JP2000146984A - Continuous analyzer - Google Patents

Continuous analyzer

Info

Publication number
JP2000146984A
JP2000146984A JP10313788A JP31378898A JP2000146984A JP 2000146984 A JP2000146984 A JP 2000146984A JP 10313788 A JP10313788 A JP 10313788A JP 31378898 A JP31378898 A JP 31378898A JP 2000146984 A JP2000146984 A JP 2000146984A
Authority
JP
Japan
Prior art keywords
output
calibration
analyzer
measurement
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10313788A
Other languages
Japanese (ja)
Inventor
Shingo Sumi
心吾 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10313788A priority Critical patent/JP2000146984A/en
Publication of JP2000146984A publication Critical patent/JP2000146984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a defective measurement during the calibration, the failure or the periodic inspection of a continuous analyzer. SOLUTION: A plurality of analysis parts 1, 2 are used. Their input sides are connected respectively to a common port 6c at a flow-passage selector valve 6 and to a common port 7c at a flow-passage selector valve 7. An input port 6a and an input port 7a are connected to an introduction pipe 12. An input port 6b is connected to a flow-passage opening and shutting valve 8 in a calibration-gas flow passage, and an input port 7b is connected to a flow- passage opening and shutting valve 9 in a calibration-gas flow passage. When the output A of the analysis part 1 and the output B of the analysis part 2 are input to a computing and control part 3, the computing and control part 3 controls the outputs so as to become 0.5(A+B) while the analysis parts 1, 2 are performing a measurement normally, it controls the outputs so as to become B while the analysis part 1 stops a measurement, and it controls the outputs so as to become A while the analysis part 2 stops a measurement. Thereby, a continuous and normal output signal can be obtained even during the calibration the failure or the periodic inspection of a continuous analyzer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続的に環境大気
や煙道ガスの成分を測定する連続分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous analyzer for continuously measuring the components of ambient air and flue gas.

【0002】[0002]

【従来の技術】環境大気中または発生源における窒素酸
化物、二酸化イオウ、一酸化炭素などの有害物質の測定
を行う大気分析計は、その目的から常時連続して測定を
行う必要がある。分析計の故障時に測定が中断されるこ
とを防ぐため、従来は予備の分析計を準備しておき、使
用中の分析計が故障等で測定中断したとき、予備の分析
計の出力側に切換えることにより測定の欠測(ある期間
測定が中断されること)を最小にする方法が採られてい
た。また、環境保全技術の発達により測定したい濃度が
低くなり、低濃度をより正確に測定することが求められ
ている。
2. Description of the Related Art Atmospheric analyzers for measuring harmful substances such as nitrogen oxides, sulfur dioxide, and carbon monoxide in the ambient atmosphere or at their sources need to be continuously and continuously measured for the purpose. Conventionally, a spare analyzer is prepared in order to prevent the measurement from being interrupted when the analyzer fails, and when the analyzer in use is interrupted due to a failure or the like, switching to the output side of the spare analyzer is performed. Therefore, a method of minimizing missing measurement (interruption of measurement for a certain period) has been adopted. In addition, the concentration to be measured has been reduced due to the development of environmental protection technology, and it has been required to measure the low concentration more accurately.

【0003】[0003]

【発明が解決しようとする課題】従来の方法では、使用
中の分析計が故障した場合それを確認してから手動で予
備の分析計に切換えねばならず、また自動校正付きの分
析計では任意の周期で測定を中断するため欠測を防止で
きない。また、故障による欠測時間を短くするため、予
備の分析計やその交換部品を常備する上に、継続して監
視サービス体制を維持しなければならず、そのために大
きなコストがかかる。また、有害物質低減技術の発達に
より、分析計は、低濃度においてもより高精度な測定が
求められているが、使用中の分析計に生じるドリフト等
の特性劣化がそのまま出力されるため、高精度の測定が
できないという問題があった。
In the conventional method, if a used analyzer breaks down, it must be confirmed and then manually switched to a spare analyzer. Since the measurement is interrupted in the cycle of, missing measurement cannot be prevented. In addition, in order to shorten the missing time due to a failure, a spare analyzer and its replacement parts must be provided at all times, and a continuous monitoring service system must be maintained, resulting in a large cost. In addition, due to the development of harmful substance reduction technology, analyzers are required to measure with higher accuracy even at low concentrations.However, since characteristic deterioration such as drift that occurs in the analyzer being used is output as it is, high There was a problem that the accuracy could not be measured.

【0004】本発明は、このような事情に鑑みてなされ
たものであって、使用中の分析部の故障や校正あるいは
定期点検(以後、定検と略称する)中においても欠測を
生じない連続分析計を提供することを目的とする。
[0004] The present invention has been made in view of such circumstances, and does not cause a missing measurement even during a failure, calibration, or periodic inspection (hereinafter abbreviated as regular inspection) of an analyzing unit in use. It is intended to provide a continuous analyzer.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の連続分析計は、複数台の分析部と、独立し
て校正を行うための流路切換機構と、該流路切換機構を
介して校正用ガスを送るための校正ガスボンベ及び流路
開閉機構と、前記分析計の出力信号を取り込み、すべて
の分析部が正常測定中は加算平均を行うとともに、測定
中断中の分析部があればその出力を除いて、正常測定中
の分析部出力を出力信号とする演算制御手段と、該分析
部出力を表示及び出力するための表示出力部を備えたこ
とを特徴とする。
In order to achieve the above object, a continuous analyzer according to the present invention comprises a plurality of analyzers, a flow path switching mechanism for independently performing calibration, and a flow path switching mechanism. A calibration gas cylinder and a channel opening / closing mechanism for sending a calibration gas through the mechanism, and an output signal of the analyzer are taken in, and all analyzers perform averaging during normal measurement, and analyzers during measurement suspension. The present invention is characterized in that it is provided with arithmetic control means for using the output of the analyzer during normal measurement as an output signal except for the output of the analyzer, and a display output unit for displaying and outputting the output of the analyzer.

【0006】本発明の連続分析計は上記のように構成さ
れており、これを用いることにより、使用中の故障や校
正あるいは定検期間においても欠測のない連続分析を行
うことができる。
[0006] The continuous analyzer of the present invention is configured as described above, and by using this, it is possible to perform continuous analysis without any failures during use or during calibration or regular inspection.

【0007】[0007]

【発明の実施の形態】以下、実施例により本発明の連続
分析計を図1から図5に基づき詳細に説明する。図1は
本連続分析計の実施例の概略構成図、図2は本連続分析
計の演算制御部内の演算制御ブロック図(a)と測定モ
ード状態図(b)である。また、図3は本連続分析計の
出力特性図、図4は本連続分析計の測定手順を説明する
ためのフローチャート図、図5は校正手順の一部を示す
フローチャート図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The continuous analyzer of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a schematic configuration diagram of an embodiment of the present continuous analyzer, and FIG. 2 is a block diagram (a) of operation control in an operation controller of the continuous analyzer and a state diagram (b) of a measurement mode. 3 is an output characteristic diagram of the continuous analyzer, FIG. 4 is a flowchart for explaining a measurement procedure of the continuous analyzer, and FIG. 5 is a flowchart showing a part of a calibration procedure.

【0008】図1に示すように本連続分析計は、独立し
た分析部1と分析部2を有し、該分析部1の入力側は流
路切換弁6の共通ポート6cに、分析部2の入力側は流
路切換弁7の共通ポート7cに接続されている。また、
流路切換弁6、7の入力ポート6a、7aは試料ガス導
入管12に、入力ポート6b、7bはゼロ校正用ガスボ
ンベ10からのゼロ校正用ガス流路を開閉する流路開閉
弁8及びスパン校正用ガスボンベ11からのスパン校正
用ガス流路を開閉する流路開閉弁9に接続されている。
As shown in FIG. 1, the present continuous analyzer has an independent analyzing section 1 and an analyzing section 2, and the input side of the analyzing section 1 is connected to a common port 6 c of the flow path switching valve 6 and to the analyzing section 2. Is connected to a common port 7c of the flow path switching valve 7. Also,
The input ports 6a and 7a of the flow path switching valves 6 and 7 are connected to the sample gas introducing pipe 12, and the input ports 6b and 7b are connected to the flow path opening / closing valve 8 and the span for opening and closing the zero calibration gas flow path from the zero calibration gas cylinder 10. It is connected to a flow path opening / closing valve 9 that opens and closes a span calibration gas flow path from the calibration gas cylinder 11.

【0009】一方、分析部1の出力信号Aと分析部2の
出力信号Bは演算制御部3に入力される。この演算制御
部3はメモリ5内に書き込まれたプログラムから図2
(a)の演算制御ブロック図の演算ブロック13に示さ
れるような演算内容を取り込み、分析部1、2の出力信
号A、Bを加算平均するものである。演算ブロック13
は、分析部1、2の校正毎にゼロ、スパンの修正を行う
スケーラ13a、13b、その出力を加算をする加算器
13g、前記スケーラ13a、13bの出力と加算器1
3gとを接続するスイッチ13c〜13f及び加算結果
に0.5の係数を掛ける係数器13hから構成されてい
る。図中のTc〜Tfはスイッチ13c〜13fの接点
記号で、図2(b)に示すように分析部1、2の測定モ
ードにより、ON/OFF状態が決定される。この測定
モードにより次の(a)、(b)、(c)に示すような
演算式が選択される。(a)は分析部1、2が正常に測
定中であればTc、TfがON、Td、TeがOFF
で、演算式XはX=0.5(A+B)となる。(b)は
分析部1のみが故障や校正あるいは定検により測定中断
中でX=Bとなる。(3)は分析部2のみが(2)項と
同じく測定中断中でX=Aとなる。
On the other hand, the output signal A of the analyzer 1 and the output signal B of the analyzer 2 are input to the arithmetic and control unit 3. The arithmetic control unit 3 reads the program written in the memory 5 from FIG.
The operation contents shown in the operation block 13 of the operation control block diagram of FIG. 7A are taken in, and the output signals A and B of the analysis units 1 and 2 are added and averaged. Arithmetic block 13
Are scalers 13a and 13b for correcting zero and span each time the analyzers 1 and 2 are calibrated, an adder 13g for adding their outputs, and the outputs of the scalers 13a and 13b and the adder 1
3g and switches 13c to 13f for connecting to 3g and a coefficient unit 13h for multiplying the addition result by a coefficient of 0.5. Tc to Tf in the drawing are contact symbols of the switches 13c to 13f, and the ON / OFF state is determined by the measurement mode of the analyzers 1 and 2 as shown in FIG. According to this measurement mode, the following arithmetic expressions (a), (b), and (c) are selected. (A) indicates that Tc and Tf are ON and Td and Te are OFF when the analyzers 1 and 2 are performing normal measurement.
Thus, the arithmetic expression X is X = 0.5 (A + B). In (b), X = B only during the measurement suspension due to failure, calibration or regular inspection of the analysis unit 1 only. In the case of (3), only the analysis unit 2 becomes X = A during the suspension of the measurement as in the case of the item (2).

【0010】上記のように測定モードに応じて演算され
た演算データは表示/出力部4に送出される。この表示
/出力部4では入力データにスムージング等のディジタ
ル処理を行った後、画面表示や印字記録を行うとともに
ディジタル信号またはアナログ信号を出力する機能も備
えている。図3は本連続分析計の分析部1の出力、分析
部2の出力及び最終出力の出力特性を示したものであ
る。この場合、同程度の性能を有する分析部1、2を使
用することにより、連続した出力信号を得ることができ
る。分析部1、2の個々の誤差をeとすると、最終出力
の総合誤差は約0.7eとなり相対的に精度及び安定性
も向上する。
The calculated data calculated according to the measurement mode as described above is sent to the display / output unit 4. The display / output unit 4 has a function of performing digital processing such as smoothing on input data, then performing screen display and print recording, and outputting a digital signal or an analog signal. FIG. 3 shows output characteristics of the output of the analyzer 1, the output of the analyzer 2, and the final output of the continuous analyzer. In this case, continuous output signals can be obtained by using the analysis units 1 and 2 having the same performance. Assuming that the individual error of the analysis units 1 and 2 is e, the total error of the final output is about 0.7e, and the accuracy and stability are relatively improved.

【0011】通常、校正はメモリ5に書き込まれたプロ
グラムに基づいて自動的に行われる。図3に示されるよ
うに分析部1と分析部2の校正期間が重ならないように
設定されている。この校正期間中は演算制御部3の演算
ブロック13のスイッチ13c〜13f、流路切換弁
6、7及び流路開閉弁8、9へ制御ブロック14から制
御信号が送られる。以下、図4のフローチャートにより
測定手順を説明する。
Normally, the calibration is automatically performed based on a program written in the memory 5. As shown in FIG. 3, the calibration periods of the analyzer 1 and the analyzer 2 are set so as not to overlap. During this calibration period, a control signal is sent from the control block 14 to the switches 13c to 13f, the flow path switching valves 6, 7 and the flow path opening / closing valves 8, 9 of the operation block 13 of the operation control section 3. Hereinafter, the measurement procedure will be described with reference to the flowchart of FIG.

【0012】本連続分析計を稼動(スタート)させる
と、演算制御部3はステップ(S1)から(S6)の処
理を順次繰り返し実行する。(S1)では分析部1が故
障中かをチェックし、故障中でなければステップ(S
2)へ進み、故障中であれば分析部2の出力Bのみを出
力し、(S1)の処理を繰り返す。分析部1の故障が修
理完了し再稼動中になれば(S2)に進む。(S2)で
は分析部2が故障中かをチェックし、故障中でなければ
ステップ(S3)へ進み、故障中であれば分析部1の出
力Aのみを出力し、(S1)の処理に戻る。分析部2の
故障が修理完了し再稼動中であれば(S3)に進む。
(S3)では分析部1が校正中かをチェックし、校正中
でなければステップ(S4)へ進み、校正中であれば分
析部2の出力Bのみを出力し、(S1)の処理に戻る。
分析部1の校正が完了すれば(S4)に進む。(S4)
では分析部2が校正中かをチェックし、校正中でなけれ
ばステップ(S5)へ進み、校正中であれば分析部1の
出力Aのみを出力し(S1)の処理に戻る。分析部2の
校正が完了すれば(S5)に進む。(S5)では分析部
1が定検中かをチェックし、定検中でなければステップ
(S6)へ進み、定検中であれば分析部2の出力Bのみ
を出力し、(S1)の処理に戻る。分析部1の定検が完
了すれば(S6)に進む。(S6)では分析部2が定検
中かをチェックし、定検中でなければ分析部1、2の出
力A、Bを加算平均して出力し、(S1)の処理に戻
る。分析部2が定検中であれば分析部1の出力Aのみを
出力し(S1)の処理に戻る。分析部2の定検が完了す
れば分析部1、2の出力A、Bを加算平均して出力し
(S1)の処理に戻る。
When the continuous analyzer is operated (started), the arithmetic and control unit 3 sequentially repeats the processing of steps (S1) to (S6). In (S1), it is checked whether or not the analysis unit 1 is out of order.
Proceeding to 2), if a failure occurs, only the output B of the analysis unit 2 is output, and the processing of (S1) is repeated. If the failure of the analysis unit 1 is completed and the operation is restarting, the process proceeds to (S2). In (S2), it is checked whether or not the analysis unit 2 is out of order. If not, the process proceeds to step (S3). If it is out of order, only the output A of the analysis unit 1 is output, and the process returns to (S1). . If the failure of the analysis unit 2 has been repaired and restarted, the process proceeds to (S3).
In (S3), it is checked whether the analysis unit 1 is calibrating. If calibration is not being performed, the process proceeds to step (S4). If calibration is being performed, only the output B of the analysis unit 2 is output, and the process returns to (S1). .
When the calibration of the analyzer 1 is completed, the process proceeds to (S4). (S4)
Then, it is checked whether the analysis unit 2 is performing calibration. If calibration is not being performed, the process proceeds to step (S5). If calibration is being performed, only the output A of the analysis unit 1 is output, and the process returns to step S1. When the calibration of the analyzer 2 is completed, the process proceeds to (S5). In (S5), it is checked whether the analysis unit 1 is performing the regular inspection. If the regular inspection is not being performed, the process proceeds to step (S6). If the regular inspection is being performed, only the output B of the analysis unit 2 is output. Return to processing. When the regular inspection of the analyzer 1 is completed, the process proceeds to (S6). In (S6), it is checked whether the analysis unit 2 is performing the regular inspection. If the regular inspection is not being performed, the outputs A and B of the analysis units 1 and 2 are averaged and output, and the process returns to (S1). If the analysis unit 2 is performing the regular inspection, only the output A of the analysis unit 1 is output, and the process returns to (S1). When the regular inspection of the analyzer 2 is completed, the outputs A and B of the analyzers 1 and 2 are added and averaged and output, and the process returns to (S1).

【0013】上記における故障は、演算制御部3におい
てスケーラ13aとスケーラ13bの出力を比較器13
jで比較し、その差が一定の許容誤差内にあれば両方の
分析部は共に正常であり、その差が一定の許容値を越え
ていれば、急激な変化や大きなドリフトあるいは変化せ
ず等の予め決められた故障パターンに合致している方の
分析部が故障していると判断することができる。また、
分析部内に取り付けられている温度センサ、圧力セン
サ、流量センサなどの信号を監視して、分析部から演算
制御部3に故障信号を送信することにより、演算制御部
3で上記のような故障時の演算処理を行わせることもで
きる。
In the above-mentioned fault, the output of the scaler 13a and the output of the scaler 13b are
j, if the difference is within a certain tolerance, both analyzers are normal, and if the difference exceeds a certain tolerance, a sudden change, large drift or no change It can be determined that the analysis unit that matches the predetermined failure pattern has failed. Also,
By monitoring signals from the temperature sensor, pressure sensor, flow rate sensor, and the like attached to the analysis unit, and transmitting a failure signal from the analysis unit to the operation control unit 3, the operation control unit 3 can perform the above-described failure. May be performed.

【0014】図5は校正手順を示すフローチャートで、
予めプログラムされ前記メモリ5に記憶されている。例
えば、分析部1のゼロ校正を行う場合は、演算制御部3
の制御ブロック14からの制御信号により、流路切換弁
6の入力ポートを6b側に切換え、ついで流路開閉弁8
を開いてゼロ校正ガスを分析部1に供給する。この時の
出力に演算制御部3内のスケーラ13aの0%出力を合
わせてゼロ校正を行う。次に流路開閉弁8を閉じ、流路
切換弁6の入力ポートを6a側に切換えゼロ校正を完了
する。この間、図4のフローチャートのステップ(S
3)に校正中を知らせるディジタル信号が送られてい
る。また、分析部1のスパン校正を行う場合は演算制御
部3からの制御信号により、流路切換弁6の入力ポート
を6b側に切換え、ついで流路開閉弁9を開いてスパン
校正ガスを分析部1に供給する。この時の出力に演算制
御部3内のスケーラ13aの100%出力を合わせてス
パン校正を行う。次に流路開閉弁9を閉じ、流路切換弁
6の入力ポートを6a側に切換えスパン校正を完了す
る。分析部2の校正も流路切換弁7を用い同様の方法で
行われる。このプログラムは本連続分析計が稼働すると
同時にスタートし、図4に示した測定用フローチャート
と連動して実行される。
FIG. 5 is a flowchart showing a calibration procedure.
It is programmed in advance and stored in the memory 5. For example, when performing zero calibration of the analysis unit 1, the arithmetic control unit 3
The input port of the flow path switching valve 6 is switched to the side 6b by the control signal from the control block 14 of FIG.
Is opened to supply the zero calibration gas to the analysis unit 1. Zero output is adjusted by matching the output at this time with the 0% output of the scaler 13a in the arithmetic and control unit 3. Next, the flow path opening / closing valve 8 is closed, and the input port of the flow path switching valve 6 is switched to the side 6a to complete the zero calibration. During this time, the steps (S
In 3), a digital signal indicating that calibration is in progress is sent. When the span calibration of the analysis unit 1 is performed, the input port of the flow path switching valve 6 is switched to the side 6b by the control signal from the arithmetic control unit 3, and then the flow path opening / closing valve 9 is opened to analyze the span calibration gas. Supply to unit 1. Span calibration is performed by matching the output at this time with the 100% output of the scaler 13a in the arithmetic and control unit 3. Next, the flow path opening / closing valve 9 is closed, and the input port of the flow path switching valve 6 is switched to the side 6a to complete span calibration. The calibration of the analyzer 2 is performed in the same manner using the flow path switching valve 7. This program starts at the same time as the operation of the continuous analyzer, and is executed in conjunction with the measurement flowchart shown in FIG.

【0015】なお、本連続分析計が稼働中に校正や定検
などの開始時刻と終了時刻データを設定入力器(図示せ
ず)を用いて演算制御部3に入力すれば、予めプログラ
ムで決められた校正や定検に追加実行させることも可能
となる。
If the start time and end time data of calibration and regular inspection are input to the arithmetic and control unit 3 using a setting input device (not shown) while the continuous analyzer is in operation, it is determined in advance by a program. It is also possible to additionally execute the calibration and the regular inspection.

【0016】さらに、本発明の変形例として、演算制御
部の故障時、分析部1または2の出力を最終出力として
出力させるバイパス機構を設けてもよく、これにより信
頼性をより向上させることができる。
Further, as a modified example of the present invention, a bypass mechanism for outputting the output of the analysis unit 1 or 2 as the final output when the operation control unit fails may be provided, thereby further improving the reliability. it can.

【0017】[0017]

【発明の効果】本発明の連続分析計は上記のように構成
されており、以下に示す効果が得られる。(1)通常2
台の分析計出力を平均化して出力するため、1台のみの
使用に比べゼロ及びスパンドリフトが低減される。
(2)1項の平均化により指示ノイズも小さくなる。
(3)測定プログラムの実行により故障が発生しても他
方の分析部が瞬時にバックアップするので欠測が防げ信
頼性が高い。(4)校正や定検中の分析計は演算制御部
により除外され、その間、他方の分析計が自動的にバッ
クアップするので測定中断がない。(5)校正中の欠測
がないので校正周期を短くして校正用ガスを流すことが
でき、その間のドリフトから早期の故障判断が可能とな
る。
The continuous analyzer of the present invention is configured as described above, and has the following effects. (1) Normal 2
Since the outputs of the analyzers are averaged and output, zero and span drift are reduced as compared with the use of only one analyzer.
(2) Instruction noise is also reduced by averaging one term.
(3) Even if a failure occurs due to the execution of the measurement program, the other analysis unit instantaneously backs up the data, thereby preventing missing data and increasing reliability. (4) The analyzer under calibration or regular inspection is excluded by the arithmetic and control unit, and during that time, the other analyzer automatically backs up, so that there is no measurement interruption. (5) Since there is no missing measurement during calibration, the calibration cycle can be shortened and the calibration gas can be flown, and early failure judgment can be made from the drift during that period.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続分析計の概略構成図である。FIG. 1 is a schematic configuration diagram of a continuous analyzer of the present invention.

【図2】本連続分析計の演算制御部で用いられる演算制
御ブロック図(a)と測定モード状態図(b)である。
FIGS. 2A and 2B are a calculation control block diagram (a) and a measurement mode state diagram (b) used in a calculation control unit of the continuous analyzer.

【図3】本連続分析計の出力特性図である。FIG. 3 is an output characteristic diagram of the continuous analyzer.

【図4】本連続分析計の測定基本動作を示すフローチャ
ート図である。
FIG. 4 is a flowchart showing a basic measurement operation of the continuous analyzer.

【図5】本連続分析計の校正時期と校正内容を示すフロ
ーチャート図である。
FIG. 5 is a flowchart showing the calibration time and calibration contents of the continuous analyzer.

【符号の説明】[Explanation of symbols]

1、2・・・分析部 3・・・演算制御部 4・・・表示/出力部 5・・・メモリ 6、7・・・流路切換弁 6a、6b、7a、7b・・・入力ポート 6c、7c・・・共通ポート 8、9・・・流路開閉弁 10・・・ゼロ校正用ガスボンベ 11・・・スパン校正用ガスボンベ 12・・・導入管 13・・・演算ブロック 13a、13b・・・スケーラ 13c、13d、13e、13f・・・スイッチ 13g・・・加算器 13h・・・係数器 13j・・・比較器 14・・・制御ブロック 1, 2 ... analysis unit 3 ... calculation control unit 4 ... display / output unit 5 ... memory 6, 7 ... flow path switching valve 6a, 6b, 7a, 7b ... input port 6c, 7c: Common port 8, 9: Flow opening / closing valve 10: Gas cylinder for zero calibration 11: Gas cylinder for span calibration 12: Introductory pipe 13: Operation block 13a, 13b ..Scalers 13c, 13d, 13e, 13f... Switches 13g... Adders 13h... Coefficient units 13j... Comparators 14... Control blocks

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数台の分析部と、独立して校正を行うた
めの流路切換機構と、該流路切換機構を介して校正用ガ
スを送るための校正ガスボンベ及び流路開閉機構と、前
記分析計の出力信号を取り込み、すべての分析部が正常
測定中は加算平均を行うとともに、測定中断中の分析部
があればその出力を除いて、正常測定中の分析部出力を
出力信号とする演算制御手段と、該分析部出力を表示及
び出力するための表示出力部を備えたことを特徴とする
連続分析計。
A plurality of analyzers, a channel switching mechanism for independently performing calibration, a calibration gas cylinder and a channel opening / closing mechanism for sending a calibration gas through the channel switching mechanism, Capture the output signal of the analyzer, perform averaging while all analyzers are performing normal measurement, and remove the output of the analyzer during normal measurement as an output signal, excluding the output of the analyzer during measurement interruption, if any. And a display output unit for displaying and outputting the output of the analysis unit.
JP10313788A 1998-11-04 1998-11-04 Continuous analyzer Pending JP2000146984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10313788A JP2000146984A (en) 1998-11-04 1998-11-04 Continuous analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10313788A JP2000146984A (en) 1998-11-04 1998-11-04 Continuous analyzer

Publications (1)

Publication Number Publication Date
JP2000146984A true JP2000146984A (en) 2000-05-26

Family

ID=18045547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10313788A Pending JP2000146984A (en) 1998-11-04 1998-11-04 Continuous analyzer

Country Status (1)

Country Link
JP (1) JP2000146984A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042184A (en) * 2007-08-10 2009-02-26 Kimoto Denshi Kogyo Kk Gas meter
JP2013242274A (en) * 2012-05-22 2013-12-05 Horiba Ltd Analyzer calibration system and exhaust gas analysis system
CN103513601A (en) * 2012-06-29 2014-01-15 中国科学院大连化学物理研究所 Sampling end control system of automatic continuous sampling equipment for dioxin in incineration flue gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042184A (en) * 2007-08-10 2009-02-26 Kimoto Denshi Kogyo Kk Gas meter
JP2013242274A (en) * 2012-05-22 2013-12-05 Horiba Ltd Analyzer calibration system and exhaust gas analysis system
US9255917B2 (en) 2012-05-22 2016-02-09 Horiba, Ltd. Analyzer calibrating system and exhaust gas analyzing system
CN103513601A (en) * 2012-06-29 2014-01-15 中国科学院大连化学物理研究所 Sampling end control system of automatic continuous sampling equipment for dioxin in incineration flue gas

Similar Documents

Publication Publication Date Title
JP5792956B2 (en) Gas analyzer
JP4610649B2 (en) Apparatus and method for diagnosing a chemical detection system
JP2000146984A (en) Continuous analyzer
JP4015744B2 (en) Vehicle diagnostic device
US20170080524A1 (en) Laser processing system having function of cleaning laser optical path
KR100809598B1 (en) Semiconductor test system being capable of virtual test and semiconductor test method thereof
JP2004163194A (en) Ic tester and testing module
KR20180008629A (en) Method and apparatus for providing test response
JP3129840U (en) Volatile organic compound measuring device
JPH09264938A (en) Device and method for testing integrated circuit and device and method for designing integrated circuit
JPH10132826A (en) Monitor for continuous analyzer
GB2376296A (en) Gas monitoring system
JPH0961434A (en) Analyzing device
JPH01162300A (en) Rom checking circuit testing system
JPS60262249A (en) Microprocessor applying device
JP2004069545A (en) Semiconductor testing device and method
JPH07227033A (en) Digital relay and its monitoring method
JPH1151925A (en) Monitoring method for metal analyzer
JPH07182002A (en) Fault preventing device
JPH11108831A (en) Infrared gas analyzing system
JPH02297637A (en) Control unit inspecting device
JPH11304450A (en) Checking method and device of defects on printed matter
JPH07119791B2 (en) LSI test equipment
JP2000194577A (en) Fault detecting circuit
JPH10147872A (en) Gas line trouble diagnosis and repair method