JP2000151458A - Electromagnetic induction type transponder system - Google Patents

Electromagnetic induction type transponder system

Info

Publication number
JP2000151458A
JP2000151458A JP10349246A JP34924698A JP2000151458A JP 2000151458 A JP2000151458 A JP 2000151458A JP 10349246 A JP10349246 A JP 10349246A JP 34924698 A JP34924698 A JP 34924698A JP 2000151458 A JP2000151458 A JP 2000151458A
Authority
JP
Japan
Prior art keywords
transmission
frequency
transmitted
information
transponder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10349246A
Other languages
Japanese (ja)
Inventor
Hirobumi Uchida
博文 内田
Katsuhiro Kameda
勝裕 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JHC Osaka Corp
Original Assignee
JHC Osaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JHC Osaka Corp filed Critical JHC Osaka Corp
Priority to JP10349246A priority Critical patent/JP2000151458A/en
Publication of JP2000151458A publication Critical patent/JP2000151458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To embody high reliability, stability and wide-range transmission distance with low cost by constituting a system of a transponder having a modulation part modulating information to be transmitted and a memory part processing two pieces of received information and information to be transmitted and writing/reading information. SOLUTION: The transmission part (a) of an installation-type transmission/ reception device connected to a computer has two independent transmission devices. A first transmission frequency and a second transmission frequency from the first transmission device and the second transmission device are always and simultaneously transmitted. The antenna part and the reception part (b) of the transponder incorporate three types of independent magnetic field antennas and one type of resonation circuit. Magnetic field power components which are induced by the antenna are branched into three. One branched component becomes the driving power of an inner circuit. The next branched component is demodulated by detection circuits and two pieces of demodulated information are suitably processed in a memory part writing/reading information.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業状の利用分野】本発明は、無線伝送方式の一形態
である電磁誘導型トランスポンダ方式に係わり、物体や
人物の識別及び情報の蓄積/読み出し等を非接触で行い
得る非接触カードその他の無線に拠る自動送受信装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction type transponder system which is one form of a wireless transmission system, and relates to a non-contact card or the like which can identify an object or a person and store / read information without contact. The present invention relates to a wireless automatic transmission / reception device.

【0002】[0002]

【従来技術】今日までに使用されている電磁誘導型トラ
ンスポンダ方式では、設置型送受信装置は一波の送信周
波数のみを送出し、それに伝送すべき情報が乗せられ
る。この時のトランスポンダの動作は、まず最初に一定
時間無変調状態の信号を受信し、内部回路が動作可能な
電力をこの受信磁界電力より生成、蓄積する。次に、伝
送された情報を受信しこれを処理する。
2. Description of the Related Art In an electromagnetic induction type transponder system used up to now, a stationary transmitter / receiver transmits only one transmission frequency and carries information to be transmitted. In the operation of the transponder at this time, first, a signal in a non-modulated state is received for a certain period of time, and power operable by an internal circuit is generated and accumulated from the received magnetic field power. Next, the transmitted information is received and processed.

【0003】更に、搬送波を生成してこれに伝送すべき
情報を乗せて送出する。この過程で、搬送波の生成及び
搬送波電力の供給は、予め蓄積された電力を使用する
為、伝送速度を早めて、電力の消耗を押さえると共に、
自らその送信電力に制限を受ける。結果として、従来の
方式では以下の不都合を有する。
[0003] Further, a carrier wave is generated and transmitted with information to be transmitted. In this process, the generation of the carrier wave and the supply of the carrier wave power use the power stored in advance, so that the transmission speed is increased and the power consumption is suppressed.
The transmission power is limited by itself. As a result, the conventional method has the following disadvantages.

【0004】(イ)電力蓄積の為に必要十分な無変調送
出時間が必要であり、総合的な送信時間が長い。 (ロ)蓄積電力上の制約の為、伝送すべき情報を短時間
で送出しなければならない結果、伝送情報の信頼性が低
下する。 (ハ)送信周波数及び送信電力を蓄積電力から供給しな
ければならず、大きな送信電力が得られない結果、通達
距離が短い。
(A) A non-modulation transmission time necessary and sufficient for power storage is required, and a total transmission time is long. (B) Due to restrictions on stored power, information to be transmitted must be sent in a short time, resulting in reduced reliability of the transmitted information. (C) The transmission frequency and transmission power must be supplied from the stored power, and a large transmission power cannot be obtained. As a result, the communication distance is short.

【0005】[0005]

【発明が解決しようとする課題】従来の方式が必然的に
有する、設置型送受信装置からの長い送信時間、トラン
スポンダからの送信周波数の不安定性及び高速伝送速度
に起因する伝送情報の信頼性低下、並びに微少送信電力
に拠る通達距離の短少等の不都合が有る。更にその方式
上、トランスポンダの価格が高価にならざるを得ない。
本発明はこれら従来の方式に比して高信頼、高安定、低
価格並びにより広範囲な伝送距離を提供し得るものであ
る。
SUMMARY OF THE INVENTION The conventional system inevitably has a long transmission time from the stationary transmitter / receiver, instability of the transmission frequency from the transponder, and a decrease in the reliability of transmission information due to a high transmission speed. In addition, there are inconveniences such as a short communication distance due to a very small transmission power. Further, due to the method, the price of the transponder must be high.
The present invention can provide high reliability, high stability, low cost, and a wider transmission distance than these conventional systems.

【0006】[0006]

【課題を解決するための手段】本発明は、回路の簡略化
を行う為の開発に端を発し、従来方式が有する上記問題
点を根本的に改善し得る方式を提供するものである。し
かして本当該方式が、従来方式と基本的に異なる点は、
設置型送受信装置からの送信周波数を一つではなく二つ
としたことである。これに拠り、従来方式では実現し得
なかった種々の性能改善を一挙に解決することが出来
る。更に、新たな方式に拠りトランスポンダの内部構造
を簡略化することが可能となり、結果として総合的な低
価格化をも実現できるものである。
SUMMARY OF THE INVENTION The present invention originates from the development for simplifying the circuit and provides a system which can fundamentally improve the above-mentioned problems of the conventional system. The difference between this method and the conventional method is that
That is, the transmission frequency from the stationary transmission / reception device is not one but two. Based on this, various performance improvements that could not be realized by the conventional method can be solved at once. Further, it is possible to simplify the internal structure of the transponder according to the new method, and as a result, it is possible to realize a comprehensive cost reduction.

【0007】本方式の動作原理を説明する。 (イ)設置型送受信装置の送信部は、以下の様に動作す
る。 コンピュータと接続された設置型送受信装置の送信部
は、独立した二つの送信装置を有する。
The principle of operation of the present system will be described. (B) The transmitting section of the stationary transmitting / receiving apparatus operates as follows. The transmission unit of the stationary transmission / reception device connected to the computer has two independent transmission devices.

【0008】第一の送信装置からは、尖頭値電力10W
から尖頭値電力0.5Wまで可変可能な、LF帯周波数
である132.0KHzの電磁波が発生される。第二の
送信装置からは、尖頭値電力10Wから尖頭値電力0.
5Wまで可変可能な、LF帯周波数である196.0K
Hzの電磁波が発生される。
[0008] From the first transmitter, a peak power of 10 W
And an electromagnetic wave of 132.0 KHz, which is an LF band frequency, which can be varied from the peak power to 0.5 W of peak power. From the second transmitting device, the peak power of 10 W to the peak power of 0.
196.0K which is LF band frequency that can be changed up to 5W
Hz electromagnetic waves are generated.

【0009】第一送信周波数である132.0KHz
は、高安定な水晶発振器で発振された12.926MH
zを33分周及び2分周することで生成される。なお、
一挙に66分周しない理由は、最終分周器で2分周する
ことで正確なデューティー比50%を得る為である。同
様に、第二送信周波数である196.0KHzは、1
2.926MHzを49分周及び2分周することで生成
される。
The first transmission frequency of 132.0 KHz
Is 12.926 MH oscillated by a highly stable crystal oscillator
It is generated by dividing z by two and dividing by two. In addition,
The reason why the frequency division is not performed at once is to obtain an accurate duty ratio of 50% by dividing the frequency by 2 in the final frequency divider. Similarly, the second transmission frequency of 196.0 kHz is 1
It is generated by dividing 2.926 MHz by 49 and 2.

【0010】第一送信周波数及び第二送信周波数は、常
に同時に送信される。また、送信タイミング及び伝送す
べき情報の変調は、全て接続されたコンピュータに依り
放射される。
[0010] The first transmission frequency and the second transmission frequency are always transmitted simultaneously. The transmission timing and the modulation of the information to be transmitted are all radiated by the connected computer.

【0011】生成された第一送信周波数及び第二送信周
波数の成分は、各々独立した磁界型空中線で同時に自由
空間に放射される。
The generated first transmission frequency and second transmission frequency components are simultaneously radiated to free space by independent magnetic field type antennas.

【0012】(ロ)トランスポンダの空中線部及び受信
部は、以下の様に動作する。 トランスポンダは三種の独立した磁界型空中線及び一種
の共振回路を内蔵する。三種の磁界型空中線は夫々13
2.0KHz、196.0KHz、328.0KHzに
共振し、一種の共振回路は64.0KHzに共振してい
る。
(B) The antenna unit and the receiving unit of the transponder operate as follows. The transponder contains three kinds of independent magnetic field type antennas and a kind of resonance circuit. The three magnetic field antennas are 13
It resonates at 2.0 KHz, 196.0 KHz, 328.0 KHz, and a kind of resonance circuit resonates at 64.0 KHz.

【0013】いま、132.0KHzと196.0KH
zが各々の共振空中線に受信されると、これら空中線に
誘起された、磁界電力成分は三分岐される。分岐された
成分の一つは、各々の整流回路に拠り直流電力に変換さ
れ、内部回路の駆動電力と成る。故に、本方式では電力
蓄積の為の設置型送受信装置からの無変調送出時間はほ
とんど必要とせず、結果的に通信時間の短縮が図れる。
Now, 132.0 KHz and 196.0 KH
When z is received by each of the resonant antennas, the magnetic field power components induced in these antennas are branched into three. One of the branched components is converted into DC power by each rectifier circuit and becomes drive power for an internal circuit. Therefore, in this method, almost no non-modulation transmission time from the stationary transmission / reception device for power storage is required, and as a result, the communication time can be reduced.

【0014】分岐された成分の次の一つは、各々の検波
回路に拠り各々復調される。この復調された二つの情報
は、書込み/読み出し等を行うメモリー部で適宜処理さ
れる。
The next one of the branched components is demodulated by each detection circuit. The two pieces of demodulated information are appropriately processed in a memory unit that performs writing / reading.

【0015】分岐された成分の最後の一つは、受動非直
線素子に依り、和の成分である328.0KHzと、差
の成分である64.0KHzとが生成される。この和の
成分である328.0KHzは、送信信号として変調を
受けた後、そのまま328.0KHzに共振された送信
用磁界型空中線に導かれ、自由空間に放射される。この
過程に於て、放射される328.0KHzの周波数安定
度と放射電力は、設置型送受信装置より送信された二周
波数のそれに完全に依存する。
The last one of the branched components is generated by the passive non-linear element, which generates 328.0 KHz as a sum component and 64.0 KHz as a difference component. 328.0 KHz, which is a component of this sum, is modulated as a transmission signal, then guided as it is to a transmission magnetic field type antenna resonated at 328.0 KHz, and radiated to free space. In this process, the radiated power of 328.0 KHz and the radiated power are completely dependent on the two frequencies transmitted from the stationary transceiver.

【0016】即ち、送信周波数の放射電力は、二受信電
力に比例する。差の成分である64.0KHzは、6
4.0KHz共振回路に導かれた後、n段の分周器で分
周され、メモリー部の書込み/読み出し時のクロックと
して使用される。なお、32とすると2KHzクロック
を得ることとなるが、このn値は通信プロトコル上、適
宜に選択することが出来る。
That is, the radiated power at the transmission frequency is proportional to the two received powers. The difference component of 64.0 KHz is 6
After being guided to the 4.0 KHz resonance circuit, the frequency is divided by an n-stage frequency divider and used as a clock at the time of writing / reading of the memory unit. If 32, a 2 KHz clock is obtained, but this n value can be appropriately selected according to the communication protocol.

【0017】(ハ)設置型送受信装置の受信部は、以下
の様に動作する。 トランスポンダより送出された、328.0KHzの情
報を含む信号は、328.0KHzに共振した受信用磁
界型空中線に誘起され、強力な成分である132.0K
Hz及び196.0KHzを特定帯域減衰器で取り除く
と共に、必要な帯域制限器で不要な成分を減衰させた
後、復調に必要な振幅まで増幅する。この過程に於て受
信電界強度の検出を行い、正常な伝送状態かどうかの判
断を行う。
(C) The receiving section of the stationary transmission / reception apparatus operates as follows. The signal containing information of 328.0 KHz transmitted from the transponder is induced in the receiving magnetic field type antenna resonating at 328.0 KHz and has a strong component of 132.0 KHz.
Hz and 196.0 KHz are removed by a specific band attenuator, and unnecessary components are attenuated by a necessary band limiter, and then amplified to an amplitude required for demodulation. In this process, the reception electric field strength is detected, and it is determined whether or not the transmission state is normal.

【0018】また、送信周波数生成に使用した信号か
ら、トランスポンダと同様に64.0KHz成分を生
成、n分周して読み出しクロックとする。このクロック
は、トランスポンダ内のクロックと一致している為、高
信頼で受信情報の復調を行う事が可能となる。
Also, a 64.0 KHz component is generated from the signal used for generating the transmission frequency, similarly to the transponder, and divided by n to obtain a read clock. Since this clock matches the clock in the transponder, it is possible to demodulate the received information with high reliability.

【0019】上記作用の説明の如く、全てに於てトラン
スポンダは設置型送受信装置の送信周波数並びにその送
出電力に従属する為、高信頼名情報の交換が可能とな
る。
As described above, in all cases, the transponder depends on the transmission frequency of the stationary transmission / reception device and the transmission power thereof, so that it is possible to exchange highly reliable name information.

【0020】[0020]

【実施例】ここでは繁雑さを回避するため、単に一つの
実施例の説明にとどめるが、本発明は前出作用で説明し
た通り、当該動作原理を用いれば、その実施方法は極め
て多岐に渡って存在することは言を待たない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, in order to avoid complexity, only one embodiment will be described. However, as described in the foregoing operation, if the operation principle is used, there are a wide variety of implementation methods. There is no wait for words to exist.

【0018】本発明の動作原理に基づき、その一例であ
る伝送すべき情報を二値のデジタル信号とし、各々の搬
送波に変調する方式をNRZ−ASK方式とした時の設
置型送受信装置のブロックダイアグラムを第1図に、ト
ランスポンダのブロックダイアグラムを第2図に示し
た。これにより本発明の技術的内容は容易に理解され
る。
Based on the operation principle of the present invention, a block diagram of an installation type transmission / reception apparatus in which information to be transmitted is a binary digital signal and the method of modulating each carrier is the NRZ-ASK method. 1 is shown in FIG. 1, and a block diagram of the transponder is shown in FIG. Thus, the technical contents of the present invention can be easily understood.

【0019】[0019]

【効果】以上のように、設置型送受信装置からの送信周
波数を一つではなく二つとしたことに拠り、従来方式で
は実現し得なかった種々の性能改善を一挙に解決するこ
とが出来、新たな方式に拠りトランスポンダの内部構造
を簡略化することが可能となり、結果として総合的な低
価格化をも実現できたのである。
[Effect] As described above, since the transmission frequency from the stationary transmission / reception device is set to two instead of one, various performance improvements that could not be realized by the conventional method can be solved at once. According to this method, the internal structure of the transponder can be simplified, and as a result, the overall cost can be reduced.

【0020】また、設置型送受信装置が二波の送信周波
数を同時に送出する電磁誘導型トランスポンダ方式によ
り、トランスポンダを初期制御する状態を2ビットで行
うことが出来ると共に、トランスポンダに電力を伝送す
る上で、単一の周波数で行う場合と比して二波の周波数
を使用することで各々の送信電力を半減することが出来
る為、他の通信に与える影響を軽減できると共に、電磁
法上の制約等を勘案した場合に有利である。
In addition, by the electromagnetic induction type transponder system in which the stationary transmitting / receiving device simultaneously transmits two transmission frequencies, the state of initial control of the transponder can be performed with 2 bits, and power can be transmitted to the transponder. By using two frequencies compared to the case of using a single frequency, each transmission power can be halved, so that the influence on other communications can be reduced and restrictions on the electromagnetic law, etc. This is advantageous when considering the above.

【0021】さらに、設置型送受信装置が二波の送信周
波数を同時に送出することで、トランスポンダ内部で生
成しなければならない送出周波数及びその電力を受動非
直線素子のみで生成でき、且つその送出周波数の安定度
及び送出電力は、受信した二波の周波数及び電力に依存
する。即ち、トランスポンダ内部には送信の為の能動回
路が不必要であり構造が簡単である。
Further, since the stationary transmission / reception device simultaneously transmits two transmission frequencies, the transmission frequency and its power that must be generated inside the transponder can be generated only by the passive nonlinear element, and the transmission frequency can be reduced. The stability and transmission power depend on the frequency and power of the two received waves. That is, an active circuit for transmission is not required inside the transponder, and the structure is simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】設置型送受信装置系統図FIG. 1 is a system diagram of an installation type transmitting / receiving apparatus.

【図2】トランスポンダ系統図FIG. 2 is a diagram of a transponder system

【符号の説明】[Explanation of symbols]

(イ) コンピュータ部 (ロ) 電源部 (ハ) 水晶発振部 (ニ) 分周部 (ホ) 変調部 (ヘ) 電力増幅部 (ト) 空中線部 (チ) 通過帯域制限部 (リ) RF増幅部 (ヌ) 自動利得制御部 (ル) 電力制御部 (ヲ) 電界強度検出部 (ソ) 電力制御部 (カ) 各種入出力部 (ヨ) 空中線部 (タ) 電力発生部 (レ) 電圧安定化部 (ソ) 受信DATA復調部 (ツ) 波形整形部 (ネ) 和/差周波数発生部 (ナ) 送信DATA変調部 (ラ) メモリー部 (ム) 分周部である。 (B) Computer (b) Power supply (c) Crystal oscillator (d) Divider (e) Modulator (f) Power amplifier (g) Antenna (h) Passband limiting (r) RF amplification Section (v) Automatic gain control section (l) Power control section (ヲ) Electric field strength detection section (so) Power control section (f) Various input / output sections (yo) Antenna section (ta) Power generation section (v) Voltage stabilization (S) Reception DATA demodulation unit (T) Waveform shaping unit (D) Sum / difference frequency generation unit (N) Transmission DATA modulation unit (A) Memory unit (M) Frequency dividing unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コンピュータで制御された、伝送すべき
情報の1を含む第一の周波数と、伝送すべき情報の2を
含む第二の周波数を、各々独立した磁界型空中線より同
時に送出する送信部と、自動送受信装置から送出された
信号を受信、復調してその伝送された情報をコンピュー
タへ送出する受信部で構成される、設置型送受信装置
と、 第一及び第二の周波数を、各々独立した磁界型空中線で
同時に受信し、一つは各受信電磁界より発生する高周波
電力を直流電力に変換して受信装置内部の能動回路に電
力を供給する電源部と、第一及び第二の周波数に乗せら
れている各々の伝送すべき情報を取り出す復調部と、受
信した第一及び第二の周波数から送信周波数として第三
の周波数を発生させる送信周波数生成部と、伝送すべき
情報を送信周波数に変調する変調部と、二つの受信した
情報及び伝送すべき情報を各々処理し、書込み/読み出
し等を行うメモリー部を有するトタンスポンダで構成さ
れることを特徴とする電磁誘導型トランスポンダ方式。
1. A transmission controlled by a computer, in which a first frequency including information 1 to be transmitted and a second frequency including information 2 to be transmitted are simultaneously transmitted from independent magnetic field type antennas. Unit, a stationary transmission / reception device comprising a reception unit for receiving and demodulating a signal transmitted from the automatic transmission / reception device and transmitting the transmitted information to a computer, and a first and a second frequency, respectively. Received simultaneously by independent magnetic field type antennas, one is a power supply unit that converts high frequency power generated from each received electromagnetic field to DC power and supplies power to an active circuit inside the receiving device, and a first and second power supply unit A demodulator for extracting each piece of information to be transmitted which is superimposed on a frequency, a transmission frequency generator for generating a third frequency as a transmission frequency from the received first and second frequencies, and transmitting information to be transmitted. frequency Inductive transponders method to a modulation unit, characterized in that respectively process the two received information and information to be transmitted is constituted by Totansuponda having a memory unit for writing / reading, etc. to be modulated.
【請求項2】 特許請求の範囲第1項において、トラン
スポンダは内部に電池等の電力源を持たず、設置型送受
信装置が送出する二波の送信周波数より電磁誘導に拠る
空間の電力伝送で電力を供給する方式で、磁界型空中線
を用い該空中線を使用するに適した周波数として、30
0KHz以下のLF帯周波数を選択することを特徴とし
た電磁誘導型トランスポンダ方式。
2. The transponder according to claim 1, wherein the transponder does not have a power source such as a battery inside, and uses a power transmission in a space based on electromagnetic induction based on two transmission frequencies transmitted by the stationary transmission / reception device. And a frequency suitable for using the antenna by using a magnetic field type antenna.
An electromagnetic induction type transponder method characterized by selecting an LF band frequency of 0 KHz or less.
【請求項3】 特許請求の範囲1および2項において、
設置型送受信装置が二波の送信周波数を同時に送出する
電磁誘導型トランスポンダ方式により、トランスポンダ
を初期制御する状態を2ビットで行うことを特徴とした
電磁誘導型トランスポンダ方式。
3. In Claims 1 and 2,
An electromagnetic induction type transponder system in which an initial state of a transponder is controlled by two bits by an electromagnetic induction type transponder system in which an installation type transmitting / receiving device transmits two transmission frequencies simultaneously.
【請求項4】 特許請求の範囲1ないし3項において、
設置型送受信装置が二波の送信周波数を同時に送出する
こと、を特徴とした電磁誘導型トランスポンダ方式。
4. The method according to claim 1, wherein:
An electromagnetic induction type transponder system, wherein a stationary transmission / reception device transmits two transmission frequencies simultaneously.
JP10349246A 1998-11-04 1998-11-04 Electromagnetic induction type transponder system Pending JP2000151458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10349246A JP2000151458A (en) 1998-11-04 1998-11-04 Electromagnetic induction type transponder system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10349246A JP2000151458A (en) 1998-11-04 1998-11-04 Electromagnetic induction type transponder system

Publications (1)

Publication Number Publication Date
JP2000151458A true JP2000151458A (en) 2000-05-30

Family

ID=18402476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10349246A Pending JP2000151458A (en) 1998-11-04 1998-11-04 Electromagnetic induction type transponder system

Country Status (1)

Country Link
JP (1) JP2000151458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285863A (en) * 2005-04-04 2006-10-19 Matsushita Electric Works Ltd Locking monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285863A (en) * 2005-04-04 2006-10-19 Matsushita Electric Works Ltd Locking monitoring device

Similar Documents

Publication Publication Date Title
US4963887A (en) Full duplex transponder system
JP4380239B2 (en) Non-contact IC card reader / writer
US8914061B2 (en) Contactless integrated circuit having NFC and UHF operating modes
JP2013519160A (en) Wireless individual identification device and method
CN1881969B (en) Direct conversion radio apparatus
US6507607B1 (en) Apparatus and method for recovering a clock signal for use in a portable data carrier
KR20080097115A (en) Radio frequency identification devices
JPH08191258A (en) Transmitter-receiver for contactless ic card system
JP2002500465A (en) Transmitter and data transmission method
WO2020052285A1 (en) Radio frequency identification circuit and contact-less ic card anti-theft device
KR20210064791A (en) Clock recovery circuit for nfc(near field communication) transceiver, nfc transceiver, and operating apparatus, operating method, and training method of network based on domain adaptation
JP2004206383A (en) Contactless ic card reader-writer
JP2000151458A (en) Electromagnetic induction type transponder system
JP2003244014A (en) Mobile terminal
JPH1032526A (en) Identification system
JP2631664B2 (en) Non-contact magnetic coupling transmission / reception method
KR20000031343A (en) Electronic induction type transponder
JP2002009660A (en) Data carrier system
JP2000307465A (en) Bpsk demodulating circuit and noncontact ic card system with the circuit
JPH0918381A (en) Rfid system
JPH11272814A (en) Radio communication system and radio information storage medium
JP2001053642A (en) Interrogator for data carrier
JPH09212602A (en) Data communication device
JPWO2004051880A1 (en) Non-contact non-power IC card system
JP2516131B2 (en) Transceiver circuit for ID card system