JP2000157214A - Neutralized salt-generating mineral composition - Google Patents

Neutralized salt-generating mineral composition

Info

Publication number
JP2000157214A
JP2000157214A JP10356975A JP35697598A JP2000157214A JP 2000157214 A JP2000157214 A JP 2000157214A JP 10356975 A JP10356975 A JP 10356975A JP 35697598 A JP35697598 A JP 35697598A JP 2000157214 A JP2000157214 A JP 2000157214A
Authority
JP
Japan
Prior art keywords
neutralized salt
mineral composition
water
salt
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10356975A
Other languages
Japanese (ja)
Inventor
Katsuyasu Nakada
勝康 中田
Hironobu Nanbu
宏暢 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku KK
Original Assignee
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku KK filed Critical Taiyo Kagaku KK
Priority to JP10356975A priority Critical patent/JP2000157214A/en
Publication of JP2000157214A publication Critical patent/JP2000157214A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Cosmetics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a neutralized salt-generating mineral composition having high heat stability and excellent dispersibility and is useful for food, cosmetic, etc., by making the composition include a specific ratio of specific neutralized salt-generating fine particles, enzymolysis lecithin, polyglycerol fatty ester and mucopolysaccharides. SOLUTION: This neutralized salt-generating mineral composition contains (A) 0.01-20 wt.% of neutralized salt-generating fine particles of metal salts such as calcium phosphate having <=2 μm average particle diameter and <=1.0×10-7 solubility product in water at 25 deg.C as a metal content, (B) 0.01-5 wt.% of enzymolysis lecithin such as lysophosphatidylcholine generated by using phospholipase A or phosphatidic acid generated by using phospholipase D, (C) 0.01-20 wt.% of polyglycerol fatty ester as an ester of polyglycerol containing >=70 wt.% of a fraction having >=3 polymerization degree and a 6-22C (un)saturated fatty acid and (D) 0.01-5 wt.% of mucopolysaccharides such as gum arabic or pectin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分散性、特に水相
中での分散性が良好な水不溶性の中和造塩ミネラル組成
物の製造方法に関する。
The present invention relates to a process for producing a water-insoluble neutralized salt-forming mineral composition having good dispersibility, particularly good dispersibility in an aqueous phase.

【0002】[0002]

【従来の技術】一般的に水不溶性のミネラルは、高比重
(通常1.5以上)であるために水中で沈殿しやすく、
水中での安定分散を望む際には先ず微粒子化が必要とな
る。特開昭57−110167や特開平08−7938
1等で挙げられているボールミルやジェットミル等を用
いた物理的破砕方法では数ミクロンオーダーの微粒子化
が限界であり、充分な分散安定性を得られない。更に微
細なサブミクロンオーダーの微粒子を得る方法として、
中和造塩反応を利用した化学的製造方法も数多く報告さ
れており、1/100ミクロン単位の超微粒子も生成す
ることが可能であるが、生成後速やかに2次凝集が生じ
てミクロンオーダーの粗大粒子となる問題がある。
2. Description of the Related Art In general, water-insoluble minerals have a high specific gravity (usually 1.5 or more), so that they easily precipitate in water.
When stable dispersion in water is desired, first, micronization is required. JP-A-57-110167 and JP-A-08-7938.
In the physical crushing method using a ball mill, a jet mill, or the like, which is mentioned in 1 or the like, fine particles of the order of several microns are the limit, and sufficient dispersion stability cannot be obtained. As a method to obtain finer submicron order fine particles,
Many chemical production methods utilizing a neutralization salt formation reaction have also been reported, and it is possible to produce ultrafine particles in units of 1/100 micron. There is a problem of coarse particles.

【0003】これを抑制する方法として、結晶セルロー
スやペクチン、カラギナン、グアーガム等の増粘多糖類
を添加することでその高分子網目構造中に1次微粒子を
吸着保持する方法(特開昭56−117753号、特公
昭57−35945号、特開平09−191855)、
又は油脂中に不溶性ミネラルを混合分散させ、その際の
油脂配合量を30重量%以上に調整して比重軽減する方
法(特開昭57−110167号)等が提案されている
が、目的とする不溶性ミネラル以外の物質を多量に添加
する必要が生じ、かつ分散溶質が希薄化すると共に分散
効果が著しく低下するとの問題点がある。これを解決す
る方策として、不溶性ミネラルの微粒子表面を有機酸や
アルカリ剤で処理する方法(特開昭61−15645
号)及びショ糖エステル等の界面活性剤を用いる方法
(特開昭63−173556号)、(特開平5−319
817号)等が開発されたが、前者では不溶性ミネラル
を構成する金属イオン等の水相への遊離が生じやすく、
また後者では殺菌等の加熱処理を受けた際、微粒子表面
に吸着した界面活性剤層が剥離したり、2次凝集を促進
する等の問題が発生する。
[0003] As a method of suppressing this, a method of adsorbing and holding primary fine particles in a polymer network structure thereof by adding a thickening polysaccharide such as crystalline cellulose, pectin, carrageenan, guar gum or the like (Japanese Patent Application Laid-Open No. 56-1981). 117753, JP-B-57-35945, JP-A-09-191855),
Alternatively, a method has been proposed in which insoluble minerals are mixed and dispersed in fats and oils, and the specific gravity is reduced by adjusting the blending amount of the fats and oils to 30% by weight or more (Japanese Patent Laid-Open No. 57-110167). There is a problem that it is necessary to add a large amount of substances other than insoluble minerals, and that the dispersing effect becomes extremely low and the dispersing effect is significantly reduced. As a measure to solve this problem, a method of treating the surface of fine particles of insoluble minerals with an organic acid or an alkali agent (JP-A-61-15645)
) And a method using a surfactant such as sucrose ester (JP-A-63-173556), and JP-A-5-319.
No. 817), etc., but in the former, metal ions constituting the insoluble mineral are easily released into the aqueous phase,
In the latter case, when subjected to heat treatment such as sterilization, problems such as separation of the surfactant layer adsorbed on the surface of the fine particles and promotion of secondary aggregation occur.

【0004】[0004]

【発明が解決しようとする課題】本発明は、水不溶性の
中和造塩ミネラル組成物に結晶セルロースや油脂等の物
質を多量添加することなく、必要最小限の処理によって
加熱安定性が高く、分散性の良好な中和造塩ミネラル組
成物の製造方法を提供することを課題とする。以下、本
発明を詳しく説明する。
DISCLOSURE OF THE INVENTION The present invention provides a water-insoluble neutralized salt-forming mineral composition without adding a large amount of substances such as crystalline cellulose and fats and oils, and has a high heat stability by a minimum necessary treatment. An object of the present invention is to provide a method for producing a neutralized salt-forming mineral composition having good dispersibility. Hereinafter, the present invention will be described in detail.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を行った結果、水不溶性中和
造塩ミネラル組成物の製造において、まず、酵素分解レ
シチンを用いた後、ポリグリセリン脂肪酸エステル及び
増粘多糖類を用いることにより、凝集性のない良好な分
散性を有する水不溶性中和造塩ミネラル組成物が得られ
ることを見いだし本発明を完成させるに至った。本発明
の特徴は、平均粒子径2ミクロン以下でかつ25℃水中
に於ける溶解度積が1.0×10−7以下の金属塩類の
中和造塩微粒子表面に酵素分解レシチンによる一次吸着
層を形成せしめ、その後ポリグリセリン脂肪酸エステル
による二次吸着層を形成させて熱安定性に優れた被覆処
理中和造塩微粒子を構成し、これらの微粒子を増粘多糖
類の3次元構造に担持させて凝集性のない、優れた分散
性を有する中和造塩ミネラル組成物を製造することにあ
る。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above problems, and as a result, in the production of a water-insoluble neutralized salt-forming mineral composition, first, enzymatically degraded lecithin was used. Later, they found that a water-insoluble neutralized salt-forming mineral composition having good dispersibility without cohesion could be obtained by using a polyglycerin fatty acid ester and a thickening polysaccharide, and completed the present invention. A feature of the present invention is that a primary adsorption layer of enzyme-decomposed lecithin is formed on the surface of neutralized salt-forming fine particles of a metal salt having an average particle diameter of 2 μm or less and a solubility product in water at 25 ° C. of 1.0 × 10 −7 or less. Then, a secondary adsorption layer of polyglycerin fatty acid ester is formed to form coating-treated neutralized salt-forming fine particles having excellent thermal stability, and these fine particles are supported on the three-dimensional structure of the thickening polysaccharide. An object of the present invention is to produce a neutralized salt-forming mineral composition having no cohesiveness and excellent dispersibility.

【0006】[0006]

【発明の実施の形態】本発明における不溶性ミネラル
は、25℃水中における溶解度積が1.0×10−7以
下の金属塩類のコロイドである。例えば、水不溶の金属
塩類としては、塩化銀(AgCl:25℃水中の溶解度
積;1.0×10−10)、ピロリン酸銀(Ag4 2
7 :25℃水中の溶解度積;1.0×10−21)、
水酸化アルミニウム(Al(OH)2 :25℃水中の溶
解度積;2.0×10−32)、リン酸アルミニウム
(AlPO4 :25℃水中の溶解度積;5.8×10−
19)、硫酸バリウム(BaSO4 :25℃水中の溶解
度積;1.0×10−10)、リン酸バリウム(Ba3
(PO42:25℃水中の溶解度積;6.0×10−3
9)、炭酸バリウム(BaCO3:25℃水中の溶解度
積;5.1×10−9)、ピロリン酸カルシウム(Ca
227:25℃水中の溶解度積;2.0×10−1
9)、リン酸カルシウム(Ca3(PO42:25℃水
中の溶解度積;2.0×10−29)、炭酸カルシウム
(CaCO3:25℃水中の溶解度積;4.7×10−
9)、水酸化第1鉄(Fe(OH)2:25℃水中の溶
解度積;8.0×10−16)、リン酸第1鉄(Fe3
(PO42:25℃水中の溶解度積;1.3×10−2
2)、ピロリン酸第2鉄(Fe4(P27)3:25℃
水中の溶解度積;2.0×10−13)、炭酸第1鉄
(FeCO3:25℃水中の溶解度積;3.5×10−
11)、水酸化マグネシウム(Mg(OH)2:25℃
水中の溶解度積;1.1×10−11)、ピロリン酸マ
グネシウム(Mg227:25℃水中の溶解度積;
2.5×10−13)、リン酸マグネシウム(Mg
3(PO42:38℃水中の溶解度積;2.0×10−
27)、塩化第1銅(CuCl:25℃水中の溶解度
積;3.2×10−7)、炭酸第2銅(CuCO3:2
5℃水中の溶解度積;2.5×10−10)、水酸化マ
ンガン(Mn(OH)2:25℃水中の溶解度積;1.
6×10−13)、硫酸マンガン(MnSO4:25℃
水中の溶解度積;1.0×10−11)、水酸化ニッケ
ル(Ni(OH)2:25℃水中の溶解度積;2.7×
10−15)、リン酸ニッケル(Ni3(PO42:2
5℃水中の溶解度積;4.5×10−10)、硫酸鉛
(PbSO4:25℃水中の溶解度積;1.7×10−
8)、リン酸鉛(Pb3(PO42:25℃水中の溶解
度積;1.5×10−13)、水酸化亜鉛(Zn(O
H)2:25℃水中の溶解度積;7.0×10−1
8)、ピロリン酸亜鉛(Zn227:25℃水中の溶
解度積;2.0×10−8)等が挙げられる。これらの
不溶性ミネラルのうち、好ましくはリン酸塩、炭酸塩、
鉄塩、カルシウム塩、マグネシウム塩であり、より好ま
しくはリン酸塩であり、最も好ましくはリン酸カルシウ
ム及びマグネシウムが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The insoluble mineral in the present invention is a colloid of a metal salt having a solubility product of 1.0 × 10 −7 or less in water at 25 ° C. For example, water-insoluble metal salts include silver chloride (AgCl: solubility product in water at 25 ° C .; 1.0 × 10−10) and silver pyrophosphate (Ag 4 P 2).
O 7 : solubility product in water at 25 ° C .; 1.0 × 10-21),
Aluminum hydroxide (Al (OH) 2 : solubility product in 25 ° C. water; 2.0 × 10−32), aluminum phosphate (AlPO 4 : solubility product in 25 ° C. water; 5.8 × 10 −)
19), barium sulfate (BaSO 4 : solubility product in water at 25 ° C .; 1.0 × 10−10), barium phosphate (Ba 3
(PO 4 ) 2 : solubility product in water at 25 ° C .; 6.0 × 10 −3
9), barium carbonate (BaCO 3 : solubility product in water at 25 ° C .; 5.1 × 10-9), calcium pyrophosphate (Ca
2 P 2 O 7 : solubility product in water at 25 ° C .; 2.0 × 10 −1
9), calcium phosphate (Ca 3 (PO 4 ) 2 : solubility product in 25 ° C. water; 2.0 × 10-29), calcium carbonate (CaCO 3 : solubility product in 25 ° C. water; 4.7 × 10 −)
9), ferrous hydroxide (Fe (OH) 2 : solubility product in water at 25 ° C .; 8.0 × 10-16), ferrous phosphate (Fe 3
(PO 4 ) 2 : solubility product in water at 25 ° C .; 1.3 × 10 −2
2), ferric pyrophosphate (Fe 4 (P 2 O 7 ) 3: 25 ° C.
Solubility product in water; 2.0 × 10-13), ferrous carbonate (FeCO 3 : solubility product in water at 25 ° C .; 3.5 × 10−)
11), magnesium hydroxide (Mg (OH) 2 : 25 ° C.
Solubility product in water; 1.1 × 10-11), magnesium pyrophosphate (Mg 2 P 2 O 7 : solubility product in water at 25 ° C .;
2.5 × 10-13), magnesium phosphate (Mg
3 (PO 4 ) 2 : solubility product in water at 38 ° C .; 2.0 × 10 −
27), cuprous chloride (CuCl: solubility product in water at 25 ° C .; 3.2 × 10−7), cupric carbonate (CuCO 3 : 2)
Solubility product in 5 ° C. water; 2.5 × 10-10), manganese hydroxide (Mn (OH) 2 : solubility product in 25 ° C. water;
6 × 10-13), manganese sulfate (MnSO 4 : 25 ° C.)
Solubility product in water; 1.0 × 10-11), nickel hydroxide (Ni (OH) 2 : solubility product in water at 25 ° C .; 2.7 ×
10-15), nickel phosphate (Ni 3 (PO 4 ) 2 : 2)
Solubility product in 5 ° C water; 4.5 × 10-10), lead sulfate (PbSO 4 : Solubility product in 25 ° C water; 1.7 × 10-)
8), lead phosphate (Pb 3 (PO 4 ) 2 : solubility product in water at 25 ° C .; 1.5 × 10-13), zinc hydroxide (Zn (O
H) 2 : Solubility product in water at 25 ° C .; 7.0 × 10 −1
8), zinc pyrophosphate (Zn 2 P 2 O 7 : solubility product in water at 25 ° C .; 2.0 × 10−8) and the like. Of these insoluble minerals, preferably phosphates, carbonates,
Iron salts, calcium salts and magnesium salts, more preferably phosphates, most preferably calcium and magnesium phosphates.

【0007】ここで溶解度積は塩類の飽和溶液中におけ
る陽イオンと陰イオンのモル濃度(モル/リットル)の
積であり、一般的な溶解度とは下式の相関関係を持つ。
すなわち、金属塩類をMa,Xb,溶解度をSと仮定す
ると、溶解度積(Ksp)は下式で表される。 Ksp=〔M〕a〔X〕b=(aS)a×(bS)b
=aa×bb×S(a+b) 〔 〕はイオン濃度(モル/リットル) 炭酸カルシウム(CaCO3)を例にとると、CaCO
3 のKspは 、4.7×10−9であり、式に当ては
めると、 〔Ca〕1〔CO3〕1=S2=4.7×10−9 となりCaCO3の溶解度Sは、約6.9×10−5モ
ル/リットル(6.9ppm)となって、水不溶性と判
断される。
Here, the solubility product is the product of the molar concentrations (mol / liter) of cations and anions in a saturated solution of salts, and has a correlation with the general solubility as follows.
That is, assuming that the metal salts are Ma and Xb and the solubility is S, the solubility product (Ksp) is represented by the following equation. Ksp = [M] a [X] b = (aS) a × (bS) b
= Aa × bb × S (a + b) [] is the ion concentration (mol / liter) Taking calcium carbonate (CaCO 3 ) as an example,
3 is 4.7 × 10 −9, and when applied to the equation, [Ca] 1 [CO 3 ] 1 = S 2 = 4.7 × 10 −9, and the solubility S of CaCO 3 is about 6. It was 9 × 10 −5 mol / l (6.9 ppm), which was judged to be water-insoluble.

【0008】このことから、溶解度積が1.0×10−
7より大きい塩類の溶解度は、約3.2×10−3モル
/リットルとなって、CaCO3に比較して100倍近
いものとなり、厳密な意味で水不溶性とはいえず、水相
の若干のpH変化によって不溶塩表面が不安定になりや
すく、酵素分解レシチンの吸着界面層の形成に障害を生
じる。また、ストークスの定理に基づき、高比重の水不
溶性ミネラルが安定に分散するためには、その平均粒子
径が2ミクロン以下のサブミクロンオーダーの微粒子で
あることが必要であり、極めて特殊でかつ高価な装置を
要求する物理的破砕法よりは安価でかつ粒子径調整の容
易な中和造塩法が好ましい。中和造塩法としては、ピロ
リン酸第二鉄(Fe4(P273)の様に塩化第二鉄
(FeCl3)とピロリン酸四ナトリウム(Na4(P2
7)という強酸−強塩基性塩の中和反応を用いるも
の、又は第3リン酸カルシウム(Ca3(PO42)の
様にリン酸(H3PO4)と水酸化カルシウム(Ca(O
H)2)という弱酸−強塩基性塩による中和反応を用い
るもの等が知られており、1次粒子としては0.01〜
0.1μの超微粒子が生成されるものの、ただちに2次
凝集を生じて、概ね0.2〜2μ程度の凝集体として回
収されていた。本発明により、この2次凝集を効果的に
抑制することで1次粒子の形態が保持され、安定な分散
性が得られる。
[0008] From this, the solubility product is 1.0 × 10-
The solubility of salts larger than 7 is about 3.2 × 10 −3 mol / l, which is nearly 100 times that of CaCO 3 , and is not strictly water-insoluble. Due to the pH change, the surface of the insoluble salt is likely to be unstable, which causes the formation of the adsorption interface layer of the enzyme-decomposed lecithin to be hindered. Further, in order to stably disperse a high specific gravity water-insoluble mineral based on Stokes' theorem, it is necessary that the average particle diameter is fine particles of submicron order of 2 microns or less, which is extremely special and expensive. A neutral salt forming method, which is inexpensive and easy to adjust the particle diameter, is preferable to a physical crushing method requiring a simple apparatus. As a neutral salt forming method, ferric chloride (FeCl 3 ) and tetrasodium pyrophosphate (Na 4 (P 2 P), such as ferric pyrophosphate (Fe 4 (P 2 O 7 ) 3 ), are used.
O 7 ), which uses a strong acid-strong basic salt neutralization reaction, or phosphoric acid (H 3 PO 4 ) and calcium hydroxide (Ca (O (O)) such as tribasic calcium phosphate (Ca 3 (PO 4 ) 2 ).
H) 2 ) which uses a neutralization reaction with a weak acid-strongly basic salt, etc., is known.
Although 0.1 micron ultrafine particles were generated, secondary aggregation immediately occurred and was collected as an aggregate of approximately 0.2 to 2 microns. According to the present invention, the form of the primary particles is maintained by effectively suppressing the secondary aggregation, and stable dispersibility is obtained.

【0009】本発明で用いられる酵素分解レシチンは、
植物レシチン又は卵黄レシチンをホスホリパーゼAによ
って脂肪酸エステル部分を限定的に加水分解することで
得られるリゾホスファチジルコリン、リゾホスファチジ
ルエタノールアミン、リゾホスファチジルイノシートル
及びリゾホスファチジルセリンを中心とするモノアシル
グリセロリン脂質、並びにホスホリパーゼDを用いて生
成されるホスファチジン酸、リゾホスファチジン酸、ホ
スファチジルグリセロール及びリゾホスファチジルグリ
セロールからなる群より選ばれる1種又は2種以上であ
る。好ましくは、リゾホスファチジルコリン、リゾホス
ファチジルエタノールアミン、リゾホスファチジルセリ
ンであり、より好ましくは、リゾホスファチジルコリン
である。酵素分解に用いるホスホリパーゼは、豚膵臓等
の動物起源、キャベツ等の植物起源、又はカビ類等の微
生物起源等の由来を問わず、ホスホリパーゼA及び/又
はD活性を有したものであれば良い。
The enzymatically degraded lecithin used in the present invention comprises:
Mono-acylglycerophospholipids centered on lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol and lysophosphatidylserine obtained by selectively hydrolyzing the fatty acid ester portion of plant lecithin or egg yolk lecithin with phospholipase A, and One or more selected from the group consisting of phosphatidic acid, lysophosphatidic acid, phosphatidyl glycerol, and lysophosphatidyl glycerol produced using phospholipase D. Preferred are lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine, and more preferred is lysophosphatidylcholine. The phospholipase used in the enzymatic degradation may be any one having phospholipase A and / or D activity, regardless of its origin, such as animal origin such as pig pancreas, plant origin such as cabbage, or microorganism origin such as molds.

【0010】上記の酵素分解レシチンの全ては界面活性
を有し、その親水基部分に等しくリン酸基を有してお
り、ショ糖脂肪酸エステルやグリセリン脂肪酸エステル
等の非イオン性界面活性剤と比較して水不溶性ミネラル
表面の吸着被覆力が著しく強い性質を有している。その
ため、水不溶性ミネラルの微粒子表面に安定な吸着界面
層が形成され、加熱処理を施した際にも剥離することな
く、効果的に2次凝集を抑制することが可能となり、そ
の結果として良好な分散性が得られる。酵素レシチンの
単用においても充分な効果が得られるが、オレイン酸ナ
トリウムの様な金属石鹸類、ノニルフェニルエーテル等
のアルキルエーテル系界面活性剤、Tween等のポリ
オキシエチレン付加型界面活性剤、ショ糖脂肪酸エステ
ル、グリセリン脂肪酸エステル、プロピレングリコール
脂肪酸エステル及びソルビタン脂肪酸エステル等の食品
用の乳化剤、キラヤやユッカフォーム起源のサポニン系
化合物等の他の界面活性剤成分等と併用する場合には、
より好ましい分散性の向上が認められる。また、グリセ
リン重合度が2以上であり、好ましくは重合度3〜10
のポリグリセリン、更に好ましくは重合度3〜5のポリ
グリセリン含有量が70%以上であるポリグリセリンを
親水基とするポリグリセリン脂肪酸エステルを併用する
際には、極めて好適な分散性が得られる。ポリグリセリ
ン脂肪酸エステルの構成脂肪酸は炭素数6〜22であ
り、好ましくは8〜18、更に好ましは12〜14のも
のが用いられる。さらに、アラビアガム、ペクチン、カ
ラギーナン、ファーセレラン、グアーガム、ローカスト
ビーンガム及びキサンタンガムから選定される一種また
は2種以上の増粘多糖類を併用することで、水不溶性ミ
ネラルの凝集がなくさらに分散性を向上させることがで
きる。また、結晶セルロースやキサンタンガム等の増粘
多糖類、ポリビニルアルコールや酢酸ビニル共重合体等
の親水性合成高分子を併用することでも同様の効果が得
られる。しかしながら、本発明による酵素分解レシチン
の処理が事前に施されていなければ2次凝集を抑制した
良好な分散性を得るに至らない。
[0010] All of the above-mentioned enzymatically degraded lecithins have a surfactant activity, and have a phosphate group in the hydrophilic group portion thereof, and are compared with nonionic surfactants such as sucrose fatty acid esters and glycerin fatty acid esters. As a result, the water-insoluble mineral surface has a remarkably strong adsorption covering power. Therefore, a stable adsorption interface layer is formed on the surface of the fine particles of the water-insoluble mineral, and it is possible to effectively suppress the secondary agglomeration without peeling off even when subjected to the heat treatment. Dispersibility is obtained. Sufficient effects can be obtained even when the enzyme lecithin is used alone, but metal soaps such as sodium oleate, alkyl ether surfactants such as nonylphenyl ether, polyoxyethylene addition surfactants such as Tween, Sugar fatty acid esters, glycerin fatty acid esters, propylene glycol fatty acid esters and sorbitan fatty acid esters and other food emulsifiers, when used in combination with other surfactant components such as saponin compounds derived from Kiraya or Yucca foam,
A more favorable improvement in dispersibility is observed. The glycerin polymerization degree is 2 or more, preferably 3 to 10
When polyglycerol having a hydrophilicity of polyglycerin having a hydrophilic group of polyglycerin having a polymerization degree of 3 to 5 and a polyglycerin content of 70% or more is more preferably used, extremely suitable dispersibility can be obtained. The constituent fatty acids of the polyglycerin fatty acid ester are those having 6 to 22 carbon atoms, preferably 8 to 18, and more preferably 12 to 14 carbon atoms. Furthermore, by using one or more thickening polysaccharides selected from gum arabic, pectin, carrageenan, furceleran, guar gum, locust bean gum and xanthan gum in combination, there is no aggregation of water-insoluble minerals and further dispersibility is improved. Can be done. Similar effects can also be obtained by using a thickening polysaccharide such as crystalline cellulose or xanthan gum or a hydrophilic synthetic polymer such as polyvinyl alcohol or vinyl acetate copolymer. However, unless the enzymatically degraded lecithin treatment according to the present invention is performed in advance, good dispersibility in which secondary aggregation is suppressed cannot be obtained.

【0011】本発明における酵素分解レシチンの添加方
法については、グリセリン脂肪酸エステル、増粘多糖類
に先んじて行われておれば、特に限定されるものではな
いが、金属塩水溶液に酵素分解レシチンを溶解させる方
法、酵素分解レシチンの水溶液に金属塩を分散させる方
法等が用いられる。本発明におけるミネラル組成物を含
有する食品としては、クッキー、パン、麺類等に代表さ
れる小麦粉2次製品、おかゆ・炊き込み飯等の米加工
品、畜肉・魚肉等の加工品及び清涼飲料、乳飲料、炭酸
飲料、アルコール飲料等の飲料が挙げられ、これらにリ
ン酸カルシウムやリン酸マグネシウム組成物等の水不溶
性塩類の添加を可能とすることで、不足しがちなカルシ
ウム、マグネシウムの栄養強化が容易に実施することが
可能となる。特に飲料を中心とする液体食品において
は、水不溶性の塩類の添加はミネラル成分の沈降性から
応用範囲が非常に狭いものであったが、本発明によって
風味上優れ、化学的にも安定な形態でミネラル強化を実
施できる。例えば食品分野においてはリン酸カルシウム
組成物やリン酸マグネシウム組成物を調製して牛乳、乳
酸飲料、清涼飲料、炭酸飲料等の飲料に添加することで
安定性の良いカルシウム、マグネシウム強化飲料を製造
することができる。
The method for adding the enzyme-decomposed lecithin in the present invention is not particularly limited as long as it is performed prior to the glycerin fatty acid ester and the thickening polysaccharide, but the enzyme-decomposed lecithin is dissolved in the aqueous metal salt solution. And a method of dispersing a metal salt in an aqueous solution of enzymatically decomposed lecithin. Foods containing the mineral composition according to the present invention include cookies, bread, secondary products of flour represented by noodles, processed rice products such as porridge and cooked rice, processed products such as livestock meat and fish meat, soft drinks, and milk. Drinks, carbonated drinks, drinks such as alcoholic drinks, and the like, and by allowing the addition of water-insoluble salts such as calcium phosphate and magnesium phosphate compositions to these, calcium, which tends to be insufficient, can be easily fortified with magnesium. It can be implemented. In particular, in liquid foods such as beverages, the addition of water-insoluble salts has a very narrow range of application due to the sedimentation of mineral components, but the present invention provides an excellent flavor and a chemically stable form. Can strengthen minerals. For example, in the food field, it is possible to produce a calcium- and magnesium-enriched beverage with good stability by preparing a calcium phosphate composition or a magnesium phosphate composition and adding it to beverages such as milk, lactic acid beverages, soft drinks, and carbonated beverages. it can.

【0012】本発明におけるミネラル組成物を含有する
化粧品としては、化粧水、乳液、浴剤、クレンジング剤
等の洗浄剤、歯磨剤等が挙げられ、特に浴剤においては
主剤となる炭酸カルシウム等の塩類が沈殿することで浴
槽を傷めることを抑制できる。本発明におけるミネラル
組成物を含有する工業製品としては、農業用フィルム、
壁床用シート材、樹脂添加用防燃剤等が挙げられ、炭酸
カルシウム、硫酸バリウム、水酸化マグネシウム、水酸
化亜鉛等の不溶性ミネラルが使用される。これらのミネ
ラルが、樹脂基剤中で安定分散することによって、成形
加工後の物理強度、表面の平滑性、防燃性等の機能性を
向上させることが可能である。以下に実施例を示して本
発明とその効果を具体的に説明する。
The cosmetics containing the mineral composition of the present invention include lotions, emulsions, detergents such as bath agents and cleansing agents, dentifrices and the like. Damage to the bathtub due to precipitation of salts can be suppressed. Industrial products containing the mineral composition in the present invention, agricultural films,
Examples thereof include sheet materials for wall flooring and flame retardants for adding resin, and insoluble minerals such as calcium carbonate, barium sulfate, magnesium hydroxide, and zinc hydroxide are used. By stably dispersing these minerals in the resin base, it is possible to improve the physical strength after molding, the smoothness of the surface, and the functionality such as flame retardancy. Hereinafter, the present invention and its effects will be specifically described with reference to examples.

【0013】[0013]

【実施例】実施例1 水酸化カルシウム3.0kgをイオン交換水300kg
に分散し、これに85%リン酸3.3kgをイオン交換
水100kgに希釈した液を攪拌下徐々に添加して混合
液のpHを5.0に調整する。中和反応によるリン酸カ
ルシウムの造塩が終了した後、酵素分解レシチン(サン
レシチンL;太陽化学(株)製)0.1kgを添加し、
遠心分離(3000×g、5分間)によって固−液分離
を行って固相部のリン酸カルシウム4.1kg(乾燥重
量換算)を回収し、イオン交換水に再懸濁させ、これに
グリセリン脂肪酸エステル(サンソフトA−14E;太
陽化学(株)製)1.0kgとアラビアガム(ネオソフ
トAB;太陽化学(株)製)0.5kgを溶解し、最終
10%リン酸カルシウムとなるように調製した。
EXAMPLES Example 1 3.0 kg of calcium hydroxide was replaced with 300 kg of ion-exchanged water.
, And a liquid obtained by diluting 3.3 kg of 85% phosphoric acid in 100 kg of ion-exchanged water is gradually added thereto with stirring to adjust the pH of the mixed solution to 5.0. After the salt formation of calcium phosphate by the neutralization reaction is completed, 0.1 kg of enzymatically decomposed lecithin (San Lecithin L; manufactured by Taiyo Kagaku Co., Ltd.) is added,
Solid-liquid separation was performed by centrifugation (3000 × g, 5 minutes) to recover 4.1 kg (calculated as dry weight) of calcium phosphate in the solid phase, resuspended in ion-exchanged water, and added glycerin fatty acid ester ( 1.0 kg of Sunsoft A-14E (manufactured by Taiyo Kagaku Co., Ltd.) and 0.5 kg of gum arabic (Neosoft AB; manufactured by Taiyo Kagaku Co., Ltd.) were dissolved to prepare a final 10% calcium phosphate.

【0014】比較例1 水酸化カルシウム3.0kgをイオン交換水300kg
に分散し、これに85%リン酸3.3kgをイオン交換
水100kgに希釈した液を攪拌下徐々に添加して混合
液のpHを5.0に調整する。実施例1と同様の手法に
よって固−液分離を行って固相部のリン酸カルシウム
4.0kg(乾燥重量換算)を回収し、イオン交換水に
再懸濁して10%リン酸カルシウムスラリー(対照品
1)を調製した。また、実施例1の酵素分解レシチンの
みを除いた手法にて得られた10%リン酸カルシウムス
ラリー(対照品2)、同じくアラビアガムのみを除いて
得られた10%リン酸カルシウムスラリー(対照品
3)、同じくグリセリン脂肪酸エステルをのみを除いて
得られた10%リン酸カルシウムスラリー(対照品4)
をそれぞれ調製した。さらに、実施例1の酵素分解レシ
チンをショ糖脂肪酸エステル(リョートーシュガーエス
テルS−1570;三菱化学(株)製)に置き換えた手
法にて10%リン酸カルシウムスラリー(対照品5)も
調製し、以下の試験方法にて加熱処理前後の平均粒子径
及び分散性を評価し、実施例1と比較した。
Comparative Example 1 3.0 kg of calcium hydroxide was replaced with 300 kg of ion-exchanged water.
, And a liquid obtained by diluting 3.3 kg of 85% phosphoric acid in 100 kg of ion-exchanged water is gradually added thereto with stirring to adjust the pH of the mixed solution to 5.0. Solid-liquid separation was carried out in the same manner as in Example 1 to recover 4.0 kg (calculated in terms of dry weight) of calcium phosphate in the solid phase, which was then resuspended in ion-exchanged water to obtain a 10% calcium phosphate slurry (Reference product 1). Prepared. In addition, a 10% calcium phosphate slurry obtained by the method of Example 1 except for only the enzyme-decomposed lecithin (Control 2), a 10% calcium phosphate slurry similarly obtained by removing only gum arabic (Control 3), and 10% calcium phosphate slurry obtained by removing only glycerin fatty acid ester (Control 4)
Was prepared respectively. Further, a 10% calcium phosphate slurry (control product 5) was also prepared by a method in which the enzyme-decomposed lecithin of Example 1 was replaced with a sucrose fatty acid ester (Ryoto Sugar Ester S-1570; manufactured by Mitsubishi Chemical Corporation). The average particle diameter and the dispersibility before and after the heat treatment were evaluated by the test method described above, and compared with Example 1.

【0015】加熱処理は実施例1、比較例1より得られ
た対照品1〜5について各々10%リン酸カルシウムス
ラリー濃度でオートクレーブ(121℃,30分)によ
り行い、それぞれ加熱処理前後の試験液を得た。各試験
液の平均粒子径はレーザー回折粒度分布測定装置(モデ
ル370:NICOMP社製)による測定より求め、さ
らに各試験液に超音波照射(周波数;40kHz,出
力;100W,2分間)したものについても同様に測定
を行い求め、その結果を表1に示す。表1に見られる様
に対照品1と2は加熱処理あるいは超音波照射の有無に
関わらず平均粒子径は2〜3μmとなり上記の超音波照
射では解砕不能な凝集物を生じた。対照品5の未加熱品
の平均粒子径は超音波照射により約1μmから0.5μ
mとなったが、加熱処理品では超音波照射の有無に関わ
らず平均粒子径は2〜3μmとほぼ一定であり、加熱処
理により超音波照射では解砕不能な凝集物を生じた。ま
た、対照品3と4の加熱処理品の平均粒子径は超音波照
射により約0.5μmから0.07μmとなり加熱処理
により弱い凝集物を生じた。本発明による実施例1は、
加熱処理あるいは超音波照射の有無に関わらず、その平
均粒子径は約0.07μmであり、加熱処理を施した後
も対照品と比較し数段小さな粒子として水中分散してい
ることが明らかである。水分散性は、加熱処理を施した
実施例1、対照品1〜5の各10%リン酸カルシウムス
ラリー100gを市販牛乳900gに添加し、リン酸カ
ルシウム濃度を1%とした際の沈降性を経時的に調査し
た。その結果、対照品1と2では静置後10分でほぼ1
00%が沈降し、対照品5は3時間後に約90%が沈降
し、対照品3と4では12時間後に約90%が沈降した
が、実施例1は、500時間経過後も一切沈降を生じな
かった。これによって、安定なカルシウム分散性を有す
るカルシウム強化牛乳が得られた。
Heat treatment was carried out for each of the control products 1 to 5 obtained from Example 1 and Comparative Example 1 in an autoclave (121 ° C., 30 minutes) at a 10% calcium phosphate slurry concentration to obtain test liquids before and after the heat treatment, respectively. Was. The average particle size of each test solution was obtained by measurement using a laser diffraction particle size distribution analyzer (Model 370: manufactured by NICOMP), and the test solution was irradiated with ultrasonic waves (frequency: 40 kHz, output: 100 W, 2 minutes). Was measured in the same manner, and the results are shown in Table 1. As shown in Table 1, the average particle diameter of the control products 1 and 2 was 2-3 μm irrespective of the presence or absence of heat treatment or ultrasonic irradiation, and aggregates that could not be disintegrated by the above ultrasonic irradiation were generated. The average particle diameter of the unheated product of the control product 5 is about 1 μm to 0.5 μm by ultrasonic irradiation.
However, the average particle diameter of the heat-treated product was almost constant at 2 to 3 μm regardless of the presence or absence of ultrasonic irradiation, and the heat treatment produced aggregates that could not be crushed by ultrasonic irradiation. The average particle diameter of the heat-treated products of Controls 3 and 4 was changed from about 0.5 μm to 0.07 μm by ultrasonic irradiation, and weak aggregates were generated by the heat treatment. Example 1 according to the present invention
Regardless of the presence or absence of heat treatment or ultrasonic irradiation, the average particle size is about 0.07 μm, and it is clear that even after heat treatment, the particles are dispersed in water as particles several steps smaller than the control product. is there. As for the water dispersibility, 100 g of each of the 10% calcium phosphate slurries of the heat-treated Example 1 and the control products 1 to 5 were added to 900 g of commercially available milk, and the sedimentation property when the calcium phosphate concentration was 1% was investigated over time. did. As a result, the control products 1 and 2 showed almost 1 after 10 minutes from standing.
00% settled, about 90% of the control product 5 settled after 3 hours, and about 90% of the control products 3 and 4 settled after 12 hours. However, in Example 1, no settling occurred even after 500 hours. Did not occur. As a result, calcium-enriched milk having stable calcium dispersibility was obtained.

【0016】実施例2 85%リン酸2.7kgと酵素分解レシチン(サンレシ
チンL;太陽化学(株)製)0.2kgをイオン交換水
100kgに溶解してリン酸溶液を調製し、水酸化マグ
ネシウム2.0kgをイオン交換水300kgに分散
後、ポリグリセリン脂肪酸エステル(サンソフトA−1
4C;太陽化学(株)製)2.0kgを添加し溶解した
溶液中に攪拌下徐々に添加して混合液のpHを5.0に
調整する。中和反応によるリン酸マグネシウムの造塩反
応が終了した後、HMペクチン(ネオソフトP−36;
太陽化学(株)製)0.6kgを溶解し、遠心分離(3
000×g、10分間)によって固−液分離を行って固
相部のリン酸マグネシウム4.0kg(乾燥重量換算)
を回収し、イオン交換水に再懸濁して10%リン酸マグ
ネシウムスラリーを調製した。
Example 2 2.7 kg of 85% phosphoric acid and 0.2 kg of enzymatically decomposed lecithin (San lecithin L; manufactured by Taiyo Kagaku Co., Ltd.) were dissolved in 100 kg of ion-exchanged water to prepare a phosphoric acid solution. After dispersing 2.0 kg of magnesium in 300 kg of ion-exchanged water, polyglycerin fatty acid ester (Sunsoft A-1)
4C (manufactured by Taiyo Kagaku Co., Ltd.) is added, and the mixture is gradually added with stirring to a dissolved solution to adjust the pH of the mixed solution to 5.0. After completion of the salt formation reaction of magnesium phosphate by the neutralization reaction, HM pectin (Neosoft P-36;
0.6 kg of Taiyo Kagaku Co., Ltd. was dissolved and centrifuged (3
000 × g for 10 minutes) to perform solid-liquid separation to obtain 4.0 kg of magnesium phosphate in the solid phase (in terms of dry weight).
Was recovered and resuspended in ion-exchanged water to prepare a 10% magnesium phosphate slurry.

【0017】比較例2 85%リン酸2.7kgをイオン交換水100kgに溶
解してリン酸溶液を調製し、水酸化マグネシウム2.0
kgをイオン交換水300kgに分散する。この溶液中
に上記のリン酸溶液を攪拌下徐々に添加して混合液のp
Hを5.0に調整し、中和反応によるリン酸マグネシウ
ムの造塩反応が終了した後、遠心分離(3000×g、
10分間)によって固−液分離を行って固相部のリン酸
マグネシウム3.8kg(乾燥重量換算)を回収し、イ
オン交換水に再懸濁して10%リン酸マグネシウムスラ
リー(対照品6)を調製した。加熱処理後の分散性につ
いて実施例2と比較した。加熱処理(各10%スラリー
濃度,オートクレーブ;121℃,30分)を施した実
施例2、対照品6の各10%リン酸カルシウムスラリー
100gを市販牛乳900gに添加し、リン酸カルシウ
ム濃度を1%とした際の沈降性を経時的に調査した。そ
の結果、対照品6では静置後10分でほぼ100%が沈
降し、実施例2は、500時間経過後も一切沈降を生じ
なかった。これによって、安定なマグネシウム分散性を
有するマグネシウム強化牛乳が得られた。
Comparative Example 2 A phosphoric acid solution was prepared by dissolving 2.7 kg of 85% phosphoric acid in 100 kg of ion-exchanged water.
kg is dispersed in 300 kg of ion-exchanged water. The above phosphoric acid solution is gradually added to this solution with stirring, and the p
H was adjusted to 5.0, and after the salt formation reaction of magnesium phosphate by the neutralization reaction was completed, centrifugation (3000 × g,
(10 minutes) to collect 3.8 kg (in terms of dry weight) of magnesium phosphate in the solid phase portion, and resuspend in ion-exchanged water to obtain a 10% magnesium phosphate slurry (control product 6). Prepared. The dispersibility after the heat treatment was compared with Example 2. When 100 g of each 10% calcium phosphate slurry of Example 2 and Control 6 each subjected to a heat treatment (10% slurry concentration, autoclave; 121 ° C., 30 minutes) was added to 900 g of commercially available milk to make the calcium phosphate concentration 1%. Was examined with time. As a result, almost 100% of the control product 6 settled 10 minutes after standing, and Example 2 did not settle even after 500 hours. As a result, magnesium-enriched milk having stable magnesium dispersibility was obtained.

【0018】実施例3 塩化カルシウム(2水和物)20kgと酵素分解レシチ
ン(サンレシチンL;太陽化学(株)製)3kgをイオ
ン交換水120kgに溶解してカルシウム溶液を調製
し、炭酸ナリトウム11kgとポリグリセリン脂肪酸エ
ステル(サンソフトA−12E;太陽化学(株)製)1
4kgをイオン交換水260kgに溶解した溶解中に攪
拌下徐々に添加して混合液のpHを9.0に調整する。
中和反応による炭酸カルシウムの造塩反応が終了した
後、LMペクチン(ネオソフトP−3;太陽化学(株)
製)0.2kgを溶解し、遠心分離(3000×g、5
分間)によって固−液分離を行って固相部の炭酸カルシ
ウム10kg(乾燥重量換算)を回収し、イオン交換水
に再懸濁して10%炭酸カルシウムスラリーを調製し
た。
Example 3 A calcium solution was prepared by dissolving 20 kg of calcium chloride (dihydrate) and 3 kg of enzymatically decomposed lecithin (San lecithin L; manufactured by Taiyo Kagaku Co., Ltd.) in 120 kg of ion-exchanged water, and 11 kg of sodium carbonate. And polyglycerin fatty acid ester (Sunsoft A-12E; manufactured by Taiyo Kagaku Co., Ltd.) 1
4 kg is dissolved in 260 kg of ion-exchanged water and gradually added with stirring to adjust the pH of the mixture to 9.0.
After completion of the salt formation reaction of calcium carbonate by the neutralization reaction, LM pectin (Neosoft P-3; Taiyo Kagaku Co., Ltd.)
0.2 kg), and centrifuged (3000 × g, 5
For 10 minutes), 10 kg (calculated as dry weight) of calcium carbonate in the solid phase was recovered and resuspended in ion-exchanged water to prepare a 10% calcium carbonate slurry.

【0019】比較例3 塩化カルシウム(2水和物)20kgをイオン交換水1
20kgに溶解してカルシウム溶液を調製し、炭酸ナリ
トウム11kgをイオン交換水260kgに溶解した溶
解中に攪拌下徐々に添加して混合液のpHを9.0に調
整する。中和反応による炭酸カルシウムの造塩が終了し
た後、遠心分離(3000×g、5分間)によって固−
液分離を行って固相部の炭酸カルシウム8kg(乾燥重
量換算)を回収し、イオン交換水に再懸濁して10%炭
酸カルシウムスラリー(対照品7)を調製した。対照品
7と実施例3(10%炭酸カルシウムスラリー)の20
0部をポリビュルアルコール(和光純薬(株)製)の1
0%水溶液200部中に分散させた後、ガラス表面に厚
さ1mmとなる様塗布し、120℃オーブン中で乾燥を
実施し、得られる樹脂膜の透明性を観察した。その結
果、実施例2は良好な透明性が得られたが、対照品7で
は、CaCO3の凝集がまだら状に生じ充分な透明性を
得ることはできなかった。
COMPARATIVE EXAMPLE 3 20 kg of calcium chloride (dihydrate) was added to deionized water 1
A calcium solution is prepared by dissolving the mixture in 20 kg, and the pH of the mixture is adjusted to 9.0 by gradually adding 11 kg of sodium carbonate in a solution of 260 kg of ion-exchanged water while stirring. After completion of the salt formation of calcium carbonate by the neutralization reaction, the solidified solution was centrifuged (3000 × g, 5 minutes).
The liquid phase was separated to recover 8 kg (calculated in terms of dry weight) of calcium carbonate in the solid phase, and resuspended in ion-exchanged water to prepare a 10% calcium carbonate slurry (control product 7). Control product 7 and 20 of Example 3 (10% calcium carbonate slurry)
0 parts of polybutyl alcohol (Wako Pure Chemical Industries, Ltd.)
After dispersing in 200 parts of a 0% aqueous solution, it was applied to a glass surface so as to have a thickness of 1 mm, and dried in an oven at 120 ° C., and the transparency of the obtained resin film was observed. As a result, good transparency was obtained in Example 2, but in Control Product 7, CaCO 3 aggregated in a mottled state, and sufficient transparency could not be obtained.

【0020】実施例4 炭酸ナトリウム10gと炭酸水素ナトリウム7g、食用
黄色4号(三栄源エフ・エフ・アイ社製 化合物名:タ
ートラジン)0.02gを40℃の温水100リットル
中に溶解して浴用剤液を調製した。この液中に、実施例
3及び比較例3の10%炭酸カルシウムスラリーの50
mlを添加して、静値時の炭酸カルシウムの沈殿状態を
観察した。その結果、比較例3の炭酸カルシウムは、約
20分で全てが沈降したが、実施例3を用いたものでは
100時間以上経過後も沈殿を生じなかった。
Example 4 10 g of sodium carbonate and 7 g of sodium hydrogen carbonate, and 0.02 g of Edible Yellow No. 4 (compound name: Tartrazine, manufactured by San-Ei Gen FFI Co., Ltd.) were dissolved in 100 liters of hot water at 40 ° C. for bathing. A drug solution was prepared. In this solution, 50% of the 10% calcium carbonate slurry of Example 3 and Comparative Example 3 was added.
After the addition of ml, the precipitation state of calcium carbonate at the time of static value was observed. As a result, all of the calcium carbonate of Comparative Example 3 settled out in about 20 minutes, but no precipitate was formed even after 100 hours or more in the case of using Example 3.

【0021】本発明の実施態様をあげれば以下の通りで
ある。 (1)平均粒子径2ミクロン以下でかつ25℃水中に於
ける溶解度積が1.0×10−7以下の金属塩類の中和
造塩微粒子を金属含有量として0.01〜20重量%、
酵素分解レシチン0.01〜5重量%、ポリグリセリン
脂肪酸エステル0.01〜20重量%及び増粘多糖類
0.01〜5重量%の4成分から構成される事を特徴と
する中和造塩ミネラル組成物。 (2)水不溶性ミネラルが、塩化銀(AgCl)、ピロ
リン酸銀(Ag427)、水酸化アルミニウム(Al
(OH)2)、リン酸アルミニウム(AlPO4)、硫酸
バリウム(BaSO4)、リン酸バリウム(Ba3(PO
42)、炭酸バリウム(BaCO3)、ピロリン酸カル
シウム(Ca227)、リン酸カルシウム(Ca3(P
42)、炭酸カルシウム(CaCO3)、水酸化第1
鉄(Fe(OH)2)、リン酸第1鉄(Fe3(P
42)、ピロリン酸第2鉄(Fe4(P273)、炭
酸第1鉄(FeCO3)、水酸化マグネシウム(Mg
(OH)2)、ピロリン酸マグネシウム(Mg2
27)、リン酸マグネシウム(Mg3(PO42)、塩
化第1銅(CuCl)、炭酸第2銅(CuCO3)、水
酸化マンガン(Mn(OH)2)、硫酸マンガン(Mn
SO4)、水酸化ニッケル(Ni(OH)2)、リン酸ニ
ッケル(Ni3(PO42)、硫酸鉛(PbSO4)、リ
ン酸鉛(Pb3(PO42)、水酸化亜鉛(Zn(O
H)2)、ピロリン酸亜鉛(Zn227)より選ばれる
1種又は2種以上である前記(1)記載の中和造塩ミネ
ラル組成物。 (3)水不溶性ミネラルが鉄塩、カルシウム塩、マグネ
シウム塩より選ばれることを特徴とする前記(1)又は
(2)記載の中和造塩ミネラル組成物。 (4)水不溶性ミネラルがリン酸塩である前記(1)〜
(3)いずれか記載の中和造塩ミネラル組成物。 (5)水不溶性ミネラルが炭酸塩である前記(1)〜
(4)いずれか記載の中和造塩ミネラル組成物。 (6)水不溶性ミネラルがリン酸カルシウムである前記
(1)〜(4)いずれか記載の中和造塩ミネラル組成
物。 (7)水不溶性ミネラルがリン酸マグネシウムである前
記(1)〜(4)いずれか記載の中和造塩ミネラル組成
物。〓0〓
Embodiments of the present invention are as follows. (1) 0.01 to 20% by weight as a metal content of neutralized salt-forming fine particles of a metal salt having an average particle diameter of 2 μm or less and a solubility product in water at 25 ° C. of 1.0 × 10 −7 or less;
Neutralizing salt comprising four components of enzymatically decomposed lecithin 0.01 to 5% by weight, polyglycerin fatty acid ester 0.01 to 20% by weight and thickening polysaccharide 0.01 to 5% by weight. Mineral composition. (2) Water-insoluble minerals are silver chloride (AgCl), silver pyrophosphate (Ag 4 P 2 O 7 ), aluminum hydroxide (Al
(OH) 2 ), aluminum phosphate (AlPO 4 ), barium sulfate (BaSO 4 ), barium phosphate (Ba 3 (PO
4 ) 2 ), barium carbonate (BaCO 3 ), calcium pyrophosphate (Ca 2 P 2 O 7 ), calcium phosphate (Ca 3 (P
O 4 ) 2 ), calcium carbonate (CaCO 3 ), hydroxide first
Iron (Fe (OH) 2 ), ferrous phosphate (Fe 3 (P
O 4 ) 2 ), ferric pyrophosphate (Fe 4 (P 2 O 7 ) 3 ), ferrous carbonate (FeCO 3 ), magnesium hydroxide (Mg)
(OH) 2 ), magnesium pyrophosphate (Mg 2 P)
2 O 7 ), magnesium phosphate (Mg 3 (PO 4 ) 2 ), cuprous chloride (CuCl), cupric carbonate (CuCO 3 ), manganese hydroxide (Mn (OH) 2 ), manganese sulfate (Mn)
SO 4 ), nickel hydroxide (Ni (OH) 2 ), nickel phosphate (Ni 3 (PO 4 ) 2 ), lead sulfate (PbSO 4 ), lead phosphate (Pb 3 (PO 4 ) 2 ), hydroxide Zinc (Zn (O
H) 2 ), one or more selected from the group consisting of zinc pyrophosphate (Zn 2 P 2 O 7 ) and the neutralized salt-forming mineral composition according to the above (1). (3) The neutralized salt-forming mineral composition according to the above (1) or (2), wherein the water-insoluble mineral is selected from iron salts, calcium salts, and magnesium salts. (4) The above (1) to wherein the water-insoluble mineral is a phosphate.
(3) The neutralized salt-forming mineral composition according to any one of (1) to (3). (5) The above (1) to wherein the water-insoluble mineral is a carbonate.
(4) The neutralized salt-forming mineral composition according to any of the above. (6) The neutralized salt-forming mineral composition according to any one of (1) to (4), wherein the water-insoluble mineral is calcium phosphate. (7) The neutralized salt-forming mineral composition according to any one of (1) to (4), wherein the water-insoluble mineral is magnesium phosphate. {0}

【0022】(8)酵素分解レシチンがホスホリパーゼ
Aを用いて生成されるリゾホスファチジルコリン、リゾ
ホスファチジルエタノールアミン、リゾホスファチジル
イノシートルかつリゾホスファチジルセリン及びホスホ
リパーゼDを用いて生成されるホスファチジン酸、リゾ
ホスファチジン酸、ホスファチジルグリセロールかつリ
ゾホスファチジルグリセロールからなる群より選ばれる
1種又は2種以上である事を特徴とする前記(1)〜
(7)いずれか記載の中和造塩ミネラル組成物。 (9)酵素分解レシチンがリゾホスファチジルコリン、
リゾホスファチジルエタノールアミン、リゾホスファチ
ジルセリンである前記(1)〜(8)記載の中和造塩ミ
ネラル組成物。 (10)酵素分解レシチンがリゾホスファチジルコリン
である前記(1)〜(9)いずれか記載の中和造塩ミネ
ラル組成物。
(8) Lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol and phosphatidic acid, lysophosphatidic acid produced using enzymatically degraded lecithin using lysophosphatidylcholine and lysophosphatidylserine and phospholipase D (1) to (1) to phosphatidyl glycerol and lysophosphatidyl glycerol;
(7) The neutralized salt-forming mineral composition according to any of the above. (9) The enzyme-decomposed lecithin is lysophosphatidylcholine,
The neutralized salt-forming mineral composition according to any one of (1) to (8), which is lysophosphatidylethanolamine or lysophosphatidylserine. (10) The neutralized salt-forming mineral composition according to any one of the above (1) to (9), wherein the enzyme-decomposed lecithin is lysophosphatidylcholine.

【0023】(11)ポリグリセリン脂肪酸エステルが
重合度3以上の分画を70%以上含有するポリグリセリ
ンと炭素数6〜22の飽和及び不飽和脂肪酸のエステル
である事を特徴とする上記(1)〜(10)いずれか記
載の中和造塩ミネラル組成物。 (12)ポリグリセリン脂肪酸エステルが重合度3〜1
0の分画を70%以上含有するポリグリセリンと炭素数
6〜22の飽和及び不飽和脂肪酸のエステルである事を
特徴とする上記(1)〜(11)いずれか記載の中和造
塩ミネラル組成物。 (13)ポリグリセリン脂肪酸エステルが重合度3〜5
の分画を70%以上含有するポリグリセリンと炭素数6
〜22の飽和及び不飽和脂肪酸のエステルである事を特
徴とする上記(1)〜(12)いずれか記載の中和造塩
ミネラル組成物。 (14)ポリグリセリン脂肪酸エステルの構成脂肪酸が
炭素数8〜18の飽和及び不飽和脂肪酸のエステルであ
る事を特徴とする上記(1)〜(13)いずれか記載の
中和造塩ミネラル組成物。 (15)ポリグリセリン脂肪酸エステルの構成脂肪酸が
炭素数12〜14の飽和及び不飽和脂肪酸のエステルで
ある事を特徴とする上記(1)〜(14)いずれか記載
の中和造塩ミネラル組成物。
(11) The above-mentioned (1), wherein the polyglycerin fatty acid ester is an ester of a polyglycerin containing a fraction having a polymerization degree of 3 or more and 70% or more and a saturated or unsaturated fatty acid having 6 to 22 carbon atoms. ) The neutralized salt-forming mineral composition according to any one of (1) to (10). (12) Polyglycerin fatty acid ester has a degree of polymerization of 3 to 1
The neutralized salt-forming mineral according to any one of the above (1) to (11), which is an ester of a polyglycerin containing 70% or more of a fraction of 0 and a saturated or unsaturated fatty acid having 6 to 22 carbon atoms. Composition. (13) Polyglycerin fatty acid ester having a degree of polymerization of 3 to 5
Containing 70% or more of the fraction of
(22) The neutralized salt-forming mineral composition according to any one of the above (1) to (12), which is an ester of a saturated or unsaturated fatty acid of (22). (14) The neutralized salt-forming mineral composition according to any one of (1) to (13) above, wherein the constituent fatty acid of the polyglycerin fatty acid ester is an ester of a saturated or unsaturated fatty acid having 8 to 18 carbon atoms. . (15) The neutralized salt-forming mineral composition according to any one of the above (1) to (14), wherein the constituent fatty acids of the polyglycerin fatty acid ester are esters of saturated and unsaturated fatty acids having 12 to 14 carbon atoms. .

【0024】(16)増粘多糖類がアラビアガム、ペク
チン、カラギーナン、ファーセレラン、グアーガム、ロ
ーカストビーンガム及びキサンタンガムからなる群より
選ばれる1種又は2種以上である事を特徴とする上記
(1)〜(15)いずれか記載の中和造塩ミネラル組成
物。
(16) The above (1), wherein the thickening polysaccharide is one or more selected from the group consisting of gum arabic, pectin, carrageenan, furceleran, guar gum, locust bean gum and xanthan gum. (15) The neutralized salt-forming mineral composition according to any one of (1) to (15).

【0025】(17)前記(1)〜(16)いずれか記
載のミネラル組成物を含有することを特徴とする食品。 (18)前記(1)〜(16)いずれか記載のミネラル
組成物を含有することを特徴とする飲料。 (19)飲料が乳飲料、清涼飲料、炭酸飲料より選ばれ
る(18)記載の飲料。 (20)飲料が乳酸飲料である前記(18)又は(1
9)記載の飲料。
(17) A food comprising the mineral composition according to any one of (1) to (16). (18) A beverage comprising the mineral composition according to any one of (1) to (16). (19) The beverage according to (18), wherein the beverage is selected from milk drinks, soft drinks, and carbonated drinks. (20) The above (18) or (1), wherein the beverage is a lactic acid beverage.
9) The beverage according to the above.

【0026】(21)前記(1)〜(16)いずれか記
載のミネラル組成物を含有することを特徴とする化粧
品。 (22)化粧品が化粧水、乳液、浴剤、クレンジング
剤、洗浄剤、歯磨剤より選ばれることを特徴とする(2
1)記載の化粧品。 (23)化粧品が浴剤である前記(21)又は(22)
記載の化粧品。 (24)前記(1)〜(16)いずれか記載のミネラル
組成物を含有することを特徴とする工業製品。 (25)工業製品が安定分散剤、物理強度向上剤、平滑
剤、防燃剤より選ばれる1種又は2種以上であることを
特徴とする(24)記載の工業製品。 (26)工業製品が安定分散剤であることを特徴とする
(24)又は(25)記載の工業製品。
(21) A cosmetic comprising the mineral composition according to any one of (1) to (16). (22) The cosmetic is selected from lotions, emulsions, baths, cleansing agents, detergents, and dentifrices (2)
1) The cosmetic according to the above. (23) The above (21) or (22) wherein the cosmetic is a bath agent
Cosmetics as described. (24) An industrial product comprising the mineral composition according to any one of (1) to (16). (25) The industrial product according to (24), wherein the industrial product is one or more selected from a stable dispersant, a physical strength improver, a leveling agent, and a flame retardant. (26) The industrial product according to (24) or (25), wherein the industrial product is a stable dispersant.

【0027】[0027]

【発明の効果】本発明の水不溶性中和造塩ミネラル組成
物は、安定分散性及び加熱安定性が向上しているため、
食品、化粧品、工業用品等の幅広い分野に利用可能であ
り産業上有用である。
As described above, the water-insoluble neutralized salt-forming mineral composition of the present invention has improved stable dispersibility and heat stability.
It can be used in a wide range of fields such as foods, cosmetics, and industrial supplies, and is industrially useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 7/00 A61K 7/00 C 7/16 7/16 7/50 7/50 Fターム(参考) 4B018 LB01 LB02 LB05 LB06 LB08 LE05 MD03 MD04 ME02 ME05 ME14 4B035 LC04 LC06 LE03 LG02 LG09 LG13 LG22 LG23 LG25 LG27 LG28 LG29 LK04 LK12 LK13 LP21 4C083 AB292 AB322 AC421 AC422 AD211 AD351 AD352 AD431 AD571 CC04 CC05 CC23 CC25 CC41 DD39 EE01 EE07──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) A61K 7/00 A61K 7/00 C 7/16 7/16 7/50 7/50 F term (reference) 4B018 LB01 LB02 LB05 LB06 LB08 LE05 MD03 MD04 ME02 ME05 ME14 4B035 LC04 LC06 LE03 LG02 LG09 LG13 LG22 LG23 LG25 LG27 LG28 LG29 LK04 LK12 LK13 LP21 4C083 AB292 AB322 AC421 AC422 AD211 AD351 AD352 AD431 AD571 CC04 CC05 DD39 CC25 CC25

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径2ミクロン以下でかつ25℃
水中に於ける溶解度積が1.0×10−7以下の金属塩
類の中和造塩微粒子を金属含有量として0.01〜20
重量%、酵素分解レシチン0.01〜5重量%、ポリグ
リセリン脂肪酸エステル0.01〜20重量%及び増粘
多糖類0.01〜5重量%の4成分から構成される事を
特徴とする中和造塩ミネラル組成物。
1. An average particle size of 2 μm or less and 25 ° C.
The neutralized salt-forming fine particles of a metal salt having a solubility product in water of 1.0 × 10 −7 or less are used in an amount of 0.01 to 20 as a metal content.
Characterized in that it is composed of four components: weight%, enzymatically degraded lecithin 0.01-5 weight%, polyglycerin fatty acid ester 0.01-20 weight%, and thickening polysaccharide 0.01-5 weight%. Japanese salt mineral composition.
【請求項2】 酵素分解レシチンがホスホリパーゼAを
用いて生成されるリゾホスファチジルコリン、リゾホス
ファチジルエタノールアミン、リゾホスファチジルイノ
シートルかつリゾホスファチジルセリン及びホスホリパ
ーゼDを用いて生成されるホスファチジン酸、リゾホス
ファチジン酸、ホスファチジルグリセロールかつリゾホ
スファチジルグリセロールからなる群より選ばれる1種
又は2種以上である事を特徴とする請求項1記載の中和
造塩ミネラル組成物。
2. A lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol and phosphatidic acid, lysophosphatidic acid produced using enzymatically degraded lecithin produced using phospholipase A and lysophosphatidylserine and phospholipase D. The neutralized salt-forming mineral composition according to claim 1, wherein the composition is one or more selected from the group consisting of phosphatidylglycerol and lysophosphatidylglycerol.
【請求項3】 ポリグリセリン脂肪酸エステルが重合度
3以上の分画を70%以上含有するポリグリセリンと炭
素数6〜22の飽和及び不飽和脂肪酸のエステルである
事を特徴とする請求項1又は2記載の中和造塩ミネラル
組成物。
3. The polyglycerol fatty acid ester according to claim 1, wherein the polyglycerin is an ester of a polyglycerol containing 70% or more of a fraction having a degree of polymerization of 3 or more and a saturated or unsaturated fatty acid having 6 to 22 carbon atoms. 3. The neutralized salt-forming mineral composition according to item 2.
【請求項4】 増粘多糖類がアラビアガム、ペクチン、
カラギナン、ファーセレラン、グアーガム、ローカスト
ビーンガム及びキサンタンガムから選定される1種又は
2種以上の混合物である事を特徴とする請求項1〜3い
ずれか記載の中和造塩ミネラル組成物。
4. The thickening polysaccharide is gum arabic, pectin,
The neutralized salt-forming mineral composition according to any one of claims 1 to 3, wherein the composition is one or a mixture of two or more selected from carrageenan, furceleran, guar gum, locust bean gum, and xanthan gum.
【請求項5】 請求項1〜4いずれか記載の中和造塩ミ
ネラル組成物を含有することを特徴とする食品。
5. A food containing the neutralized salt-forming mineral composition according to any one of claims 1 to 4.
JP10356975A 1998-12-01 1998-12-01 Neutralized salt-generating mineral composition Pending JP2000157214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10356975A JP2000157214A (en) 1998-12-01 1998-12-01 Neutralized salt-generating mineral composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10356975A JP2000157214A (en) 1998-12-01 1998-12-01 Neutralized salt-generating mineral composition

Publications (1)

Publication Number Publication Date
JP2000157214A true JP2000157214A (en) 2000-06-13

Family

ID=18451727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10356975A Pending JP2000157214A (en) 1998-12-01 1998-12-01 Neutralized salt-generating mineral composition

Country Status (1)

Country Link
JP (1) JP2000157214A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010795A1 (en) * 2002-07-31 2004-02-05 Maruo Calcium Company Limited Food additive composition and food containing the same
JP2006045217A (en) * 2004-07-08 2006-02-16 Taisho Pharmaceut Co Ltd Zinc-containing composition for oral administration
JP2006169180A (en) * 2004-12-17 2006-06-29 Taisho Pharmaceut Co Ltd Copper-containing composition for oral administration
WO2013118452A1 (en) * 2012-02-07 2013-08-15 株式会社サンギ Calcium phosphate dispersion composition
JP2020069470A (en) * 2018-10-29 2020-05-07 株式会社げんてん本店 Method for manufacturing liposome and method for manufacturing liposome containing liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010795A1 (en) * 2002-07-31 2004-02-05 Maruo Calcium Company Limited Food additive composition and food containing the same
JP2006045217A (en) * 2004-07-08 2006-02-16 Taisho Pharmaceut Co Ltd Zinc-containing composition for oral administration
JP2006169180A (en) * 2004-12-17 2006-06-29 Taisho Pharmaceut Co Ltd Copper-containing composition for oral administration
WO2013118452A1 (en) * 2012-02-07 2013-08-15 株式会社サンギ Calcium phosphate dispersion composition
JP2013158322A (en) * 2012-02-07 2013-08-19 Sangi Co Ltd Calcium phosphate dispersion composition
US9687435B2 (en) 2012-02-07 2017-06-27 Kabushiki Kaisha Sangi Calcium phosphate dispersion composition
JP2020069470A (en) * 2018-10-29 2020-05-07 株式会社げんてん本店 Method for manufacturing liposome and method for manufacturing liposome containing liquid

Similar Documents

Publication Publication Date Title
KR100454609B1 (en) Mineral-containing composition comprising enzymatically decomposed lecithin and a water-insoluble mineral
CN107072284B (en) The calcium carbonate reacted through surface as anticaking agent
BRPI0620517A2 (en) food product, calcium-containing additive and process for the preparation of the food product
JP2000157214A (en) Neutralized salt-generating mineral composition
CN108473869A (en) Remove O2CaCO3Processing
AU2007285387A1 (en) Compositions comprising calcium citrate malate and methods for making the same
CA2531029C (en) Mineral composition
JPH10225263A (en) Fermented milk enriched with iron and its production
JP2981595B2 (en) Sterile calcium carbonate composition, aqueous suspension composition thereof and methods for producing them
JP2007215480A (en) Iron-fortified food composition
JP3189901B2 (en) Food additive having high dispersibility and food composition containing the same
JP2010512735A (en) Particulate composition containing calcium citrate fine particles and calcium lactate
JP4289698B2 (en) Mineral composition
JP2008245622A (en) Zinc-enriched food and drink
CA2660991C (en) Compositions comprising calcium citrate malate and methods for making the same
JPH07138018A (en) Production of calcium carbonate dispersion and food composition
JP3247173B2 (en) Method for producing calcium agent powder for food additives having high dispersibility, and food composition containing the powder
JPS63173556A (en) Production of calcium carbonate complex having excellent dispersibility
JP3212017B2 (en) Production method of powdery isolated soy protein
JP2788619B2 (en) Method for producing calcium carbonate emulsion for food
JP3454077B2 (en) Dispersant for water-insoluble calcium salt and beverage containing the dispersant
JP2003235511A (en) Method for producing calcium preparation composition for food addition and the calcium preparation composition for food addition
JP4040919B2 (en) Calcium carbonate slurry composition and calcium reinforced beverage containing the same
JP3022914B2 (en) Fast dissolving fumaric acid preparation
JP4073054B2 (en) Method for producing magnesium carbonate dispersion and beverage containing the dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002