JP2000156221A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000156221A
JP2000156221A JP10327309A JP32730998A JP2000156221A JP 2000156221 A JP2000156221 A JP 2000156221A JP 10327309 A JP10327309 A JP 10327309A JP 32730998 A JP32730998 A JP 32730998A JP 2000156221 A JP2000156221 A JP 2000156221A
Authority
JP
Japan
Prior art keywords
lithium
metal oxide
containing metal
mixture layer
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10327309A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
丈 佐々木
Koyo Watari
亘  幸洋
Taku Aoki
卓 青木
Kazuhiro Nakamitsu
和弘 中満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
GS Melcotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, GS Melcotec Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10327309A priority Critical patent/JP2000156221A/en
Publication of JP2000156221A publication Critical patent/JP2000156221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To stop heat generation so as to prevent thermorunaway even if overcharge or an internal short-circuit occurs by covering a part or the entire part of the surface of a lithium containing metal oxide with a metal and/or carbon material mixture layer having a dissolving potential larger by a certain potential than that of lithium, and by setting the specific resistance of a positive electrode mixture layer to a specific value or less. SOLUTION: In order to restrain the interaction of a lithium containing metal oxide with a solvent of a nonaqueous electrolyte in an overcharge and an internal short circuit, a part or the entire part of the surface of the lithium containing metal oxide is covered with a metal and/or carbon material mixture layer having a dissolving potential larger by three or more volts than that of lithium. Thereby, a heat generation rate is restrained by forming an electrolyte diffusion barrier between the lithium containing metal oxide surface layer and a bulk electrolyte layer. The increase of contact resistance in conjunction with the expansion and contraction of the lithium containing metal oxide is restrained by covering it with the metal and/or carbon material mixture layer and by setting the specific resistance of a depolarizing mixture layer to 1 Ωm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の急激な小型軽量化に伴い、そ
の電源である電池に対して小型で軽量かつ高エネルギー
密度、更に繰り返し充放電が可能な二次電池開発への要
求が高まっている。また、大気汚染や二酸化炭素の増加
等の環境問題により、電気自動車の早期実用化が望まれ
ており、高効率、高出力、高エネルギー密度、軽量等の
特徴を有する優れた二次電池の開発が要望されている。
2. Description of the Related Art As electronic devices have rapidly become smaller and lighter, there is an increasing demand for secondary batteries that are small, lightweight, have a high energy density, and can be repeatedly charged and discharged. . In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and development of excellent secondary batteries having characteristics such as high efficiency, high output, high energy density, and light weight. Is required.

【0003】これらの要求を満たす二次電池として、非
水電解質を使用した二次電池が実用化されている。この
電池は、従来の水溶液電解液を使用した電池の数倍のエ
ネルギー密度を有している。その例として、電解質とし
て非水電解液、正極にコバルト複合酸化物やニッケル複
合酸化物又はスピネル型リチウムマンガン酸化物を用
い、負極にリチウムが吸蔵・放出可能な炭素材料などを
用いた長寿命な4V級非水電解質二次電池が実用化され
ている。
As a secondary battery satisfying these requirements, a secondary battery using a non-aqueous electrolyte has been put to practical use. This battery has several times the energy density of a battery using a conventional aqueous electrolyte solution. For example, a non-aqueous electrolyte as the electrolyte, a cobalt composite oxide or nickel composite oxide or a spinel-type lithium manganese oxide for the positive electrode, and a long life using a carbon material capable of storing and releasing lithium for the negative electrode. 4 V class non-aqueous electrolyte secondary batteries have been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】このような非水電解質
二次電池では、負極に高容量のアモルファスカーボンま
たは/および酸化物などを用いた高容量の非水電解液二
次電池が開発されてきており、小型高容量化の技術開発
が急速に進んでいる。このように、小型高容量化、すな
わち体積エネルギー密度の飛躍的な増大にともなう、過
充電、過放電の防止や内部短絡の防止等が大きな課題と
なっている。過充電の防止対策としては充電器による充
電電圧の制御、過放電の防止対策としては放電時の終止
電圧の制御を行う方法が主流となっている。また、充電
器等の制御が故障した場合、あるいは内部短絡による大
電流の発生に備え、電池側に所定の電池内圧に達したと
きに開裂する安全弁や電流遮断手段を持たせている。し
かしながら、これらの対策を施したとしても、過充電時
や内部短絡時の発熱は非常に急激であるため、安全弁や
電流遮断手段が有効に作用せず、しばしば熱暴走を引き
起こすといったトラブルが発生する。そこで、本発明
は、たとえ充電器が故障して過充電状態となったり、何
らかの原因で内部短絡が起きたとしても、熱暴走を起こ
さぬように効果的に発熱を抑止しうる電池を提供するこ
とを目的とする。
In such a non-aqueous electrolyte secondary battery, a high-capacity non-aqueous electrolyte secondary battery using a high-capacity amorphous carbon or / and oxide as a negative electrode has been developed. The development of technology for miniaturization and high capacity is rapidly progressing. As described above, the prevention of overcharge and overdischarge, the prevention of an internal short circuit, and the like have become major issues with the increase in size and capacity, that is, the dramatic increase in volume energy density. As a measure to prevent overcharge, a method of controlling a charging voltage by a charger and a measure to prevent an overdischarge by controlling a cutoff voltage at the time of discharge have become mainstream. Also, in preparation for a failure of control of the charger or the like or the occurrence of a large current due to an internal short circuit, the battery side is provided with a safety valve and a current cut-off means that are opened when a predetermined battery internal pressure is reached. However, even if these measures are taken, the heat generated during overcharging or internal short circuit is extremely rapid, so that safety valves and current interrupting means do not work effectively, often causing troubles such as causing thermal runaway. . Therefore, the present invention provides a battery that can effectively suppress heat generation so as not to cause thermal runaway even if a charger fails and becomes overcharged or an internal short circuit occurs for some reason. The purpose is to:

【0005】[0005]

【課題を解決するための手段】本発明になる非水電解質
二次電池は、リチウムイオンを吸蔵放出可能なリチウム
含有金属酸化物を含む正極合材層が形成された正極と、
リチウムイオンを吸蔵放出可能なホスト物質を有する負
極合材層が形成された負極とを備えており、リチウム含
有金属酸化物の表面の一部または全部を、溶出電位がリ
チウム溶出電位に対して3V以上の範囲内の金属および
/または炭素材料合材層で覆い、さらに正極合材層の比
抵抗が1Ωm以下となるようにするものである。
A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode on which a positive electrode mixture layer containing a lithium-containing metal oxide capable of inserting and extracting lithium ions is formed;
A negative electrode on which a negative electrode mixture layer having a host material capable of inserting and extracting lithium ions is formed, and a part or all of the surface of the lithium-containing metal oxide has an elution potential of 3 V with respect to the lithium elution potential. The metal and / or carbon material mixture layer within the above range is covered, and the specific resistance of the positive electrode mixture layer is 1 Ωm or less.

【0006】[0006]

【発明の実施の形態】充電器が故障した場合、非水電解
質二次電池へ所定量以上の電気量を充電すると、電池が
発熱し、最悪の場合発火に至ることがありうる。また、
充電時に何らかの原因で内部短絡が発生した場合にも、
最悪の場合発火する恐れがある。本発明者は、この原因
を詳しく調査した結果、過充電時には、リチウムイオン
を吸蔵放出する、正極ホスト物質であるリチウム含有金
属酸化物が熱的に不安定な状態となり、電池温度が上昇
した際には、非水電解液の溶媒との相互作用により、大
きな発熱分解反応を起こすことが主因であることを明ら
かにした。また、内部短絡時にも充電状態のリチウム含
有金属酸化物と非水電解液の溶媒との相互作用による発
熱反応が熱逸走の主因であることを明らかにした。そこ
で、本願発明者は、過充電時や内部短絡時に熱逸走を促
進する、リチウム含有金属酸化物と非水電解液の溶媒と
の相互作用を抑制するために、リチウム含有金属酸化物
の表面の一部または全部を、溶出電位がリチウム溶出電
位に対して3V以上の範囲内である金属および/または
炭素材料合材層で覆うことで、リチウム含有金属酸化物
表面層とバルク電解液層間に電解液の拡散障壁を設ける
ことにより、発熱速度を抑制した。リチウム含有金属酸
化物の表面の一部または全部を覆う金属として、溶出電
位がリチウム溶出電位に対して3V以上の範囲内である
金属を使用する理由は、この種の非水電解質二次電池に
おいては通常の放電終止電圧が3V以下となるので、溶
出電位がリチウム溶出電位に対して3V未満の金属を使
用した場合には、放電終期にその金属が溶け出して、リ
チウム含有金属酸化物の表面を覆った効果がなくなって
しまうからである。また、リチウム含有金属酸化物の表
面を、溶出電位がリチウム溶出電位に対して3V以上の
範囲内である金属および/または炭素材料合材層で覆う
場合、リチウム含有金属酸化物の表面の一部を覆っても
よいし、全部を覆ってもよい。しかし、電池の安全性を
高めるためには、リチウム含有金属酸化物と電解液との
接触面積をできるだけ小さくする必要があるので、リチ
ウム含有金属酸化物の表面の多くの部分が上記金属およ
び/または炭素材料で覆われていることが好ましい。さ
らに、リチウム含有金属酸化物の表面を金属や炭素材料
で覆う場合、金属単独または炭素材料単独で覆ってもよ
いし、まず金属で覆いさらに炭素材料で覆ったり、逆に
まず炭素材料で覆いさらに金属で覆うという、二層とし
てもよいし、さらに、金属と炭素材料の混合層で覆って
もよい。さらに、リチウム含有金属酸化物の表面層が電
子伝導性に優れる上記金属または/および炭素材料で覆
い、正極合材層の比抵抗を1Ωm以下としたことで、リ
チウム含有金属酸化物の膨張・収縮にともなう接触抵抗
の増大を抑制するものである。なお、正極合材層の比抵
抗が1Ωmよりも大きくなると、高率放電の場合に抵抗
による電圧低下が大きくなって、電池を実際に使用する
場合に問題が生じるものである。それゆえに、安全弁や
電流遮断手段が有効に作動し、従来の電池に起こるよう
な、過充電時や内部短絡時の爆発的な発熱分解反応を効
果的に抑止することができる。さらに、各粒子間には比
抵抗の低い物質が必ず介在しているため、充放電にとも
なうリチウム含有金属酸化物の膨張収縮にともなう、粒
子間の接触抵抗の増大が抑えられ、長期にわたるサイク
ル寿命性能も向上した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the case where a charger has failed, if a non-aqueous electrolyte secondary battery is charged with a predetermined amount or more of electricity, the battery will generate heat and, in the worst case, may ignite. Also,
Even if an internal short circuit occurs for some reason during charging,
In the worst case, a fire may occur. The present inventor has investigated this cause in detail, and found that when overcharging, the lithium-containing metal oxide, which is a positive electrode host material that absorbs and releases lithium ions, becomes thermally unstable and the battery temperature rises. Clarified that the main cause was a large exothermic decomposition reaction caused by the interaction of the non-aqueous electrolyte with the solvent. In addition, it was clarified that the exothermic reaction due to the interaction between the charged lithium-containing metal oxide and the solvent of the non-aqueous electrolyte is the main cause of thermal escape even when the internal short circuit occurs. Therefore, the present inventor promotes thermal escape at the time of overcharging or internal short-circuit, in order to suppress the interaction between the lithium-containing metal oxide and the solvent of the non-aqueous electrolyte, the surface of the lithium-containing metal oxide is By covering a part or the whole with a metal and / or carbon material mixture layer having an elution potential in the range of 3 V or more with respect to the lithium elution potential, electrolysis between the lithium-containing metal oxide surface layer and the bulk electrolyte layer is performed. By providing a liquid diffusion barrier, the heat generation rate was suppressed. The reason for using a metal having an elution potential in the range of 3 V or more with respect to the lithium elution potential as a metal covering part or all of the surface of the lithium-containing metal oxide is that in this type of nonaqueous electrolyte secondary battery, Since a normal discharge end voltage is 3 V or less, when a metal having an elution potential of less than 3 V with respect to the lithium elution potential is used, the metal elutes at the end of discharge and the surface of the lithium-containing metal oxide This is because the effect of covering is lost. When the surface of the lithium-containing metal oxide is covered with a metal and / or carbon material mixture layer having an elution potential in the range of 3 V or more with respect to the lithium elution potential, a part of the surface of the lithium-containing metal oxide is used. May be covered, or the whole may be covered. However, in order to increase the safety of the battery, it is necessary to minimize the contact area between the lithium-containing metal oxide and the electrolytic solution. Preferably, it is covered with a carbon material. Further, when the surface of the lithium-containing metal oxide is covered with a metal or a carbon material, the surface may be covered with a metal alone or a carbon material alone, or may be covered with a metal and further covered with a carbon material, or may be covered with a carbon material first. It may be a two-layer structure of covering with a metal, or may be further covered with a mixed layer of a metal and a carbon material. Further, the surface layer of the lithium-containing metal oxide is covered with the above-mentioned metal and / or carbon material having excellent electron conductivity, and the specific resistance of the positive electrode mixture layer is set to 1 Ωm or less. This suppresses an increase in contact resistance due to this. If the specific resistance of the positive electrode mixture layer is larger than 1 Ωm, the voltage drop due to the resistance becomes large in the case of high-rate discharge, which causes a problem when the battery is actually used. Therefore, the safety valve and the current cutoff means operate effectively, and the explosive exothermic decomposition reaction at the time of overcharge or internal short circuit, which occurs in the conventional battery, can be effectively suppressed. Furthermore, since a substance having a low specific resistance is always interposed between the particles, an increase in contact resistance between the particles due to expansion and contraction of the lithium-containing metal oxide due to charge and discharge is suppressed, and a long cycle life. Performance has also improved.

【0007】なお、本発明に使用する正極活物質として
のリチウム含有金属酸化物としては、スピネルマンガン
酸リチウム、又はこの化合物の結晶中においてマンガン
原子の占める格子位置を少量のコバルト、ニッケル、ア
ルミニウム、クロム、鉄、マグネシウム、カルシウムな
どの原子で置換した化合物、LixMn24やLixM
nO2などの各種リチウムマンガン複合酸化物、その他
の複合酸化物、トンネル状の空孔を有する酸化物等を用
いることができる。その具体例としては、LiCo
2、LiNiO2、LiMn24、Li2Mn24、M
nO2、FeO2、V25、V613、TiO2等があげら
れる。また、本発明に使用する負極ホスト物質は、リチ
ウムイオンを吸蔵、放出できるものであればいかなるも
のでもよい。たとえば、グラファイト、コークス、カー
ボン、アモルファスカーボン、SnO、SnO2、Sn
1-xO( ただし0≦x<1)、 Si1-xO( ただし0
≦x<1)なとどの物質を例示することができる。酸化
物を用いて高容量化電池としても、本発明を適用するこ
とによって安全性の向上が可能である。また、本発明に
おいて、電解液の非水溶媒としては、エチレンカーボネ
ート、プロピレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート、γ−ブチロラクトン、スル
ホラン、ジメチルスルホキシド、アセトニトリル、ジメ
チルホルムアミド、ジメチルアセトアミド、1,2−ジ
メトキシエタン、1,2−ジエトキシエタン、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン、ジオキソ
ラン、メチルアセテート等の極性溶媒を、単独でもしく
はこれらの混合物を使用してもよい。また、電解質とし
て、リチウムイオン導電性固体高分子電解質膜を使用す
ることもできる。この場合、高分子中に含有させる電解
液と、固体高分子電解質膜の細孔中に含有させる電解液
との電解液溶媒や支持塩の濃度が異なっていてもよい。
また、有機溶媒に溶解するリチウム塩としては、LiP
6、LiBF4、LiAsF6、LiCF3CO2、Li
CF3SO3、LiN(SO2CF32、LiN(SO2
2CF32、LiN(COCF32およびLiN(C
OCF2CF32などの塩もしくはこれらの混合物を使
用してもよい。さらに、実施例では、セパレータとして
は絶縁性のポリエチレン微多孔膜に電解液を含浸したも
のを使用したが、ポリエチレン微多孔膜以外にもホリプ
ロピレン微多孔膜等のポリオレフィン微多孔膜も使用で
きるし、また、2種類以上のポリオレフィン微多孔膜を
組み合わせて使用してもよい。さらに、これらのポリオ
レフィン微多孔膜と高分子固体電解質とを組み合わせて
使用してもよい。なお、本発明になる非水電解液二次電
池は、その構成として正極、負極及びセパレータと非水
電解液との組み合わせ、あるいは正極、負極及びセパレ
ータとしての有機又は無機固体電解質と非水電解液との
組み合わせであっても構わない。セパレータあるいはセ
パレータとしての有機又は無機固体電解質もしくは有機
バインダーによって結着された無機固体粉末、非水電解
液は、いずれも公知のものの使用が可能である。
The lithium-containing metal oxide used as the positive electrode active material in the present invention is lithium spinel manganese oxide or a small amount of cobalt, nickel, aluminum, or manganese atoms in the crystal of the compound. Compounds substituted with atoms such as chromium, iron, magnesium, calcium, LixMn 2 O 4 and LixM
Various lithium manganese composite oxides such as nO 2 , other composite oxides, oxides having tunnel-like vacancies, and the like can be used. As a specific example, LiCo
O 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , M
nO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 and the like. The negative electrode host material used in the present invention may be any material as long as it can occlude and release lithium ions. For example, graphite, coke, carbon, amorphous carbon, SnO, SnO 2 , Sn
1-x O (0 ≦ x <1), Si 1-x O (0
≦ x <1). Even when a high-capacity battery is formed using an oxide, safety can be improved by applying the present invention. In the present invention, as the non-aqueous solvent for the electrolytic solution, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane , 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate and the like, and a polar solvent alone or a mixture thereof may be used. Further, a lithium ion conductive solid polymer electrolyte membrane can be used as the electrolyte. In this case, the concentrations of the electrolyte solvent and the supporting salt may be different between the electrolyte contained in the polymer and the electrolyte contained in the pores of the solid polymer electrolyte membrane.
Lithium salts dissolved in organic solvents include LiP
F 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , Li
CF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C
F 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (C
Salts such as OCF 2 CF 3 ) 2 or mixtures thereof may be used. Furthermore, in the examples, as the separator, a porous microporous membrane of polyolefin such as a microporous polypropylene membrane can be used in addition to a microporous polyethylene membrane having insulating properties. Alternatively, two or more types of microporous polyolefin membranes may be used in combination. Further, these polyolefin microporous membranes may be used in combination with a solid polymer electrolyte. The non-aqueous electrolyte secondary battery according to the present invention has a configuration in which a positive electrode, a negative electrode and a separator are combined with a non-aqueous electrolyte, or an organic or inorganic solid electrolyte as a positive electrode, a negative electrode and a separator is combined with a non-aqueous electrolyte. May be used in combination. Any known inorganic solid powder or non-aqueous electrolyte bound by a separator or an organic or inorganic solid electrolyte or an organic binder as a separator can be used.

【0008】以下に、好適な実施例を用いて本発明を説
明するが、本発明の主旨を越えない限り、以下に限定さ
れるものでないことはいうまでもない。
Hereinafter, the present invention will be described with reference to preferred embodiments. However, it is needless to say that the present invention is not limited to the following without departing from the gist of the present invention.

【実施例】以下に、本発明によるリチウム含有金属酸化
物への被覆をおこなった一実施例を用いて本発明を説明
する。 [実施例1]本発明になる非水電解質二次電池の作製手
順について説明する。リチウム含有金属酸化物としては
リチウムコバルト複合酸化物を使用した。まず、リチウ
ムコバルト複合酸化物の粒子表面に、真空蒸着法により
約50nmの金メッキを施し、さらに、CVD法により
粒子表面全体にわたり均一な炭素質層を被覆した。この
炭素質層の平均膜厚は1μmであった。これを正極ホス
ト物質(a)とする。 (真空蒸着条件) 真空度:5×10-2torr 放電電流:15mA×50秒 (CVD条件) 真空度:5×10-1torr ベンゼンガスフロー:50ml/分、Arガスフロー:100ml/分 蒸着温度:200℃ 正極板は、結着剤であるポリフッ化ビニリデン(PVd
F)6重量部と導電剤であるアセチレンブラック3重量
部とを活物質91重量部とともに混合し、溶媒であるN
−メチルピロリドン(NMP)を適宜加えてペースト状
に調整した後、集電体材料の両面に塗布して乾燥した。
そして、厚さ180μmにプレスし、矩形状のリード部
を残して幅24mmに切断することによって製作した。
集電体材料としては厚み20μmのアルミニウム箔を使
用した。完成後の正極板における合材層の比抵抗は、
0.5Ωmであった。負極板は、厚み10μmの銅箔か
らなる集電体の両面に、ホスト物質としての黒鉛92重
量部と結着剤としてのポリフッ化ビニリデン(PVd
F)8重量部とを混合し、溶媒であるN−メチルピロリ
ドン(NMP)を適宜加えてペースト状にしたものを両
面に塗布して乾燥し、厚さ220μmに圧延し、矩形状
のリード部を残して幅26mmに切断することによって
製作した。
The present invention will be described below with reference to an embodiment in which a lithium-containing metal oxide according to the present invention is coated. [Example 1] A procedure for manufacturing a nonaqueous electrolyte secondary battery according to the present invention will be described. A lithium-cobalt composite oxide was used as the lithium-containing metal oxide. First, about 50 nm of gold plating was applied to the particle surface of the lithium-cobalt composite oxide by a vacuum evaporation method, and a uniform carbonaceous layer was coated over the entire particle surface by a CVD method. The average thickness of this carbonaceous layer was 1 μm. This is referred to as a positive electrode host material (a). (Vacuum deposition conditions) Degree of vacuum: 5 × 10 −2 torr Discharge current: 15 mA × 50 seconds (CVD conditions) Degree of vacuum: 5 × 10 −1 torr Benzene gas flow: 50 ml / min, Ar gas flow: 100 ml / min Temperature: 200 ° C. The positive electrode plate is made of polyvinylidene fluoride (PVd) as a binder.
F) 6 parts by weight and 3 parts by weight of acetylene black as a conductive agent are mixed together with 91 parts by weight of an active material,
-Methylpyrrolidone (NMP) was appropriately added to prepare a paste, and then applied to both surfaces of the current collector material and dried.
Then, it was manufactured by pressing to a thickness of 180 μm and cutting it to a width of 24 mm leaving a rectangular lead portion.
An aluminum foil having a thickness of 20 μm was used as a current collector material. The specific resistance of the mixture layer in the completed positive electrode plate is
It was 0.5 Ωm. The negative electrode plate has 92 parts by weight of graphite as a host material and polyvinylidene fluoride (PVd) as a binder on both sides of a current collector made of a copper foil having a thickness of 10 μm.
F) 8 parts by weight, mixed with N-methylpyrrolidone (NMP) as a solvent to form a paste, coated on both sides, dried, rolled to a thickness of 220 μm, and formed into a rectangular lead. Was cut to a width of 26 mm.

【0009】セパレータは、厚さ25μm、幅28μm
のポリエチレン微多孔膜を使用した。
The separator has a thickness of 25 μm and a width of 28 μm.
Was used.

【0010】図1は、本発明になる非水電解液二次電池
の断面図である。図1において、1は非水電解液電池、
2は電極群、3は負極板、4は正極板、5はセパレー
タ、6は電池ケースである。非水電解液二次電池1の構
成は、正極板4、負極板3、セパレータ5からなる渦巻
き状の電極群2及び電解液が電池ケース6に収納された
角形電池であり、7は蓋、8は安全弁、10は負極端
子、11は負極リード線である。
FIG. 1 is a sectional view of a non-aqueous electrolyte secondary battery according to the present invention. In FIG. 1, 1 is a non-aqueous electrolyte battery,
Reference numeral 2 denotes an electrode group, 3 denotes a negative electrode plate, 4 denotes a positive electrode plate, 5 denotes a separator, and 6 denotes a battery case. The configuration of the non-aqueous electrolyte secondary battery 1 is a prismatic battery in which a spiral electrode group 2 including a positive electrode plate 4, a negative electrode plate 3, and a separator 5 and an electrolyte are accommodated in a battery case 6, and 7 is a lid, 8 is a safety valve, 10 is a negative electrode terminal, and 11 is a negative electrode lead wire.

【0011】電池ケース6は、厚さ0.3mm、内寸3
0×40×8mmの鉄製本体の表面に厚さ5μmのニッ
ケルメッキを施したものであり、側部上部には電解液注
入用の孔(図示せず)が設けられている。
The battery case 6 has a thickness of 0.3 mm and an inner size of 3 mm.
The surface of an iron main body of 0 × 40 × 8 mm is plated with nickel having a thickness of 5 μm, and a hole (not shown) for injecting an electrolytic solution is provided at an upper side portion.

【0012】電解液は、LiPF6を1mol/l含む
エチレンカーボネート:ジエチルカーボネート=1:1
(体積比)の混合液を用いた。この電解液を、電極、セ
パレータが十分に湿潤し、電極群外にフリーな電解液が
存在しない量を減圧注液して孔を封じ、設計用量900
mAhの電池(A)を30セル製作した。
The electrolyte is ethylene carbonate: diethyl carbonate = 1: 1 containing 1 mol / l of LiPF 6.
The mixed solution (volume ratio) was used. The electrolyte and the separator were sufficiently wetted, and the amount of free electrolyte which did not exist outside the electrode group was injected under reduced pressure to seal the hole, and the designed dose was 900
30 cells of the battery (A) of mAh were manufactured.

【0013】[比較例1]正極ホスト物質として、粒子
表面を金や炭素で覆わないリチウムコバルト複合酸化物
(b)を使用した以外は、実施例1 と同様の、従来の
電池(B)を30セル作製した。
Comparative Example 1 A conventional battery (B) was prepared in the same manner as in Example 1 except that a lithium-cobalt composite oxide (b) whose particle surface was not covered with gold or carbon was used as a positive electrode host material. 30 cells were produced.

【0014】[試験および結果]これらの電池Aおよび
Bをそれぞれ10セルづつ、電源電圧を10Vとし、2
Cの電流で連続的に2時間充電したところ、本発明にな
る実施例1の電池(A)では、全てにおいて発煙発火な
どの異常が認められなかったのに対し、従来の比較例1
の電池(B)では電池温度が200℃以上に上昇し、発
煙が見られた。さらに、これらの電池AおよびBをそれ
ぞれ10セルづつ、1350mAhまで充電した後に、
SUS製の釘で電池中央を貫通したところ、本発明にな
る実施例1の電池(A)では、全てにおいて発煙発火な
どの異常が認められなかったのに対し、従来の比較例1
の電池(B)では、半数において発煙が見られた。ま
た、これらの電池AおよびBをそれぞれ10セルづつ、
900mAで4.3Vまで充電した後、900mAで
2.75Vまで放電する充放電サイクルを300回繰り
返した際の、初回の放電容量と300回目の放電容量を
比較した結果を表1に示した。
[Tests and Results] Each of these batteries A and B was set to 10 cells, and the power supply voltage was set to 10 V.
When the battery (A) of Example 1 according to the present invention was continuously charged with a current of C for 2 hours, no abnormality such as smoke and ignition was observed in all the batteries, whereas the conventional Comparative Example 1
In battery (B), the battery temperature rose to 200 ° C. or higher, and smoke was observed. Further, after charging each of these batteries A and B to 1350 mAh by 10 cells,
When the center of the battery was penetrated with a SUS nail, the battery (A) of Example 1 according to the present invention did not show any abnormality such as smoke and ignition in all cases, whereas the conventional comparative example 1
In the battery (B), smoke emission was observed in half of the batteries. In addition, these batteries A and B are each 10 cells,
Table 1 shows the results of comparing the initial discharge capacity and the 300th discharge capacity when the charge / discharge cycle of charging at 900 mA to 4.3 V and then discharging at 900 mA to 2.75 V was repeated 300 times.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から、本発明になる実施例1の電池
(A)の容量劣化が少ないことが示された。
Table 1 shows that the battery (A) of Example 1 according to the present invention has a small capacity deterioration.

【0017】[0017]

【発明の効果】本発明によれば、リチウム含有金属酸化
物の表面層とバルク電解液層間に電解液の拡散障壁を設
けることにより、過充電時や内部短絡時に熱逸走を促進
するリチウム含有金属酸化物と非水電解液との相互作用
を抑制できる。したがって、安全弁や電流遮断手段が有
効に作動し、従来の電池に起こる過充電時や内部短絡時
の爆発的な発熱分解反応を防止し、電池の高安全化が可
能である。また、リチウム含有金属酸化物の各粒子間に
は比抵抗の低い物質が必ず介在しているため、充放電に
ともなうリチウム含有金属酸化物の膨張収縮にともな
う、粒子間の接触抵抗の増大が抑えられ、長期にわたる
サイクル寿命性能の向上も可能である。よって、本発明
の工業的価値は極めて高い。
According to the present invention, a lithium-containing metal which promotes thermal escape at the time of overcharge or internal short circuit by providing an electrolyte diffusion barrier between the surface layer of the lithium-containing metal oxide and the bulk electrolyte layer. Interaction between the oxide and the non-aqueous electrolyte can be suppressed. Therefore, the safety valve and the current cutoff means operate effectively, and the explosive exothermic decomposition reaction at the time of overcharging or internal short circuit which occurs in the conventional battery can be prevented, and the safety of the battery can be increased. In addition, since a substance having a low specific resistance is necessarily interposed between the particles of the lithium-containing metal oxide, an increase in contact resistance between the particles due to expansion and contraction of the lithium-containing metal oxide due to charge and discharge is suppressed. Thus, it is possible to improve the cycle life performance over a long period of time. Therefore, the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の非水電解液二次電池の断面図。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of Example 1.

【符号の説明】[Explanation of symbols]

1 非水電解液二次電池 2 電極群 3 負極板 4 正極板 5 セパレータ 6 電池ケース 7 蓋 9 安全弁 10 負極端子 11 負極リード線 DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Negative electrode plate 4 Positive electrode plate 5 Separator 6 Battery case 7 Lid 9 Safety valve 10 Negative electrode terminal 11 Negative electrode lead wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 卓 京都府京都市南区吉祥院新田壱ノ段町5番 地 ジ−エス・メルコテック株式会社内 (72)発明者 中満 和弘 京都府京都市南区吉祥院新田壱ノ段町5番 地 ジ−エス・メルコテック株式会社内 Fターム(参考) 5H003 AA10 BB05 BB14 BB15 BC05 BD00 5H014 AA02 CC01 EE05 EE07 HH00 5H029 AJ05 AJ12 AK02 AK03 AL02 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 CJ22 DJ08 EJ01 EJ04 HJ20  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Taku Aoki 5th, Kichijoin Nitta Ichidandancho, Minami-ku, Kyoto-shi, Kyoto Inside GE Melcotec Co., Ltd. (72) Inventor Kazuhiro Nakamitsu Kyoto, Kyoto 5F003 (reference) 5K003 AA10 BB05 BB14 BB15 BC05 BD00 5H014 AA02 CC01 EE05 EE07 HH00 5H029 AJ05 AJ12 AK02 AK03 AL02 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 CJ22 DJ08 EJ01 EJ04 HJ20

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵放出可能なリチウム
含有金属酸化物を含む正極合材層が形成された正極と、
リチウムイオンを吸蔵放出可能なホスト物質を有する負
極合材層が形成された負極とを備え、リチウム含有金属
酸化物の表面の一部または全部を、溶出電位がリチウム
溶出電位に対して3V以上の範囲内の金属および/また
は炭素材料合材層で覆い、正極合材層の比抵抗が1Ωm
以下であることを特徴とする非水電解質二次電池。
1. A positive electrode having a positive electrode mixture layer containing a lithium-containing metal oxide capable of inserting and extracting lithium ions,
A negative electrode on which a negative electrode mixture layer having a host material capable of inserting and extracting lithium ions is provided, and a part or the whole of the surface of the lithium-containing metal oxide has an elution potential of 3 V or more with respect to the lithium elution potential. Covered with the metal and / or carbon material mixture layer within the range, and the specific resistance of the positive electrode mixture layer is 1 Ωm
A nonaqueous electrolyte secondary battery characterized by the following.
JP10327309A 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery Pending JP2000156221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10327309A JP2000156221A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10327309A JP2000156221A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000156221A true JP2000156221A (en) 2000-06-06

Family

ID=18197705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10327309A Pending JP2000156221A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000156221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222077A (en) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222077A (en) * 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery

Similar Documents

Publication Publication Date Title
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP2004296256A (en) Nonaqueous electrolyte secondary battery
JP2002324585A (en) Nonaqueous electrolyte secondary battery and capacity restoring method thereof
JP2002056835A (en) Sealed secondary battery
JP2009238387A (en) Nonaqueous electrolyte secondary battery
JP2001185213A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP3402237B2 (en) Non-aqueous electrolyte secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2002203555A (en) Non-aqueous electrolyte secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP2000188132A5 (en)
JP2006216450A (en) Battery
JP2003086243A (en) Manufacturing method of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP3402233B2 (en) Non-aqueous electrolyte secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP2000156221A (en) Nonaqueous electrolyte secondary battery
JP2000156231A (en) Nonaqueous electrolyte secondary battery
JP2000058065A (en) Nonaqueous electrolyte secondary battery