the present invention is constituted by a plurality of divided electrodes via a dielectric layer. However, with respect to the dividing part, the dividing part of the first dividing electrode and the dividing part of the second dividing electrode do not overlap each other. Then, except for the divided part,
And the second dividing electrode are opposed to each other. With this configuration, unlike the above configuration in which the capacitance cutoff electrode is formed of a single dividing electrode and the capacitance component is formed between the electrode lines in the same plane, the first dividing electrode and the second dividing electrode Capacitive components are formed between the layers, and these capacitive components are connected in series. Therefore, the parasitic capacitance generated between the internal electrode layer and the wiring on the mounting board is reduced to a negligible level.

【0013】[0013]

【発明の実施の形態】実施例1 この発明の積層コンデンサの実施形態を図面とともに説
明する。図1は第一実施形態の積層コンデンサを示す断
面図、図2は同じく斜視図、図3は内部電極層及び容量
遮断電極を並べて示す平面図、図4はその積層コンデン
サを実装した状態を示す断面図、図5は実装時の等価回
路図である。尚、従来と同一箇所は同一符号を付す。
Embodiment 1 An embodiment of a multilayer capacitor according to the present invention will be described with reference to the drawings. 1 is a cross-sectional view showing the multilayer capacitor of the first embodiment, FIG. 2 is a perspective view of the same, FIG. 3 is a plan view showing an internal electrode layer and a capacity cutoff electrode side by side, and FIG. 4 shows a state where the multilayer capacitor is mounted. FIG. 5 is a sectional view, and FIG. 5 is an equivalent circuit diagram at the time of mounting. The same parts as those in the related art are denoted by the same reference numerals.

【0014】積層コンデンサ1は、図2に示すように直
方体状の積層体12の対向する両端面に一対の外部電極
5、5が設けられている。また、図4に示すように半田
などの接合部材7を介して実装基板6の電極パッド8に
接合されている。
As shown in FIG. 2, the multilayer capacitor 1 is provided with a pair of external electrodes 5 on opposite end surfaces of a rectangular parallelepiped laminate 12. Further, as shown in FIG. 4, it is joined to the electrode pad 8 of the mounting board 6 via a joining member 7 such as solder.

【0015】積層体12は、チタン酸バリウム、チタン
酸ストロンチウムなどの誘電体セラミック材料からなる
矩形状の誘電体層と内部電極層2、2・・・とが積層さ
れて構成されている。内部電極層2はパラジウムPdま
たはパラジウム銀合金Pd−Agなどの貴金属材料また
はニッケルNiなどの卑金属材料からなり、一方の外部
電極5(例えば図面の左側)に接続される層と、電位の
異なる他方の外部電極5(同右側)に接続される層とが
交互に配置されて層間で容量成分を形成している。
The laminate 12 is formed by laminating a rectangular dielectric layer made of a dielectric ceramic material such as barium titanate or strontium titanate and the internal electrode layers 2, 2,. The internal electrode layer 2 is made of a noble metal material such as palladium Pd or a palladium-silver alloy Pd-Ag, or a base metal material such as nickel Ni. And the layers connected to the external electrodes 5 (on the right side) are alternately arranged to form a capacitance component between the layers.

【0016】外部電極5は、積層体12の端面側から順
に下地導体膜13、中間膜9及び表面膜10の層構造を
なしている。下地導体膜13は誘電体層との密着性確
保、表面膜10は接合部材7との密着性確保、中間膜9
は下地導体膜13の半田食われ防止という役割を各々果
たしている。下地導体膜13は、例えば銀、銅、銀パラ
ジウム合金又はこれらを含有する導電性樹脂などからな
る。中間膜9は一般的にニッケルからなるが、コバルト
を含んでも良い。表面膜10は例えば半田もしくは錫か
らなる。
The external electrode 5 has a layer structure of a base conductor film 13, an intermediate film 9, and a surface film 10 in this order from the end face side of the laminated body 12. The base conductor film 13 secures the adhesion with the dielectric layer, the surface film 10 secures the adhesion with the bonding member 7, the intermediate film 9
Each plays a role of preventing solder erosion of the underlying conductor film 13. The underlying conductor film 13 is made of, for example, silver, copper, a silver-palladium alloy, or a conductive resin containing these. The intermediate film 9 is generally made of nickel, but may contain cobalt. The surface film 10 is made of, for example, solder or tin.

【0017】内部電極層2の最下層のさらに下側の部分
には、一方の外部電極5との接続位置から他方の外部電
極5との接続位置にわたって途中の多数の箇所で分断さ
れた容量遮断電極3が敷設されている。この容量遮断電
極3が実装時に誤って最上層となることのないように積
層体12の上面にマーク14が付けられている。容量遮
断電極3は、一方の外部電極5から他方の外部電極5ま
でに至る間に2つ以上の分断領域xが形成されるよう複
数の島状導体膜31、31・・・から構成されている。
また、容量遮断電極3は、その外部電極5との接続位置
から第一分断点までの距離mが、外部電極5のうち容量
遮断電極3と平行に延びている部分の長さnよりも長く
なるように設けられている。なお、島状導体膜31の幅
は、内部電極層2の幅と同一かまたはそれよりも幅広に
設けることが望ましい。
In the lower portion of the lowermost layer of the internal electrode layer 2, the capacitance cutoff is divided at a number of points on the way from the connection position with one external electrode 5 to the connection position with the other external electrode 5. Electrodes 3 are laid. A mark 14 is provided on the upper surface of the laminate 12 so that the capacitance cutoff electrode 3 does not become the uppermost layer during mounting. The capacity cut-off electrode 3 is composed of a plurality of island-shaped conductor films 31, 31... So that two or more divided regions x are formed from one external electrode 5 to the other external electrode 5. I have.
Further, the distance m from the connection position of the capacitance cutoff electrode 3 to the external electrode 5 to the first breaking point is longer than the length n of the portion of the external electrode 5 extending in parallel with the capacitance cutoff electrode 3. It is provided so that it becomes. Note that the width of the island-shaped conductor film 31 is desirably provided to be equal to or wider than the width of the internal electrode layer 2.

【0018】この積層コンデンサ1は次のように製造さ
れる。
This multilayer capacitor 1 is manufactured as follows.

【0019】まず、例えば誘電体層となる10cm角程
度の大型のセラミックグリーンシートの表面に内部電極
層2となる導体膜を導電性ペーストで印刷して形成す
る。容量遮断電極3となる導体膜も同様にして形成す
る。積層体12の最上面になるセラミックグリーンシー
トの表面にはマーク14を印刷する。
First, a conductive film serving as the internal electrode layer 2 is formed by printing with a conductive paste on the surface of a large ceramic green sheet of about 10 cm square serving as a dielectric layer, for example. The conductor film to be the capacitance cutoff electrode 3 is formed in the same manner. The mark 14 is printed on the surface of the ceramic green sheet that is the uppermost surface of the laminate 12.

【0020】そして、内部電極層2の印刷されたグリー
ンシートを1枚おきに180度向きを換えて一方の外部
電極5に接続する内部電極層2と他方の外部電極5に接
続する内部電極層2とが交互になるように積層し、圧力
300kg/cm2 、温度90℃で熱圧着する。但し、
容量遮断電極3となる導体膜の印刷されたグリーンシー
トは一番下に、マーク14の印刷されたグリーンシート
は一番上にする。互いに圧着されて厚さ0.5〜2mm
程度となった複数枚の大型グリーンシートを例えば1〜
3.2mm程度の大きさに裁断する。裁断方式は、積層
体が薄い場合は押し切り、厚い場合はダイシングがよ
い。こうして未焼成の積層体を得る。
Then, every other printed green sheet on which the internal electrode layer 2 is printed is turned by 180 degrees to connect the internal electrode layer 2 to one external electrode 5 and the internal electrode layer connected to the other external electrode 5. 2 are alternately laminated, and thermocompression-bonded at a pressure of 300 kg / cm 2 and a temperature of 90 ° C. However,
The green sheet on which the conductive film serving as the capacitance blocking electrode 3 is printed is at the bottom, and the green sheet on which the mark 14 is printed is at the top. 0.5-2mm thick by being pressed together
A large number of large green sheets, for example,
Cut to a size of about 3.2 mm. As for the cutting method, when the laminate is thin, it is preferable to cut it off, and when it is thick, dicing is preferable. Thus, an unfired laminate is obtained.

【0021】未焼成の積層体を250℃〜400℃の脱
脂炉で、脱脂した後、グリーンシートや内部電極層及び
容量遮断電極の成分に適合する所定の雰囲気及び温度、
例えば内部電極層が銀パラジウム合金であれば大気中1
250℃〜1300℃で焼成することにより、誘電体
層、内部電極層及び容量遮断電極を焼結一体化し、積層
体12を得る。
After the unsintered laminate is degreased in a degreasing furnace at a temperature of 250 ° C. to 400 ° C., a predetermined atmosphere and temperature suitable for the components of the green sheet, the internal electrode layer, and the capacity cut-off electrode,
For example, if the internal electrode layer is a silver-palladium alloy,
By firing at 250 ° C. to 1300 ° C., the dielectric layer, the internal electrode layer, and the capacitance cutoff electrode are sintered and integrated to obtain the laminate 12.

【0022】次に積層体12の対向する一対の端面に外
部電極5を形成する。具体的には、積層体12を研磨粉
と水の入った容器内でバレル研磨してその端面に内部電
極層2の端部を露出させる。そして、端面に下地導体膜
13となる導電性ペーストを塗布し乾燥し700℃〜8
60℃で焼き付ける。導電性ペーストが導電性樹脂から
なる場合は焼き付け工程を省略する。その後、中間膜9
となる金属、例えばニッケルをメッキし、更に表面膜1
0となる金属、例えば半田をメッキする。
Next, external electrodes 5 are formed on a pair of opposed end faces of the laminate 12. Specifically, the stacked body 12 is barrel-polished in a container containing polishing powder and water, so that the end of the internal electrode layer 2 is exposed at the end face. Then, a conductive paste to be the base conductor film 13 is applied to the end face, dried and dried at 700 ° C. to 8 ° C.
Bake at 60 ° C. When the conductive paste is made of a conductive resin, the baking step is omitted. Then, the intermediate film 9
Metal, for example, nickel, and then the surface film 1
A metal that becomes zero, for example, solder is plated.

【0023】得られた積層コンデンサ1は、マーク14
が上向きとなるように接合部材7によって実装基板6の
電極パッド8に接合されることにより、図4のように実
装される。
The obtained multilayer capacitor 1 has a mark 14
Is bonded to the electrode pad 8 of the mounting board 6 by the bonding member 7 so that the upper side faces upward, thereby mounting as shown in FIG.

【0024】実装状態では、容量遮断電極3が一方の外
部電極5から他方の外部電極5まで延びているので、電
極パッド8や実装基板6の表面配線(図略)との間の寄
生容量の発生は防止される。また、電極パッド8から容
量遮断電極3の第一分断点までは同じ電位であるから、
その間に寄生容量が生じることはない。更に、上記のよ
うに第一分断点までの距離mが外部電極5の回り込み部
分の長さnよりも長いので、外部電極5と内部電極層2
との間では寄生容量は生じない。結局、図5のような回
路構成となり、容量遮断電極3と電極パッド8又は実装
基板6の表面配線との間に寄生容量11が生じるが、こ
の寄生容量11は容量遮断電極3の分断領域xに形成さ
れた線間容量15の直列結合によって容量値が低くされ
ている。
In the mounted state, since the capacitance cutoff electrode 3 extends from one external electrode 5 to the other external electrode 5, the parasitic capacitance between the electrode pad 8 and the surface wiring (not shown) of the mounting substrate 6 is reduced. Occurrence is prevented. In addition, since the potential from the electrode pad 8 to the first breaking point of the capacitance blocking electrode 3 is the same,
No parasitic capacitance occurs during this time. Further, as described above, since the distance m to the first break point is longer than the length n of the wraparound portion of the external electrode 5, the external electrode 5 and the internal electrode layer 2
There is no parasitic capacitance between the two. Eventually, a circuit configuration as shown in FIG. 5 is obtained, and a parasitic capacitance 11 is generated between the capacitance cutoff electrode 3 and the electrode pad 8 or the surface wiring of the mounting substrate 6. The capacitance value is reduced by the series coupling of the line capacitances 15 formed in the above.

【0025】従って、ほぼ設計仕様通りの実効容量を得
ることができる。
Therefore, an effective capacity almost as designed can be obtained.

【0026】実施例2 この発明の第2実施形態を図6に示す断面図とともに説
明する。第2実施形態では、第1実施形態と異なり積層
体12の上面にマーク14が設けられていない。その代
わりに最上層側に上部側容量遮断電極16が下部側の容
量遮断電極3と同じパターンで形成されている。その他
の点では第1実施形態と同一条件で製造されている。従
って、表裏の判別なしに実装されても第一実施形態の積
層コンデンサと同じ作用効果を生じる。加えて、マーク
14を印刷する工数を省くことができる。
Embodiment 2 A second embodiment of the present invention will be described with reference to the sectional view shown in FIG. In the second embodiment, unlike the first embodiment, the mark 14 is not provided on the upper surface of the stacked body 12. Instead, the upper-side capacitance cutoff electrode 16 is formed on the uppermost layer side in the same pattern as the lower-side capacitance cutoff electrode 3. Otherwise, it is manufactured under the same conditions as the first embodiment. Therefore, the same operation and effects as those of the multilayer capacitor of the first embodiment can be obtained even if the multilayer capacitor is mounted without discrimination between front and back. In addition, the number of steps for printing the mark 14 can be omitted.

【0027】実施例3 この発明の第3実施形態を図7に示す断面図とともに説
明する。第3実施形態では、容量遮断電極3を1層だけ
でなく、複数層、例えば2層で形成した。即ち、下側の
容量遮断電極は、第1の分断電極(容量遮断電極と同一
符号に付す)3と、第2の分断電極4とから構成されて
いる。同様に上側の容量遮断電極は、第1の分断電極
(容量遮断電極と同一符号に付す)16と、第2の分断
電極17とから構成されている。ここで、図8に示すよ
うに下部側の第1の分断電極3は、複数の島状導体膜3
1、31・・・が併設されて構成され、隣接する島状導
体膜31、31・・・間に分断領域Xが形成されてい
る。また、第2の分断電極4も、複数の島状導体膜4
1、41・・・が併設されて構成され、隣接する島状導
体膜41、41・・・間に分断領域Yが形成されてい
る。そして、第1及び第2の容量遮断電極3、4は、互
いに分断領域X、Yが互いに重ならないように厚み方向
に積層されて構成されている。従って、1つの島状導体
膜31に対して、2つの島状導体膜41、41が誘電体
層を介して対向することになり、2つの層間容量成分が
直列的に接続されることになる。なお、上部側の容量遮
断電極16、17も同様である。このため、第1実施形
態で寄生容量を低くしている分断電極間の容量成分が、
ここでは第1の分断電極3と第2の分断電極4との間に
形成される層間容量の直列結合となる。従って、寄生容
量が益々低くなる。その他の点では第2実施形態と同一
条件で製造されている。
Embodiment 3 A third embodiment of the present invention will be described with reference to a sectional view shown in FIG. In the third embodiment, the capacitance blocking electrode 3 is formed not only in one layer but also in a plurality of layers, for example, two layers. That is, the lower capacity cut-off electrode is composed of a first split electrode (same as the same code as the capacity cut-off electrode) 3 and a second split electrode 4. Similarly, the upper capacity cut-off electrode is composed of a first split electrode (assigned the same reference numeral as the capacity cut-off electrode) 16 and a second split electrode 17. Here, as shown in FIG. 8, the lower first dividing electrode 3 includes a plurality of island-shaped conductor films 3.
Are arranged side by side, and a divided region X is formed between adjacent island-shaped conductor films 31, 31,.... In addition, the second dividing electrode 4 includes a plurality of island-shaped conductor films 4.
Are formed side by side, and a divided region Y is formed between adjacent island-shaped conductor films 41, 41. The first and second capacitance cutoff electrodes 3 and 4 are stacked in the thickness direction such that the divided regions X and Y do not overlap with each other. Therefore, the two island-shaped conductor films 41 and 41 face one island-shaped conductor film 31 via the dielectric layer, and the two interlayer capacitance components are connected in series. . Note that the same applies to the capacitance cutoff electrodes 16 and 17 on the upper side. For this reason, the capacitance component between the divided electrodes that reduces the parasitic capacitance in the first embodiment is:
Here, the inter-layer capacitance formed between the first dividing electrode 3 and the second dividing electrode 4 is connected in series. Therefore, the parasitic capacitance is further reduced. Otherwise, it is manufactured under the same conditions as the second embodiment.

【0028】[0028]

【発明の効果】以上のように、この発明の積層コンデン
サは実装時に寄生容量をほとんど生じないので、実効容
量を正確に決めることができる。また、ノイズの発生も
ほとんどない。
As described above, since the multilayer capacitor of the present invention hardly generates a parasitic capacitance at the time of mounting, the effective capacitance can be accurately determined. Also, almost no noise is generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の積層コンデンサを示す
断面図である。
FIG. 1 is a sectional view showing a multilayer capacitor according to a first embodiment of the present invention.

【図2】本発明の第1実施形態の積層コンデンサを示す
斜視図である。
FIG. 2 is a perspective view showing the multilayer capacitor according to the first embodiment of the present invention.

【図3】本発明の第1実施形態の積層コンデンサの内部
電極層を種類毎に並べて示す平面図であり、(a)、
(b)は内部電極層を示し、(c)は容量遮断電極を示
す。
FIGS. 3A and 3B are plan views showing the internal electrode layers of the multilayer capacitor according to the first embodiment of the present invention arranged side by side; FIGS.
(B) shows the internal electrode layer, and (c) shows the capacity cutoff electrode.

【図4】本発明の第1実施形態の積層コンデンサを実装
基板に実装した状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which the multilayer capacitor according to the first embodiment of the present invention is mounted on a mounting board.

【図5】本発明の第1実施形態の積層コンデンサの実装
状態の等価回路図である。
FIG. 5 is an equivalent circuit diagram of a mounted state of the multilayer capacitor according to the first embodiment of the present invention.

【図6】本発明の第2実施形態の積層コンデンサを示す
断面図である。
FIG. 6 is a sectional view showing a multilayer capacitor according to a second embodiment of the present invention.

【図7】本発明の第3実施形態の積層コンデンサを示す
断面図である。
FIG. 7 is a sectional view showing a multilayer capacitor according to a third embodiment of the present invention.

【図8】本発明の第3実施形態の積層コンデンサの内部
電極層を種類毎に並べて示す平面図であり、(a)、
(b)は内部電極層を示し、(c)、(d)は容量遮断
電極を示す。
FIGS. 8A and 8B are plan views showing the internal electrode layers of the multilayer capacitor according to the third embodiment of the present invention arranged side by side, wherein FIGS.
(B) shows the internal electrode layer, and (c) and (d) show the capacity cutoff electrodes.

【図9】従来の積層コンデンサを示す断面図である。FIG. 9 is a sectional view showing a conventional multilayer capacitor.

【図10】従来の別の積層コンデンサを示す断面図であ
る。
FIG. 10 is a sectional view showing another conventional multilayer capacitor.

【符号の説明】[Explanation of symbols]

1 積層コンデンサ 2 内部電極層 3 容量遮断電極 4 容量遮断電極 5 外部電極 6 実装基板 7 接合部材 8 電極パッド 9 中間膜 10 表面膜 11 寄生容量 12 積層体 13 下地導体膜 14 マーク 15 容量成分 16 容量遮断電極 17 容量遮断電極 DESCRIPTION OF SYMBOLS 1 Multilayer capacitor 2 Internal electrode layer 3 Capacitance cutoff electrode 4 Capacitance cutoff electrode 5 External electrode 6 Mounting substrate 7 Joining member 8 Electrode pad 9 Intermediate film 10 Surface film 11 Parasitic capacitance 12 Laminated body 13 Underlayer conductor film 14 Mark 15 Capacitance component 16 Capacity Cutoff electrode 17 Capacitance cutoff electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の矩形状誘電体層を積層して成る積
層体の誘電体層間に内部電極層を配置するとともに、該
積層体の一対の端面に前記内部電極層と接続する外部電
極を形成して成る積層コンデンサにおいて、 最外層の内部電極層の外側に位置する誘電体層間に、一
方の外部電極から他方の外部電極に至るまでの間に、少
なくとも3以上の島状導体膜が並設されて成る容量遮断
電極を配置したことを特徴とする積層コンデンサ。
1. An internal electrode layer is arranged between dielectric layers of a laminate formed by laminating a plurality of rectangular dielectric layers, and an external electrode connected to the internal electrode layer is provided on a pair of end surfaces of the laminate. In the multilayer capacitor formed, at least three or more island-shaped conductor films are arranged in parallel between one external electrode and another external electrode between dielectric layers located outside the outermost internal electrode layer. A multilayer capacitor in which a provided capacity cutoff electrode is arranged.
【請求項2】 前記容量遮断電極は、一方の外部電極か
ら他方の外部電極に至るまでの間に、少なくとも3以上
の島状導体膜が並設されて成る第1の分断電極と第2の
分断電極とから構成されるとともに、前記第1の分断電
極と第2の分断電極とは、誘電体層を挟んで対向してお
り、且つ第1の分断電極と第2の分断電極の各々の島状
導体膜間の分断箇所が異なる請求項1に記載の積層コン
デンサ。
2. The method according to claim 1, wherein the capacitance cutoff electrode includes a first divided electrode having at least three or more island-shaped conductor films arranged in parallel between one external electrode and the other external electrode, and a second divided electrode. A first dividing electrode and a second dividing electrode are opposed to each other with a dielectric layer interposed therebetween, and each of the first dividing electrode and the second dividing electrode The multilayer capacitor according to claim 1, wherein the divided portions between the island-shaped conductor films are different.
JP10340746A 1998-11-30 1998-11-30 Multilayer capacitor Pending JP2000164450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340746A JP2000164450A (en) 1998-11-30 1998-11-30 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340746A JP2000164450A (en) 1998-11-30 1998-11-30 Multilayer capacitor

Publications (1)

Publication Number Publication Date
JP2000164450A true JP2000164450A (en) 2000-06-16

Family

ID=18339913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340746A Pending JP2000164450A (en) 1998-11-30 1998-11-30 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JP2000164450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508647B2 (en) 2005-11-22 2009-03-24 Murata Manufacturing Co., Ltd. Multilayer capacitor
JP2015057810A (en) * 2013-09-16 2015-03-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component embedded in board and multilayer ceramic electronic component-embedded printed circuit board
US20160104577A1 (en) * 2014-10-08 2016-04-14 Samsung Electro-Mechanics Co., Ltd. Electronic component and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508647B2 (en) 2005-11-22 2009-03-24 Murata Manufacturing Co., Ltd. Multilayer capacitor
JP2015057810A (en) * 2013-09-16 2015-03-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component embedded in board and multilayer ceramic electronic component-embedded printed circuit board
US20160104577A1 (en) * 2014-10-08 2016-04-14 Samsung Electro-Mechanics Co., Ltd. Electronic component and method of manufacturing the same
US9865399B2 (en) * 2014-10-08 2018-01-09 Samsung Electro-Mechanics Co., Ltd. Electronic component having multilayer structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR101434108B1 (en) Multi-layered ceramic capacitor, mounting circuit board thereof and manufacturing method the same
KR20180007865A (en) Multi-layered capacitor and board having the same mounted thereon
KR20140085097A (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP2009021512A (en) Multilayer capacitor
JP2003282356A (en) Capacitor array
KR20140120111A (en) Multi-layered ceramic capacitor and manufacturing method the same
JP2000340448A (en) Laminated ceramic capacitor
JP2001155962A (en) Feed-through capacitor
JP2000106320A (en) Laminated ceramic capacitor
JP2000277382A (en) Multi-laminated ceramic capacitor and manufacturing method of the same
JP2000106322A (en) Laminated ceramic capacitor
JPH11135356A (en) Laminated ceramic capacitor
JP2000164450A (en) Multilayer capacitor
KR20180132490A (en) Multilayered ceramic capacitor and board having the same mounted thereon
CN114823145A (en) Multilayer capacitor and method for manufacturing the same
JP2000049037A (en) Laminated ceramic capacitor
JP4646779B2 (en) Multilayer capacitor, multilayer capacitor mounting structure, and multilayer capacitor manufacturing method
JP2000164451A (en) Laminated ceramic capacitor
JP2001185440A (en) Laminated ceramic capacitor
JP2000252165A (en) Multiple multilayer ceramic capacitor
JP2001126956A (en) Feed through capacitor
JP2001044059A (en) Multilayer ceramic capacitor
KR102283079B1 (en) Multilayer capacitor and board having the same mounted thereon
JPH11345739A (en) Laminated ceramic capacitor
JP2766085B2 (en) Manufacturing method of laminate