JP2000154097A - Liquid phase epitaxial growth method of silicon carbide crystal - Google Patents

Liquid phase epitaxial growth method of silicon carbide crystal

Info

Publication number
JP2000154097A
JP2000154097A JP10338507A JP33850798A JP2000154097A JP 2000154097 A JP2000154097 A JP 2000154097A JP 10338507 A JP10338507 A JP 10338507A JP 33850798 A JP33850798 A JP 33850798A JP 2000154097 A JP2000154097 A JP 2000154097A
Authority
JP
Japan
Prior art keywords
growth
sic
substrate
crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10338507A
Other languages
Japanese (ja)
Other versions
JP3719341B2 (en
Inventor
Tomio Kajigaya
富男 梶ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP33850798A priority Critical patent/JP3719341B2/en
Publication of JP2000154097A publication Critical patent/JP2000154097A/en
Application granted granted Critical
Publication of JP3719341B2 publication Critical patent/JP3719341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the growth method that enables the growth of a high quality large SiC crystal which has no crystal defects causing defectiveness of device operation, such as micropipe or polytype inclusion within the crystal, and also, contains drastically reduced concentration of residual impurities greatly affecting electric characteristics of the crystal. SOLUTION: This growth method comprises, using an Si-C system melt that has a composition being between the peritectic point and eutectic point in the Si-C two component system phase diagram, as a raw material melt using an Si substrate having a SiC film formed on the substrate, as the growth substrate of an SiC crystal bringing the Si substrate side of the growth substrate into contact with the raw material melt to dissolve and remove the Si substrate and a part of the adjacent SiC film which part has inferior crystal properties and performing epitaxial growth of an SiC crystal on the residual SiC film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温動作デバイ
ス、パワーデバイス、耐放射線デバイス等の材料として
期待されているSiC結晶の育成方法に係り、特に、デ
バイス動作不良の原因となるマイクロパイプ、ポリタイ
プの混在等の結晶欠陥が無く、結晶の電気的特性に大き
く影響を与える残留不純物濃度も大幅に低減された高品
質でかつ大型のSiC結晶を育成可能なSiC結晶の液
相エピタキシャル成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a SiC crystal expected as a material for a high-temperature operation device, a power device, a radiation-resistant device, and the like. The present invention relates to a liquid phase epitaxial growth method of a SiC crystal capable of growing a high-quality and large-sized SiC crystal having no crystal defects such as a mixture of types and having a greatly reduced residual impurity concentration that greatly affects the electrical characteristics of the crystal. It is.

【0002】[0002]

【従来の技術】ワイドギャップ半導体であるSiC結晶
は、エネルギーギャップが約3eVと大きい上に、化学
結合力が強固であるため物理的、化学的に安定で、耐熱
性、耐放射線性に優れた材料である。更に、p、n両伝
導型の制御が可能であることやキャリアの移動度がSi
結晶並に大きいこと等から、次世代送電システム、電
車、電気自動車などや、航空、原子力、宇宙科学などの
分野で要求される高耐圧パワーデバイス、高温動作デバ
イス、耐放射線デバイス等、従来におけるSi等の半導
体材料ではその物性値から実現不可能であった過酷な環
境下でも使用できる電子デバイスの材料として最も期待
されている。
2. Description of the Related Art An SiC crystal, which is a wide gap semiconductor, has a large energy gap of about 3 eV and is physically and chemically stable due to a strong chemical bonding force, and is excellent in heat resistance and radiation resistance. Material. Furthermore, control of both p and n conductivity types is possible and carrier mobility
Because it is as large as a crystal, conventional Si, such as next-generation power transmission systems, electric trains, electric vehicles, and other high-voltage power devices, high-temperature operating devices, and radiation-resistant devices required in the fields of aviation, nuclear power, and space science, etc. Such semiconductor materials are most expected as materials for electronic devices that can be used under severe environments that cannot be realized due to their physical properties.

【0003】ところで、SiCは常圧では融点を持たな
いため、バルク結晶の育成は非常に困難である。そし
て、SiC結晶の育成方法としては、SiO2 とコーク
スを高温で反応させるアチソン法が古くから知られてい
る。このアチソン法では、研磨剤、耐火材等の一般工業
用SiC結晶が製造されているが、偶発的に径が10m
m程度の六角板状単結晶が得られる。しかし、このアチ
ソン法では、単結晶の成長を制御することは不可能であ
るため、再現性が無く高純度で大型結晶を育成すること
はできない。
Since SiC does not have a melting point at normal pressure, it is very difficult to grow a bulk crystal. As an SiC crystal growing method, the Acheson method of reacting SiO 2 and coke at a high temperature has been known for a long time. In this Acheson method, general industrial SiC crystals such as abrasives and refractory materials are produced.
A hexagonal plate-like single crystal of about m is obtained. However, in the Acheson method, it is impossible to control the growth of a single crystal, so that a large crystal with high purity cannot be grown without reproducibility.

【0004】他方、1960年代から研究されたレイリ
ー法(昇華法)、すなわち、グラファイト製容器内にお
いて2000℃以上の高温でSiC粉末を昇華再結晶さ
せる方法も、結晶核の発生を制御することが困難なため
大型のSiC結晶を育成することは難しかった。
On the other hand, the Rayleigh method (sublimation method) studied since the 1960s, that is, a method of sublimating and recrystallizing SiC powder in a graphite container at a high temperature of 2000 ° C. or more, also controls generation of crystal nuclei. Because of the difficulty, it was difficult to grow a large SiC crystal.

【0005】このような技術的背景の下、容器内の低温
部に平板結晶を設置しこの平板結晶を種結晶としてSi
Cの昇華ガスを再結晶化させる改良型レイリー法(昇華
法)が1978年にロシアのYu.M.Tairov等によって提
唱され、SiC結晶の大型化に向けて大きく進展した。
[0005] Under such technical background, a flat plate crystal is set in a low temperature part in a container, and the flat plate crystal is used as a seed crystal to form Si.
An improved Rayleigh method (sublimation method) for recrystallizing C sublimation gas was proposed in 1978 by Russia's Yu.M. Tairov and others, and has made great progress toward increasing the size of SiC crystals.

【0006】現在、一般的に行われている改良型レイリ
ー法は、図4(A)〜(B)に示すように円筒形のグラ
ファイトからなる容器1内の一方に原料となるSiC粉
末2を収容し、もう一方に種結晶3となる平板状のSi
C単結晶を配置し、Ar等の不活性ガス雰囲気中で高周
波誘導加熱コイルあるいは抵抗加熱ヒータ等の加熱手段
(図示せず)によって容器1を2300〜2700K程
度に加熱して行われている。
[0006] At present, an improved Rayleigh method generally used is a method in which a SiC powder 2 as a raw material is placed in one side of a cylindrical graphite vessel 1 as shown in FIGS. 4 (A) and 4 (B). A flat Si that is housed and has a seed crystal 3 on the other side
This is performed by disposing a C single crystal and heating the container 1 to about 2300 to 2700 K by a heating means (not shown) such as a high-frequency induction heating coil or a resistance heater in an inert gas atmosphere such as Ar.

【0007】そして、加熱によって原料SiC粉末から
昇華した気体が容器1内で温度が最も低く設定されてい
る種結晶3部に集まり、種結晶3上で結晶成長が行わ
れ、種結晶3と同一結晶方位のSiCバルク結晶4が得
られている。
Then, the gas sublimated from the raw material SiC powder by heating gathers in the seed crystal 3 at the lowest temperature in the vessel 1, and crystal growth is performed on the seed crystal 3, and the same as the seed crystal 3. A SiC bulk crystal 4 having a crystal orientation is obtained.

【0008】更に、大面積のSiC結晶を得るため、直
径6インチ、8インチが既に実用化されているSi結晶
を基板として適用し、CVD法、MBE法等の気相成長
法により上記Si結晶基板上にSiC膜をエピタキシャ
ル成長させる方法も研究されている。
Further, in order to obtain a large-area SiC crystal, a Si crystal having a diameter of 6 inches or 8 inches, which is already in practical use, is applied as a substrate, and the Si crystal is grown by a vapor phase growth method such as a CVD method or an MBE method. A method of epitaxially growing a SiC film on a substrate has also been studied.

【0009】[0009]

【発明が解決しようとする課題】ところで、上記改良型
レイリー法(昇華法)を適用した場合、研究レベルで直
径50mm程度のSiC結晶は得られているが、現実的
にある程度の再現性を持って得られる結晶のサイズは直
径30mm程度であり、実用的なサイズである結晶径5
0mm以上の大型結晶を再現性よく育成することは困難
であった。
By the way, when the above-mentioned improved Rayleigh method (sublimation method) is applied, a SiC crystal having a diameter of about 50 mm has been obtained at a research level, but has a certain degree of reproducibility in practice. The size of the obtained crystal is about 30 mm in diameter, which is a practical size of 5 mm.
It was difficult to grow large crystals of 0 mm or more with good reproducibility.

【0010】更に、改良型レイリー法を用いて育成され
たSiC結晶には、マイクロパイプ、ポリタイプの混在
など、デバイス特性に大きな影響を与え半導体基板とし
て本質的に存在してはならない重大な結晶欠陥が存在す
る。そして、マイクロパイプは、電子デバイスにおいて
リーク電流を発生させる原因となり、マイクロパイプが
存在する領域は基板材料として使用することができな
い。ポリタイプは、ポリタイプが異なるとバンドギャッ
プが異なるため、これ等ポリタイプが存在する領域もデ
バイス作製には適用することができない。
In addition, a SiC crystal grown by using the improved Rayleigh method has a significant effect on device characteristics, such as the presence of micropipes and polytypes, and must not be essentially present as a semiconductor substrate. There are defects. The micropipe causes a leak current in an electronic device, and a region where the micropipe exists cannot be used as a substrate material. Since the polytypes have different band gaps when the polytypes are different, a region where these polytypes exist cannot be applied to device fabrication.

【0011】加えて、改良型レイリー法で原料として通
常用いられるSiC粉末は上述したアチソン法で合成さ
れたものが一般的であり、SiC粉末の純度は高々98
%程度である。このため、改良型レイリー法による育成
中に、原料のSiC粉末に含まれる不純物元素も昇華し
結晶中に取り込まれてしまう。従って、この方法で育成
されたSiC結晶に含まれる残留不純物濃度は1017
1018/cm2 以上となる。そして、この高い残留不純
物濃度は結晶の電気的特性に大きな影響を与えることか
ら、改良型レイリー法では、電子デバイス用材料として
所望の電気的特性を有する結晶を得ることは非常に困難
となる。
In addition, the SiC powder usually used as a raw material in the improved Rayleigh method is generally synthesized by the Acheson method described above, and the purity of the SiC powder is at most 98.
%. Therefore, during the growth by the improved Rayleigh method, the impurity element contained in the raw material SiC powder also sublimes and is taken into the crystal. Therefore, the residual impurity concentration contained in the SiC crystal grown by this method is 10 17-
It is 10 18 / cm 2 or more. Since the high residual impurity concentration greatly affects the electric characteristics of the crystal, it is very difficult to obtain a crystal having desired electric characteristics as a material for an electronic device by the improved Rayleigh method.

【0012】尚、原料粉末として、気相合成法などアチ
ソン法以外の方法で合成された高純度品を適用すること
もできるが、原料粉末の生産性が悪いことから原料コス
トがアチソン法の100倍以上と高くなる問題があり、
更に、アチソン法以外の方法で得られたSiC原料粉末
でさえも純度は99.5%程度であり、半導体結晶を育
成するための原料として期待される6N(99.999
9%)あるいは7N(99.99999%)という値と
比較すると十分な純度ではない。
As the raw material powder, a high-purity product synthesized by a method other than the Acheson method such as a gas phase synthesis method can be used. However, since the productivity of the raw material powder is low, the raw material cost is lower than that of the Acheson method. There is a problem that is more than twice as high,
Furthermore, even the SiC raw material powder obtained by a method other than the Acheson method has a purity of about 99.5%, and 6N (99.999) is expected as a raw material for growing semiconductor crystals.
9%) or 7N (99.9999%) is not sufficient purity.

【0013】他方、Si結晶を基板として適用した気相
成長法においては、上記マイクロパイプの結晶欠陥はみ
られないが、その成長速度がせいぜい2〜3μm/h
r.と上記改良型レイリー法の数百〜数千μm/hr.
に較べて生産性が非常に劣る問題点を有している。ま
た、成長温度が1000〜1100℃程度で行われるた
めに、低温安定型でエネルギーバンドギャップがSiC
ポリタイプの中で最も狭い3Cタイプの結晶しか得られ
ていないのが現状である。
On the other hand, in the vapor phase growth method using a Si crystal as a substrate, no crystal defects are observed in the micropipe, but the growth rate is at most 2-3 μm / h.
r. And several hundred to several thousand μm / hr.
Has a problem that the productivity is very inferior to the above. In addition, since the growth is performed at a temperature of about 1000 to 1100 ° C., the low-temperature stable type has an energy band gap of SiC.
At present, only the narrowest 3C type crystal among the poly types has been obtained.

【0014】加えて、SiとSiCとでは格子定数で約
20%、熱膨張係数で約8%もの差があるため、得られ
るSiC膜に、Si基板との界面付近のボイド、さらに
ツイン、アンチフェーズドメイン等の結晶欠陥が含まれ
る場合があった。
In addition, since there is a difference in lattice constant between Si and SiC of about 20% and a coefficient of thermal expansion of about 8%, the resulting SiC film has voids near the interface with the Si substrate, and furthermore twins and anti-semiconductors. In some cases, crystal defects such as phase domains were included.

【0015】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、デバイス動作不良
の原因となるマイクロパイプ、ポリタイプの混在等の結
晶欠陥が無く、結晶の電気的特性に大きく影響を与える
残留不純物濃度も大幅に低減された高品質でかつ大型の
SiC結晶を育成可能なSiC結晶の液相エピタキシャ
ル成長方法を提供することにある。
The present invention has been made in view of such a problem, and it is an object of the present invention to eliminate crystal defects such as micropipes and polytypes which cause device operation failure, and to prevent crystal defects. It is an object of the present invention to provide a liquid phase epitaxial growth method of SiC crystal capable of growing a high-quality and large-sized SiC crystal in which the concentration of residual impurities that greatly influences electrical characteristics is greatly reduced.

【0016】[0016]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、SiC結晶の液相エピタキシャル成長方法を
前提とし、Si−Cの2成分系状態図で示される包晶点
と共晶点間の組成を有するSi−C系融液を原料融液と
し、SiC膜が形成されたSi基板をSiC結晶の成長
基材にすると共に、成長容器内において成長基材の上記
Si基板側と原料融液を接触させてSi基板とこれに隣
接する結晶性に劣るSiC膜の一部を溶解除去させた
後、残留するSiC膜上にSiC結晶をエピタキシャル
成長させることを特徴とし、請求項2に係る発明は、請
求項1記載の発明に係るSiC結晶の液相エピタキシャ
ル成長方法を前提とし、成長容器内の上方側にSi基板
側が露出するように成長基材を配置しかつ成長容器内の
下方側にSi原料とグラファイトを配置する工程と、成
長容器内をSiの融点以上に加熱してSi−C系融液を
得た後、成長容器の上下を反転させてSi−C系融液と
成長基材のSi基板とを接触させると共に、Si−C系
融液内の温度分布を成長基材配置側が最も低温となるよ
うに設定して成長基材のSi基板を溶解除去する工程
と、上記Si−C系融液の温度が所定の温度(1600
℃以上)まで到達し、かつ、Si−C系融液内における
C濃度が平衡状態に達した後、Si−C系融液内の温度
分布を成長基材配置側が最も高温となるように設定して
成長基材の結晶性に劣るSiC膜の一部を溶解除去する
工程と、結晶性に劣るSiC膜の一部を溶解除去した
後、上記成長基材側温度を降下させてSi−C系融液内
において成長基材配置側が最も低温となるようにSi−
C系融液内の温度分布を変更し、残留するSiC膜上に
SiC結晶をエピタキシャル成長させる工程、の各工程
を具備することを特徴とする。
That is, the invention according to claim 1 is based on the premise that a liquid phase epitaxial growth method of a SiC crystal is used, and the temperature between the peritectic point and the eutectic point shown in a two-component system phase diagram of Si—C. Is used as a raw material melt, the Si substrate on which the SiC film is formed is used as a SiC crystal growth substrate, and the Si substrate side of the growth substrate and the Si substrate are melted in a growth vessel. 3. The invention according to claim 2, wherein a SiC crystal is epitaxially grown on the remaining SiC film after contacting a liquid to dissolve and remove the Si substrate and a part of the SiC film having poor crystallinity adjacent thereto. Presupposes a liquid phase epitaxial growth method of a SiC crystal according to the first aspect of the present invention, and arranges a growth base material such that a Si substrate side is exposed on an upper side in a growth vessel and has a Si substrate on a lower side in the growth vessel. Raw materials and After the step of arranging graphite and heating the inside of the growth vessel to a temperature equal to or higher than the melting point of Si to obtain a Si-C-based melt, the growth vessel is turned upside down to remove the Si-C-based melt and the Si of the growth base material. Dissolving and removing the Si substrate of the growth substrate by bringing the substrate into contact with the substrate and setting the temperature distribution in the Si-C-based melt to be the lowest temperature on the growth substrate placement side; When the temperature of the melt is a predetermined temperature (1600
℃ or more), and after the C concentration in the Si-C-based melt reaches an equilibrium state, the temperature distribution in the Si-C-based melt is set so that the growth substrate arrangement side has the highest temperature. Dissolving and removing part of the SiC film having poor crystallinity of the growth base material, and dissolving and removing part of the SiC film having poor crystallinity. In the system melt, the Si-
A step of changing the temperature distribution in the C-based melt and epitaxially growing a SiC crystal on the remaining SiC film.

【0017】また、請求項3に係る発明は、SiC結晶
の液相エピタキシャル成長方法において、Si−Cの2
成分系状態図で示される包晶点と共晶点間の組成を有す
るSi−C系融液を原料融液とし、SiC膜が形成され
たSi基板をSiC結晶の成長基材にすると共に、成長
容器内において成長基材の上記Si基板を融解除去して
SiC膜を露出させた後、成長基材の上記SiC膜と原
料融液を接触させて結晶性に劣るSiC膜の一部を溶解
除去し、かつ、残留するSiC膜上にSiC結晶をエピ
タキシャル成長させることを特徴とし、請求項4に係る
発明は、請求項3記載の発明に係るSiC結晶の液相エ
ピタキシャル成長方法を前提とし、成長容器内の上方側
にSi基板側が露出するように成長基材を配置しかつ成
長容器内の下方側にSi原料とグラファイトを配置する
工程と、成長容器内をSiの融点以上に加熱し成長基材
のSi基板を融解除去してSiC膜を露出させると共に
Si−C系融液を得る工程と、上記Si−C系融液の温
度が所定の温度(1600℃以上)まで到達し、かつ、
Si−C系融液内におけるC濃度が平衡状態に達した
後、成長容器の上下を反転させてSi−C系融液と成長
基材のSiC膜とを接触させると共に、Si−C系融液
内の温度分布を成長基材配置側が最も高温となるように
設定して結晶性に劣る上記SiC膜の一部を溶解除去す
る工程と、結晶性に劣るSiC膜の一部を溶解除去した
後、上記成長基材側温度を降下させてSi−C系融液内
において成長基材配置側が最も低温となるようにSi−
C系融液内の温度分布を変更し、残留するSiC膜上に
SiC結晶をエピタキシャル成長させる工程、の各工程
を具備することを特徴とする。
According to a third aspect of the present invention, there is provided a liquid-phase epitaxial growth method for SiC crystal, comprising:
A Si-C-based melt having a composition between the peritectic point and the eutectic point shown in the component system phase diagram is used as a raw material melt, and the Si substrate on which the SiC film is formed is used as a SiC crystal growth base material. After the SiC film of the growth substrate is melted and removed in the growth vessel to expose the SiC film, the SiC film of the growth substrate is brought into contact with the raw material melt to dissolve a part of the SiC film having poor crystallinity. A SiC crystal is epitaxially grown on the removed and remaining SiC film. The invention according to claim 4 is based on the liquid phase epitaxial growth method of SiC crystal according to the invention according to claim 3, Disposing the growth substrate such that the Si substrate side is exposed on the upper side of the inside, and disposing the Si raw material and graphite on the lower side of the growth container; and heating the inside of the growth container to a temperature equal to or higher than the melting point of Si. Melting Si substrate Obtaining a SiC KeiTorueki to expose the SiC film is removed by, the temperature of the SiC KeiTorueki reaches to a predetermined temperature (1600 ° C. or higher), and,
After the C concentration in the Si-C-based melt reaches an equilibrium state, the growth container is turned upside down to bring the Si-C-based melt into contact with the SiC film of the growth base material, A step of dissolving and removing a part of the SiC film having poor crystallinity by setting the temperature distribution in the liquid to be the highest on the growth substrate disposition side, and dissolving and removing a part of the SiC film having poor crystallinity. Thereafter, the temperature of the growth substrate is lowered so that the temperature of the Si-C-based melt is lower than that of the Si-C-based melt.
A step of changing the temperature distribution in the C-based melt and epitaxially growing a SiC crystal on the remaining SiC film.

【0018】そして、請求項1〜4記載の発明に係るS
iC結晶の液相エピタキシャル成長方法によれば、Si
−Cの2成分系状態図で示される包晶点と共晶点間の組
成を有するSi−C系融液を原料融液とし、SiC膜が
形成されたSi基板をSiC結晶の成長基材にすると共
に、成長容器内においてSi基板とこれに隣接した結晶
性に劣るSiC膜の一部を融解若しくは溶解除去して得
られた結晶性良好なSiC膜を種結晶としこのSiC膜
上にSiC結晶をエピタキシャル成長させているため、
従来より大型で、かつ、マイクロパイプ等の結晶欠陥が
少ないSiC結晶を簡便に得ることが可能となる。
The S according to the first to fourth aspects of the present invention.
According to the liquid phase epitaxial growth method of iC crystal, Si
A Si-C-based melt having a composition between the peritectic point and the eutectic point shown in the two-component system phase diagram of -C is used as a raw material melt, and a Si substrate on which a SiC film is formed is used as a growth substrate for SiC crystals. In addition, a SiC film having good crystallinity obtained by melting or dissolving and removing a Si substrate and a part of the SiC film having poor crystallinity adjacent to the Si substrate in the growth vessel is used as a seed crystal to form a SiC film on the SiC film. Because the crystal is grown epitaxially,
It is possible to easily obtain a SiC crystal which is larger than before and has few crystal defects such as micropipes.

【0019】また、Si基板が除去された結晶性良好な
SiC膜を種結晶としているため、Si−C系融液の成
長温度をSiの融点より高い1600℃以上に設定でき
ることから、電子デバイス用材料として必要とされてい
る4H(六方晶系)あるいは6H(六方晶系)の周期を
持つポリタイプのSiC結晶を簡便かつ確実に得ること
が可能となる。
Further, since the SiC film having good crystallinity from which the Si substrate has been removed is used as a seed crystal, the growth temperature of the Si—C-based melt can be set to 1600 ° C. or higher, which is higher than the melting point of Si. A polytype SiC crystal having a period of 4H (hexagonal) or 6H (hexagonal) required as a material can be easily and reliably obtained.

【0020】更に、成長原料としてSiC粉末を用いて
いないため上述した改良型レイリー法(昇華法)で得ら
れたSiC結晶よりも残留不純物濃度の低いSiC結晶
を得ることができ、かつ、その成長速度も、成長温度や
Si−C系融液内の温度勾配等に依存するが、数百μm
/hr.以上とSi基板を用いた上述の気相成長法の百
倍以上であり、高速でかつ再現性よくSiC結晶を得る
ことが可能となる。
Further, since no SiC powder is used as a growth material, it is possible to obtain a SiC crystal having a lower residual impurity concentration than the SiC crystal obtained by the above-mentioned improved Rayleigh method (sublimation method), and to grow the same. The speed also depends on the growth temperature, the temperature gradient in the Si-C-based melt, and the like.
/ Hr. The above is one hundred times or more of the above-mentioned vapor phase growth method using a Si substrate, and it is possible to obtain a SiC crystal at high speed and with good reproducibility.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0022】図3は、常圧におけるSi−Cの2成分系
状態図である。この2成分系状態図で示されるようにS
i単体の融点は1414℃であるが、Si−Cの2成分
系は2545±40℃で包晶点を、また、1404±5
℃で共晶点を持つ。包晶点での組成は、Siが73at
%、Cが27at%であり、共晶点での組成は、Siが
99.25±0.5at%、Cが0.75±0.5at
%である。
FIG. 3 is a diagram showing a two-component system of Si—C at normal pressure. As shown in this two-component system diagram, S
The melting point of i itself is 1414 ° C., but the binary system of Si—C has a peritectic point at 2545 ± 40 ° C. and 1404 ± 5
It has a eutectic point at ° C. The composition at the peritectic point is as follows:
%, C is 27 at%, and the composition at the eutectic point is as follows: Si is 99.25 ± 0.5 at%, C is 0.75 ± 0.5 at%.
%.

【0023】これ等の包晶組成と共晶組成の間の組成を
有するSi−C系融液、例えば、図3において始めに点
Aの状態にある融液を徐冷すると、融液の温度がTとな
り、液相線上の点Bに到達した後は、Si−C系融液は
SiC結晶を晶出しながら組成を液相線に沿って変化さ
せる。温度降下に伴ってSi−C系融液の組成が液相線
に沿って変化しても、晶出する結晶は常にSiCであ
る。この状態は、Si−C系融液の組成が共晶点に到達
するまで続く。そして、共晶点温度よりも低温では、も
はや液相は存在せずに共晶点に達するまでに晶出したS
iCと共晶組成のSiとSiCの混合物から成る固相と
なる。
When an Si—C-based melt having a composition between the peritectic composition and the eutectic composition, for example, the melt initially in the state of point A in FIG. Becomes T, and after reaching point B on the liquidus line, the Si—C-based melt changes its composition along the liquidus line while crystallizing SiC crystals. Even if the composition of the Si—C-based melt changes along the liquidus line with the temperature drop, the crystal to be crystallized is always SiC. This state continues until the composition of the Si—C-based melt reaches the eutectic point. At a temperature lower than the eutectic point temperature, the liquid phase no longer exists, and S
It becomes a solid phase composed of a mixture of Si and SiC having a eutectic composition with iC.

【0024】上記過程において、包晶組成と共晶組成の
間の組成を有するSi−C系融液がSiC結晶を晶出す
る反応を、種結晶基板上で行わせればエピタキシャル成
長が起こり、種結晶基板上にSiC結晶を育成させるこ
とが可能となる。
In the above process, when a reaction of crystallizing a SiC crystal by a Si—C-based melt having a composition between the peritectic composition and the eutectic composition is performed on a seed crystal substrate, epitaxial growth occurs, and It becomes possible to grow a SiC crystal on the substrate.

【0025】このとき、SiCの晶出反応を効率よく種
結晶基板上で行わせるために、Si−C系融液内に基板
側が最も低温となる温度勾配を設定する。晶出反応は、
この温度勾配を保持したままでSi−C系融液全体の温
度を降下させることで起こすことができるが、Si−C
系融液内における最も高温部にC供給源となるグラファ
イトを配置しかつSi−C系融液内における最も低温部
に種結晶基板を配置させると共に、基板側低温−C供給
源側高温の上記Si−C系融液の温度分布を保持するこ
とでも晶出反応を起こすことが可能である。これは、高
温部で平衡濃度となったSi−C系融液中のCが、融液
中のC濃度の差による拡散で種結晶基板が設置されてい
る低温部に達すると過飽和状態となり、基板部の温度で
平衡状態に近付こうとするときにSiCを晶出し、最も
低温に保たれている種結晶基板上でSiCのエピタキシ
ャル成長が行われる(すなわち温度差を利用した晶出方
法)。また、他の方法として、Si−C系融液内の温度
分布は一定に保ったままで溶媒であるSiを蒸発させ、
Si−C系融液内をC過剰の過飽和状態とすることでS
iCの晶出反応を起こすこともできる。
At this time, in order to efficiently carry out the crystallization reaction of SiC on the seed crystal substrate, a temperature gradient at which the substrate side has the lowest temperature is set in the Si—C-based melt. The crystallization reaction is
This can be caused by lowering the temperature of the entire Si-C-based melt while maintaining this temperature gradient.
The graphite serving as a C supply source is disposed in the highest temperature portion in the system melt, and the seed crystal substrate is disposed in the lowest temperature portion in the Si-C melt. The crystallization reaction can also be caused by maintaining the temperature distribution of the Si-C-based melt. This is because when the C in the Si-C-based melt having reached the equilibrium concentration in the high temperature part reaches the low temperature part where the seed crystal substrate is installed by diffusion due to the difference in the C concentration in the melt, it becomes supersaturated, SiC is crystallized when trying to approach an equilibrium state at the temperature of the substrate portion, and epitaxial growth of SiC is performed on the seed crystal substrate kept at the lowest temperature (that is, a crystallization method using a temperature difference). Also, as another method, the solvent Si is evaporated while keeping the temperature distribution in the Si-C-based melt constant,
By setting the inside of the Si-C-based melt to a supersaturated state of C excess,
A crystallization reaction of iC can also be caused.

【0026】そして、これ等の中で、特に上記温度差を
利用した晶出方法では、基板側低温−C供給源側高温の
Si−C系融液の温度分布を保持する方法であることか
ら、結晶育成中、常に温度が一定に保たれる上に、溶媒
Siを蒸発させることなく成長が行われるため、温度変
化によるポリタイプ変化等の結晶欠陥の発生を抑制でき
るだけでなくCの供給がなくなるまでSiCの成長を行
うことが可能であり、十分な厚さのSiC結晶が得られ
る利点を有する。
Among them, the crystallization method utilizing the above-mentioned temperature difference is a method for maintaining the temperature distribution of the Si-C-based melt at the substrate side low temperature-C supply source side high temperature. During the crystal growth, the temperature is always kept constant, and the growth is performed without evaporating the solvent Si. Therefore, not only can the generation of crystal defects such as a polytype change due to a temperature change be suppressed, but also the supply of C can be suppressed. It is possible to grow SiC until it disappears, and there is an advantage that a SiC crystal having a sufficient thickness can be obtained.

【0027】以下、SiC膜が形成されたSi基板を液
相エピタキシャル成長の成長基材(すなわち種結晶基
板)とし、上記温度差法によりSiC結晶を育成する方
法について具体的に説明する。
Hereinafter, a method of growing a SiC crystal by the temperature difference method using the Si substrate on which the SiC film is formed as a growth substrate (ie, a seed crystal substrate) for liquid phase epitaxial growth will be specifically described.

【0028】まず、Si基板11とSiC膜12から成
る成長基材10について図1(A)に示すように成長容
器20内の上方側に、そのSi基板11側が露出するよ
うに配置し、かつ、成長容器20の下方側に、溶融して
溶媒となりかつSi−C系融液の原料となるSi多結晶
体31と融液にCを供給する原料となるグラファイト3
2をそれぞれ配置する。
First, as shown in FIG. 1A, a growth substrate 10 composed of a Si substrate 11 and a SiC film 12 is arranged above a growth container 20 so that the Si substrate 11 side is exposed. In the lower side of the growth vessel 20, a Si polycrystal 31 which is melted to be a solvent and is a raw material of the Si-C-based melt and graphite 3 which is a raw material for supplying C to the melt.
2 are arranged respectively.

【0029】次に、上記成長容器20を、Arガス等の
雰囲気中で高周波誘導加熱法あるいは抵抗加熱法等によ
りSi単体の融点Tm 以上の温度に加熱して図1(B)
に示すようにSi−C系融液30を得る。このとき、S
i多結晶体31とグラファイト32の設置部は、Si単
体の融点Tm 以上の温度(例えば、図3のT)に昇温さ
れるが、成長基材10の設置部は、Si基板11が融解
しないようにSi単体の融点Tm を越えないように調整
することが必要である。
Next, the growth chamber 20 and heated to the melting point T m above the temperature of the Si single by high-frequency induction heating method or a resistance heating method in an atmosphere such as Ar gas FIG 1 (B)
As shown in (1), a Si-C-based melt 30 is obtained. At this time, S
Installation of i polycrystals 31 and graphite 32, Si single melting point T m above temperature (eg, T in FIG. 3) is heated to, installation of the growth substrate 10, Si substrate 11 it is necessary to adjust so as not to exceed the melting point T m of a Si simple substance so as not to melt.

【0030】次に、図1(C)に示すように成長容器2
0の上下を反転させ、Si−C系融液30と成長基材1
0のSi基板11とを接触させてSi基板11を溶解除
去する。但し、エピタキシャル成長時の種結晶となるS
iC膜12までがSi−C系融液30中に溶解してしま
わないように、Si−C系融液30内の温度分布を成長
基材10配置側が最も低温となるように設定することを
要する。
Next, as shown in FIG.
0, the Si—C-based melt 30 and the growth substrate 1
The Si substrate 11 is brought into contact with the Si substrate 11 to dissolve and remove it. However, S which becomes a seed crystal during epitaxial growth
In order to prevent the iC film 12 from being dissolved in the Si-C-based melt 30, the temperature distribution in the Si-C-based melt 30 should be set such that the temperature on the side where the growth base material 10 is disposed is the lowest. It costs.

【0031】次に、Si−C系融液30の温度が160
0℃以上の所定の温度まで到達し、かつ、Si−C系融
液30内におけるC濃度がほぼ平衡状態となるまで十分
に放置したら、Si−C系融液30内の温度分布を成長
基材10配置側が最も高温となるように成長基材10側
の温度を上昇させる。この昇温処理により、成長基材1
0のSiC膜12が配置されている付近のC濃度が未飽
和状態となり、不足分のCを補うために上記SiC膜1
2の一部が溶解する。この工程で、SiC膜12におけ
るSi基板11との界面付近にあった結晶性に劣るSi
C膜が取り除かれる。このとき、この後のエピタキシャ
ル成長工程に必要十分な厚さのSiC膜12が残留でき
るようにSiC膜12の溶解時間を適宜設定する。
Next, when the temperature of the Si—C-based melt 30 is 160
When the temperature reaches a predetermined temperature of 0 ° C. or higher and is sufficiently left until the C concentration in the Si—C-based melt 30 becomes substantially equilibrium, the temperature distribution in the Si—C-based melt 30 is changed to a growth base. The temperature on the growth substrate 10 side is increased so that the temperature on the side where the material 10 is disposed is the highest. By this heating process, the growth substrate 1
The C concentration near the position where the zero SiC film 12 is disposed is in an unsaturated state.
Part of 2 dissolves. In this step, the SiC film 12 having poor crystallinity near the interface with the Si substrate 11 was formed.
The C film is removed. At this time, the dissolution time of the SiC film 12 is appropriately set so that the SiC film 12 having a thickness necessary and sufficient for the subsequent epitaxial growth step can remain.

【0032】次に、結晶性に劣るSiC膜が取り除かれ
た後、上記成長基材10側の温度を降下させてSi−C
系融液30内において成長基材10配置側が最も低温と
なるようにSi−C系融液30内の温度分布を変更す
る。
Next, after the SiC film having poor crystallinity is removed, the temperature on the side of the growth substrate 10 is lowered to reduce the Si-C film.
The temperature distribution in the Si—C-based melt 30 is changed so that the temperature on the growth substrate 10 side is the lowest in the system-based melt 30.

【0033】この操作によって、Si−C系融液30内
の温度分布は、成長基材10配置側が最も低温に、Cの
供給源であるグラファイト32側が高温となり、上述し
た温度差法により成長基材10のSiC膜12上にエピ
タキシャル成長が起こり、SiC結晶を得ることができ
る。
By this operation, the temperature distribution in the Si—C-based melt 30 becomes the lowest on the side where the growth base material 10 is disposed and the temperature on the side of the graphite 32 which is a C supply source. Epitaxial growth occurs on the SiC film 12 of the material 10, and SiC crystals can be obtained.

【0034】また、図2(A)〜(C)は、SiC膜が
設けられたSi基板を液相エピタキシャル成長の成長基
材(すなわち種結晶基板)とし、温度差法によりSiC
結晶を育成する別の方法を示す工程説明図である。
FIGS. 2A to 2C show that the Si substrate provided with the SiC film is used as a growth base material (ie, a seed crystal substrate) for liquid phase epitaxial growth, and the SiC film is formed by a temperature difference method.
It is a process explanatory view showing another method of growing a crystal.

【0035】まず、Si基板11とSiC膜12から成
る成長基材10について図2(A)に示すように成長容
器20内の上方側に、そのSi基板11側が露出するよ
うに配置し、かつ、成長容器20の下方側に、溶融して
溶媒となりかつSi−C系融液の原料となるSi多結晶
体31と融液にCを供給する原料となるグラファイト3
2をそれぞれ配置する。
First, as shown in FIG. 2A, the growth substrate 10 composed of the Si substrate 11 and the SiC film 12 is arranged above the growth container 20 so that the Si substrate 11 side is exposed. In the lower side of the growth vessel 20, a Si polycrystal 31 which is melted to be a solvent and is a raw material of the Si-C-based melt and graphite 3 which is a raw material for supplying C to the melt.
2 are arranged respectively.

【0036】次に、上記成長容器20内を、Arガス等
の雰囲気中で高周波誘導加熱法あるいは抵抗加熱法等に
よりSi単体の融点Tm 以上の温度に加熱して図2
(B)に示すようにSi−C系融液30を得ると共に、
成長基材10のSi基板11を融解除去してSiC膜1
2を露出させる。
Next, the growth vessel 20 and heated to Si single melting point T m above temperature by high frequency induction heating method or a resistance heating method in an atmosphere such as Ar gas 2
As shown in (B), while obtaining the Si-C-based melt 30,
The SiC film 1 is obtained by melting and removing the Si substrate 11 of the growth base material 10.
Expose 2

【0037】次に、Si−C系融液30の温度が160
0℃以上の所定の温度まで到達し、かつ、Si−C系融
液30内におけるC濃度がほぼ平衡状態となるまで十分
に放置したら、図2(C)に示すように成長容器20の
上下を反転させ、Si−C系融液30と成長基材10の
SiC膜12とを接触させると共に、Si−C系融液3
0内の温度分布を成長基材10配置側が最も高温となる
ように成長基材10側の温度を上昇させる。この昇温処
理により、成長基材10のSiC膜12が配置されてい
る付近のC濃度が未飽和状態となり、不足分のCを補う
ために上記SiC膜12の一部が溶解する。この工程
で、SiC膜12におけるSi基板11との界面付近に
あった結晶性に劣るSiC膜が取り除かれる。このと
き、この後のエピタキシャル成長工程に必要十分な厚さ
のSiC膜12が残留できるようにSiC膜12の溶解
時間を適宜設定する。
Next, the temperature of the Si—C-based melt 30 is set to 160
When the temperature reaches a predetermined temperature of 0 ° C. or more and is sufficiently left until the C concentration in the Si—C-based melt 30 is substantially in an equilibrium state, as shown in FIG. To bring the Si—C-based melt 30 into contact with the SiC film 12 of the growth substrate 10,
The temperature distribution within 0 is raised so that the temperature on the growth substrate 10 side is the highest on the side where the growth substrate 10 is disposed. By this heating process, the C concentration in the vicinity of the growth base material 10 where the SiC film 12 is disposed becomes an unsaturated state, and a part of the SiC film 12 is dissolved to compensate for the insufficient C. In this step, the SiC film having poor crystallinity near the interface with the Si substrate 11 in the SiC film 12 is removed. At this time, the dissolution time of the SiC film 12 is appropriately set so that the SiC film 12 having a thickness necessary and sufficient for the subsequent epitaxial growth step can remain.

【0038】次に、結晶性に劣るSiC膜が取り除かれ
た後、上記成長基材10側の温度を降下させてSi−C
系融液30内において成長基材10配置側が最も低温と
なるようにSi−C系融液30内の温度分布を変更す
る。
Next, after the SiC film having poor crystallinity is removed, the temperature on the growth substrate 10 side is lowered to reduce the Si-C film.
The temperature distribution in the Si—C-based melt 30 is changed so that the temperature on the growth substrate 10 side is the lowest in the system-based melt 30.

【0039】この操作によって、Si−C系融液30内
の温度分布は、成長基材10配置側が最も低温に、Cの
供給源であるグラファイト32側が高温となり、上述し
た温度差法により成長基材10のSiC膜12上にエピ
タキシャル成長が起こり、SiC結晶を得ることができ
る。
As a result of this operation, the temperature distribution in the Si—C-based melt 30 becomes the lowest on the growth substrate 10 side and the temperature on the graphite 32 side as the C supply source. Epitaxial growth occurs on the SiC film 12 of the material 10, and SiC crystals can be obtained.

【0040】[0040]

【実施例】以下、本発明の実施例について具体的に説明
する。
Embodiments of the present invention will be specifically described below.

【0041】[実施例1]まず、内壁をBNでコートし
たグラファイト製の成長容器20内の上方側に、図1
(A)に示すようにSi基板11とSiC膜12から成
る成長基材10をそのSi基板11側が露出するように
配置し、かつ、成長容器20内の下方側にSi多結晶体
31とグラファイト32をそれぞれ配置した。
[Example 1] First, in FIG. 1, the upper side of a growth vessel 20 made of graphite whose inner wall was coated with BN was placed.
As shown in FIG. 1A, a growth substrate 10 composed of a Si substrate 11 and a SiC film 12 is disposed so that the Si substrate 11 side is exposed, and a Si polycrystalline body 31 and a graphite are provided below a growth container 20. 32 were arranged respectively.

【0042】次に、上記成長容器20を、Arガス雰囲
気中で、Si多結晶体31とグラファイト32の設置部
が1430℃、成長基材10の設置部が1400℃とな
るように高周波誘導加熱法により加熱し、図1(B)に
示すようにグラファイト32が浮かぶSi−C系融液3
0を得た。
Next, the growth vessel 20 was heated in an Ar gas atmosphere at a high frequency induction heating temperature of 1430.degree. C. for the polycrystalline body 31 and graphite 32, and 1400.degree. C. for the growth substrate 10. The Si-C-based melt 3 in which the graphite 32 floats as shown in FIG.
0 was obtained.

【0043】次に、図1(C)に示すように成長容器2
0の上下を反転させ、Si−C系融液30と成長基材1
0のSi基板11とを接触させてSi基板11を溶解除
去する。但し、エピタキシャル成長時の種結晶となるS
iC膜12までがSi−C系融液30中に溶解してしま
わないように、Si−C系融液30内の温度分布を成長
基材10配置側が最も低温となるように設定した。
Next, as shown in FIG.
0, the Si—C-based melt 30 and the growth substrate 1
The Si substrate 11 is brought into contact with the Si substrate 11 to dissolve and remove it. However, S which becomes a seed crystal during epitaxial growth
The temperature distribution in the Si-C-based melt 30 was set such that the temperature on the side where the growth base material 10 was disposed was the lowest so that the iC film 12 was not dissolved in the Si-C-based melt 30.

【0044】次に、Si−C系融液30の温度が160
0℃以上の所定の温度(1700℃)まで到達し、か
つ、Si−C系融液30内におけるC濃度がほぼ平衡状
態となるまで十分に放置したら、Si−C系融液30内
の温度分布を成長基材10配置側が最も高温となるよう
に成長基材10側の温度を1800℃まで上昇させる。
この昇温処理により、成長基材10のSiC膜12が配
置されている付近のC濃度が未飽和状態となり、不足分
のCを補うために上記SiC膜12の一部が溶解する。
この工程で、SiC膜12におけるSi基板11との界
面付近にあった結晶性に劣るSiC膜が取り除かれる。
このとき、この後のエピタキシャル成長工程に必要十分
な厚さのSiC膜12が残留できるようにSiC膜12
の溶解時間を1時間に設定した。
Next, when the temperature of the Si—C-based melt 30 is 160
When the temperature reaches a predetermined temperature (1700 ° C.) of 0 ° C. or more and is sufficiently left until the C concentration in the Si—C-based melt 30 becomes substantially equilibrium, the temperature in the Si—C-based melt 30 is reduced. The temperature of the growth base 10 side is increased to 1800 ° C. so that the distribution is the highest on the side where the growth base 10 is disposed.
By this heating process, the C concentration in the vicinity of the growth base material 10 where the SiC film 12 is disposed becomes an unsaturated state, and a part of the SiC film 12 is dissolved to compensate for the insufficient C.
In this step, the SiC film having poor crystallinity near the interface with the Si substrate 11 in the SiC film 12 is removed.
At this time, the SiC film 12 is formed so that the SiC film 12 having a thickness necessary and sufficient for the subsequent epitaxial growth process can remain.
Was set to 1 hour.

【0045】これ等処理により結晶性に劣るSiC膜を
取り除いた後、上記成長基材10側の温度を降下させて
Si−C系融液30内において成長基材10配置側が最
も低温となる1650℃に設定してSi−C系融液30
内の温度分布を変更した。
After removing the SiC film having poor crystallinity by these treatments, the temperature on the growth substrate 10 side is lowered, and the temperature on the side where the growth substrate 10 is disposed becomes lowest 1650 in the Si—C-based melt 30. ° C and set the Si-C-based melt 30
The temperature distribution inside was changed.

【0046】この操作によって、Si−C系融液30内
の温度分布は、成長基材10配置側が最も低温に、Cの
供給源であるグラファイト32側が高温となり、温度差
法により成長基材10のSiC膜12上にエピタキシャ
ル成長が起こり、SiC結晶を得ることができた。
By this operation, the temperature distribution in the Si—C-based melt 30 becomes lowest on the side where the growth base material 10 is disposed, and becomes high on the graphite 32 side which is a supply source of C. The epitaxial growth occurred on the SiC film 12 of Example 1 and a SiC crystal was obtained.

【0047】[実施例2]まず、内壁をBNでコートし
たグラファイト製の成長容器20内の上方側に、図2
(A)に示すようにSi基板11とSiC膜12から成
る成長基材10をそのSi基板11側が露出するように
配置し、かつ、成長容器20内の下方側にSi多結晶体
31とグラファイト32をそれぞれ配置した。
[Example 2] First, FIG. 2 shows the upper side of a growth vessel 20 made of graphite whose inner wall was coated with BN.
As shown in FIG. 1A, a growth substrate 10 composed of a Si substrate 11 and a SiC film 12 is disposed so that the Si substrate 11 side is exposed, and a Si polycrystalline body 31 and a graphite are provided below a growth container 20. 32 were arranged respectively.

【0048】次に、成長容器20内を、Arガス雰囲気
中で高周波誘導加熱法によりSi単体の融点(1414
℃)以上の温度(1500℃)に加熱して図2(B)に
示すようにSi−C系融液30を得ると共に、成長基材
10のSi基板11を融解除去してSiC膜12を露出
させた。
Next, the melting point of the simple Si (1414) is set in the growth vessel 20 by high frequency induction heating in an Ar gas atmosphere.
2C) to obtain a Si—C-based melt 30 as shown in FIG. 2B, and to melt and remove the Si substrate 11 of the growth base material 10 to form the SiC film 12. Exposed.

【0049】次に、Si−C系融液30の温度が160
0℃以上の所定の温度(1700℃)まで到達し、か
つ、Si−C系融液30内におけるC濃度がほぼ平衡状
態となるまで十分に放置したら、図2(C)に示すよう
に成長容器20の上下を反転させ、Si−C系融液30
と成長基材10のSiC膜12とを接触させると共に、
Si−C系融液30内の温度分布を成長基材10配置側
が最も高温となるように成長基材10側の温度を180
0℃まで上昇させる。この昇温処理により、成長基材1
0のSiC膜12が配置されている付近のC濃度が未飽
和状態となり、不足分のCを補うために上記SiC膜1
2の一部が溶解する。この工程で、SiC膜12におけ
るSi基板11との界面付近にあった結晶性に劣るSi
C膜が取り除かれる。このとき、この後のエピタキシャ
ル成長工程に必要十分な厚さのSiC膜12が残留でき
るようにSiC膜12の溶解時間を1時間に設定した。
Next, when the temperature of the Si—C-based melt 30 is 160
When the temperature reaches a predetermined temperature (1700 ° C.) of 0 ° C. or higher and is sufficiently left until the C concentration in the Si—C-based melt 30 is substantially in an equilibrium state, the growth as shown in FIG. The container 20 is turned upside down, and the Si-C-based melt 30
And the SiC film 12 of the growth substrate 10
The temperature distribution on the growth substrate 10 side is set to 180 so that the temperature distribution in the Si-C-based melt 30 is the highest on the side where the growth substrate 10 is disposed.
Raise to 0 ° C. By this heating process, the growth substrate 1
The C concentration near the position where the zero SiC film 12 is disposed is in an unsaturated state.
Part of 2 dissolves. In this step, the SiC film 12 having poor crystallinity near the interface with the Si substrate 11 was formed.
The C film is removed. At this time, the dissolution time of the SiC film 12 was set to one hour so that the SiC film 12 having a sufficient and necessary thickness in the subsequent epitaxial growth step could remain.

【0050】これ等処理により結晶性に劣るSiC膜を
取り除いた後、上記成長基材10側の温度を降下させて
Si−C系融液30内において成長基材10配置側が最
も低温となる1650℃に設定してSi−C系融液30
内の温度分布を変更した。
After removing the SiC film having poor crystallinity by these treatments, the temperature on the growth base 10 side is lowered, and the temperature on the growth base 10 arrangement side becomes the lowest in the Si—C-based melt 30 1650. ° C and set the Si-C-based melt 30
The temperature distribution inside was changed.

【0051】この操作によって、Si−C系融液30内
の温度分布は、成長基材10配置側が最も低温に、Cの
供給源であるグラファイト32側が高温となり、温度差
法により成長基材10のSiC膜12上にエピタキシャ
ル成長が起こり、SiC結晶を得ることができた。
By this operation, the temperature distribution in the Si—C-based melt 30 is lowest on the side where the growth substrate 10 is disposed, and high on the graphite 32 side which is a C supply source. The epitaxial growth occurred on the SiC film 12 of Example 1 and a SiC crystal was obtained.

【0052】[0052]

【発明の効果】請求項1〜4記載の発明に係るSiC結
晶の液相エピタキシャル成長方法によれば、Si−Cの
2成分系状態図で示される包晶点と共晶点間の組成を有
するSi−C系融液を原料融液とし、SiC膜が形成さ
れたSi基板をSiC結晶の成長基材にすると共に、成
長容器内においてSi基板とこれに隣接した結晶性に劣
るSiC膜の一部を融解若しくは溶解除去して得られた
結晶性良好なSiC膜を種結晶としこのSiC膜上にS
iC結晶をエピタキシャル成長させているため、従来よ
り大型で、かつ、マイクロパイプ等の結晶欠陥が少ない
SiC結晶を簡便に得ることが可能となる。
According to the liquid phase epitaxial growth method for SiC crystals according to the first to fourth aspects of the present invention, the composition has a composition between the peritectic point and the eutectic point shown in the binary phase diagram of Si-C. The Si-C-based melt is used as a raw material melt, the Si substrate on which the SiC film is formed is used as a growth base material for the SiC crystal, and a Si substrate and a SiC film adjacent to the Si substrate having poor crystallinity are formed in the growth container. The SiC film having good crystallinity obtained by melting or dissolving and removing the portion is used as a seed crystal to form S on the SiC film.
Since the iC crystal is grown epitaxially, it is possible to easily obtain a SiC crystal which is larger than the conventional one and has few crystal defects such as micropipes.

【0053】また、Si基板が除去された結晶性良好な
SiC膜を種結晶としているため、Si−C系融液の成
長温度をSiの融点より高い1600℃以上に設定でき
ることから、電子デバイス用材料として必要とされてい
る4H(六方晶系)あるいは6H(六方晶系)の周期を
持つポリタイプのSiC結晶を簡便かつ確実に得ること
が可能となる。
Further, since the SiC film having good crystallinity from which the Si substrate has been removed is used as a seed crystal, the growth temperature of the Si—C-based melt can be set to 1600 ° C. or higher, which is higher than the melting point of Si. A polytype SiC crystal having a period of 4H (hexagonal) or 6H (hexagonal) required as a material can be easily and reliably obtained.

【0054】更に、成長原料としてSiC粉末を用いて
いないため上述した改良型レイリー法(昇華法)で得ら
れたSiC結晶よりも残留不純物濃度の低いSiC結晶
を得ることができ、かつ、その成長速度も、成長温度や
Si−C系融液内の温度勾配等に依存するが、数百μm
/hr.以上とSi基板を用いた上述の気相成長法の百
倍以上であり、高速でかつ再現性よくSiC結晶を得る
ことが可能となる。
Further, since no SiC powder is used as a growth material, it is possible to obtain a SiC crystal having a lower residual impurity concentration than the SiC crystal obtained by the above-mentioned improved Rayleigh method (sublimation method), and to grow the same. The speed also depends on the growth temperature, the temperature gradient in the Si-C-based melt, and the like.
/ Hr. The above is one hundred times or more of the above-mentioned vapor phase growth method using a Si substrate, and it is possible to obtain a SiC crystal at high speed and with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(A)〜(C)は実施例1に係る液相エピ
タキシャル成長方法の工程を示す説明図。
FIGS. 1A to 1C are explanatory views showing steps of a liquid phase epitaxial growth method according to a first embodiment.

【図2】図2(A)〜(C)は実施例2に係る液相エピ
タキシャル成長方法の工程を示す説明図。
FIGS. 2A to 2C are explanatory views showing steps of a liquid phase epitaxial growth method according to a second embodiment.

【図3】Si−Cの2成分系状態図。FIG. 3 is a diagram of a two-component system of Si—C.

【図4】図4(A)(B)は従来の改良型レイリー法
(昇華法)の工程説明図。
4 (A) and 4 (B) are process explanatory views of a conventional improved Rayleigh method (sublimation method).

【符号の説明】[Explanation of symbols]

10 成長基材 11 Si基板 12 SiC膜 20 成長容器 30 Si−C系融液 31 Si多結晶体 32 グラファイト DESCRIPTION OF SYMBOLS 10 Growth base material 11 Si substrate 12 SiC film 20 Growth container 30 Si-C-based melt 31 Si polycrystal 32 Graphite

フロントページの続き Fターム(参考) 4G077 AA03 BE08 CG03 CG07 EA01 EC08 ED04 ED06 EE04 QA06 QA12 QA26 QA38 QA73 5F053 AA03 AA32 AA33 BB04 BB05 BB08 BB09 BB15 DD02 FF01 GG01 HH01 HH04 LL10 PP01 PP02 PP04 RR05 RR20 Continued on the front page F term (reference) 4G077 AA03 BE08 CG03 CG07 EA01 EC08 ED04 ED06 EE04 QA06 QA12 QA26 QA38 QA73 5F053 AA03 AA32 AA33 BB04 BB05 BB08 BB09 BB15 DD02 FF01 GG01 HH01 PP01 PP02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】SiC結晶の液相エピタキシャル成長方法
において、 Si−Cの2成分系状態図で示される包晶点と共晶点間
の組成を有するSi−C系融液を原料融液とし、SiC
膜が形成されたSi基板をSiC結晶の成長基材にする
と共に、成長容器内において成長基材の上記Si基板側
と原料融液を接触させてSi基板とこれに隣接する結晶
性に劣るSiC膜の一部を溶解除去させた後、残留する
SiC膜上にSiC結晶をエピタキシャル成長させるこ
とを特徴とするSiC結晶の液相エピタキシャル成長方
法。
1. A liquid phase epitaxial growth method for a SiC crystal, comprising: a Si—C-based melt having a composition between a peritectic point and a eutectic point shown in a Si—C binary phase diagram as a raw material melt; SiC
The Si substrate on which the film is formed is used as a SiC crystal growth base material, and the raw material melt is brought into contact with the Si substrate side of the growth base material in a growth vessel to form a Si substrate and an adjacent SiC crystal having poor crystallinity. A liquid phase epitaxial growth method for a SiC crystal, wherein a SiC crystal is epitaxially grown on a remaining SiC film after dissolving and removing a part of the film.
【請求項2】成長容器内の上方側にSi基板側が露出す
るように成長基材を配置しかつ成長容器内の下方側にS
i原料とグラファイトを配置する工程と、 成長容器内をSiの融点以上に加熱してSi−C系融液
を得た後、成長容器の上下を反転させてSi−C系融液
と成長基材のSi基板とを接触させると共に、Si−C
系融液内の温度分布を成長基材配置側が最も低温となる
ように設定して成長基材のSi基板を溶解除去する工程
と、 上記Si−C系融液の温度が所定の温度(1600℃以
上)まで到達し、かつ、Si−C系融液内におけるC濃
度が平衡状態に達した後、Si−C系融液内の温度分布
を成長基材配置側が最も高温となるように設定して成長
基材の結晶性に劣るSiC膜の一部を溶解除去する工程
と、 結晶性に劣るSiC膜の一部を溶解除去した後、上記成
長基材側温度を降下させてSi−C系融液内において成
長基材配置側が最も低温となるようにSi−C系融液内
の温度分布を変更し、残留するSiC膜上にSiC結晶
をエピタキシャル成長させる工程、の各工程を具備する
ことを特徴とする請求項1記載のSiC結晶の液相エピ
タキシャル成長方法。
2. A growth base is arranged so that the Si substrate side is exposed in the upper part of the growth vessel, and S is located in the lower part of the growth vessel.
i) a step of arranging the raw material and graphite; and heating the inside of the growth vessel to a temperature equal to or higher than the melting point of Si to obtain a Si-C-based melt. Contact with the Si substrate
Dissolving and removing the Si substrate of the growth base material by setting the temperature distribution in the system melt to be the lowest on the growth base arrangement side; and setting the temperature of the Si—C base melt to a predetermined temperature (1600). ℃ or more), and after the C concentration in the Si-C-based melt reaches an equilibrium state, the temperature distribution in the Si-C-based melt is set so that the growth substrate arrangement side has the highest temperature. Dissolving and removing a part of the SiC film having poor crystallinity by dissolving and removing a part of the SiC film having poor crystallinity; A step of changing the temperature distribution in the Si-C-based melt so that the growth substrate arrangement side becomes the lowest temperature in the system-based melt and epitaxially growing a SiC crystal on the remaining SiC film. The liquid phase epitaxy of a SiC crystal according to claim 1, Le growth method.
【請求項3】SiC結晶の液相エピタキシャル成長方法
において、 Si−Cの2成分系状態図で示される包晶点と共晶点間
の組成を有するSi−C系融液を原料融液とし、SiC
膜が形成されたSi基板をSiC結晶の成長基材にする
と共に、成長容器内において成長基材の上記Si基板を
融解除去してSiC膜を露出させた後、成長基材の上記
SiC膜と原料融液を接触させて結晶性に劣るSiC膜
の一部を溶解除去し、かつ、残留するSiC膜上にSi
C結晶をエピタキシャル成長させることを特徴とするS
iC結晶の液相エピタキシャル成長方法。
3. A liquid phase epitaxial growth method for SiC crystals, wherein a Si-C-based melt having a composition between a peritectic point and a eutectic point shown in a Si-C binary phase diagram is used as a raw material melt; SiC
The Si substrate on which the film is formed is used as a growth substrate for SiC crystals, and the SiC film as the growth substrate is melted and removed in a growth vessel to expose the SiC film. The raw material melt is brought into contact to dissolve and remove a part of the SiC film having poor crystallinity, and to remove Si on the remaining SiC film.
S characterized by epitaxially growing a C crystal
Liquid phase epitaxial growth method of iC crystal.
【請求項4】成長容器内の上方側にSi基板側が露出す
るように成長基材を配置しかつ成長容器内の下方側にS
i原料とグラファイトを配置する工程と、 成長容器内をSiの融点以上に加熱し成長基材のSi基
板を融解除去してSiC膜を露出させると共にSi−C
系融液を得る工程と、 上記Si−C系融液の温度が所定の温度(1600℃以
上)まで到達し、かつ、Si−C系融液内におけるC濃
度が平衡状態に達した後、成長容器の上下を反転させて
Si−C系融液と成長基材のSiC膜とを接触させると
共に、Si−C系融液内の温度分布を成長基材配置側が
最も高温となるように設定して結晶性に劣る上記SiC
膜の一部を溶解除去する工程と、 結晶性に劣るSiC膜の一部を溶解除去した後、上記成
長基材側温度を降下させてSi−C系融液内において成
長基材配置側が最も低温となるようにSi−C系融液内
の温度分布を変更し、残留するSiC膜上にSiC結晶
をエピタキシャル成長させる工程、の各工程を具備する
ことを特徴とする請求項3記載のSiC結晶の液相エピ
タキシャル成長方法。
4. A growth base is arranged so that the Si substrate side is exposed above the growth vessel, and S is located below the growth vessel.
i) a step of arranging the raw material and graphite, and heating the inside of the growth vessel to a temperature equal to or higher than the melting point of Si to melt and remove the Si substrate as the growth base material, thereby exposing the SiC film and Si-C
A step of obtaining a system melt, after the temperature of the Si—C system melt reaches a predetermined temperature (1600 ° C. or higher) and the C concentration in the Si—C system melt reaches an equilibrium state, The growth vessel is turned upside down to bring the Si-C-based melt into contact with the SiC film of the growth substrate, and the temperature distribution in the Si-C-based melt is set so that the growth substrate-located side has the highest temperature. SiC with poor crystallinity
A step of dissolving and removing a part of the film; and a step of dissolving and removing a part of the SiC film inferior in crystallinity. 4. The SiC crystal according to claim 3, further comprising a step of changing a temperature distribution in the Si-C-based melt so as to be a low temperature and epitaxially growing a SiC crystal on the remaining SiC film. Liquid phase epitaxial growth method.
JP33850798A 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal Expired - Lifetime JP3719341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33850798A JP3719341B2 (en) 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33850798A JP3719341B2 (en) 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal

Publications (2)

Publication Number Publication Date
JP2000154097A true JP2000154097A (en) 2000-06-06
JP3719341B2 JP3719341B2 (en) 2005-11-24

Family

ID=18318816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33850798A Expired - Lifetime JP3719341B2 (en) 1998-11-12 1998-11-12 Liquid phase epitaxial growth method of SiC crystal

Country Status (1)

Country Link
JP (1) JP3719341B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471981A1 (en) * 2009-08-27 2012-07-04 Sumitomo Metal Industries, Ltd. Sic single crystal wafer and process for production thereof
JP2013056806A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP2015086122A (en) * 2013-11-01 2015-05-07 株式会社豊田自動織機 Production method of compound semiconductor
CN108474139A (en) * 2015-12-28 2018-08-31 东洋炭素株式会社 The manufacturing method and accepting container of monocrystalline silicon carbide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471981A1 (en) * 2009-08-27 2012-07-04 Sumitomo Metal Industries, Ltd. Sic single crystal wafer and process for production thereof
EP2471981A4 (en) * 2009-08-27 2013-04-17 Nippon Steel & Sumitomo Metal Corp Sic single crystal wafer and process for production thereof
US9222198B2 (en) 2009-08-27 2015-12-29 Nippon Steel & Sumitomo Metal Corporation SiC single crystal wafer and process for production thereof
JP2013056806A (en) * 2011-09-08 2013-03-28 National Institute Of Advanced Industrial Science & Technology METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP2015086122A (en) * 2013-11-01 2015-05-07 株式会社豊田自動織機 Production method of compound semiconductor
CN108474139A (en) * 2015-12-28 2018-08-31 东洋炭素株式会社 The manufacturing method and accepting container of monocrystalline silicon carbide
EP3399075A4 (en) * 2015-12-28 2019-08-28 Toyo Tanso Co., Ltd. METHOD FOR MANUFACTURING SINGLE-CRYSTAL SiC, AND HOUSING CONTAINER

Also Published As

Publication number Publication date
JP3719341B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
KR100855655B1 (en) Seed and seedholder combinations for high quality growth of large silicon carbide single crystals
JP5483216B2 (en) SiC single crystal and method for producing the same
EP1895031A1 (en) Process for producing silicon carbide single crystal
JP2000264790A (en) Production of silicon carbide single crystal
EP2940196B1 (en) Method for producing n-type sic single crystal
US20050183657A1 (en) Silicon carbide single crystal and a method for its production
US20180230623A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JPS5948792B2 (en) Silicon carbide crystal growth method
JP4253974B2 (en) SiC single crystal and growth method thereof
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
JPH09263497A (en) Production of silicon carbide single crystal
JP3719341B2 (en) Liquid phase epitaxial growth method of SiC crystal
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
JP4304783B2 (en) SiC single crystal and growth method thereof
JPH09221397A (en) Production of silicon carbide single crystal
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
EP3072995A1 (en) Method for producing silicon carbide crystals from vapour phase
JP3752868B2 (en) Liquid phase epitaxial growth method of SiC crystal
JPH11106297A (en) Growth of silicon carbide single crystal having low resistance
JPH10182297A (en) Method for growing sic single crystal
JP2000302599A (en) Epitaxial growth method of silicon carbide
JP4184622B2 (en) Method for producing silicon carbide single crystal ingot
JP2004203721A (en) Apparatus and method for growing single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP3806793B2 (en) Method for producing compound semiconductor single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

EXPY Cancellation because of completion of term